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INTRODUCTORY REMARKS

This treatise collects and reflects the major developments of direct (discrete) variational calculus
since the end of the 17th century until about 1990, with restriction to classical linear elastome-
chanics, such as 1D-beam theory, 2D-plane stress analysis and 3D-problems, governed by the 2nd
order elliptic Lamé-Navier partial differential equations.
The extension of the historical review to non-linear elasticity, or even more, to inelastic defor-

mations would need an equal number of pages and, therefore, should be published separately.
A comprehensive treatment of modern computational methods in mechanics can be found in

the Encyclopedia of Computational Mechanics [83].
The purpose of the treatise is to derive the essential variants of numerical methods and algorithms

for discretized weak forms or functionals in a systematic and comparable way, predominantly using
matrix calculus, because partial integrations and transforming volume into boundary integrals with
Gauss’s theorem yields simple and vivid representations. The matrix D of 1st partial derivatives
is replaced by the matrix N of direction cosines at the boundary with the same order of non-zero
entries in the matrix; ∂/∂xi corresponds to cos(n,ei),x = xiei, n = cos(n,ei)ei, i = 1, 2, 3 for
Ω ⊂ R3.
A main goal is to present the interaction of mechanics and mathematics for getting consistent

discrete variational methods and from there – in a comparative way – the properties of primal,
dual and dual-mixed finite element methods in their historical development. Of course the progress
of proper mathematical analysis since the 1970s and 1980s is outlined, concerning consistency,
convergence and numerical stability as well as a priori and a posteriori error estimates in the frame
of Sobolev spaces for the mostly C0-continuous test and trial ansatz functions at element interfaces.
This mathematical research followed after the more intuitive engineering developments since the
1950s, using the principle of virtual work and the principle of minimum of total potential energy.
A proper finite element method has to regard the motto of this treatise: “mathematics meets

mechanics”.
Comparative numerical results are not included because numerous new calculations would have

been necessary for getting usable comparisons for the various cited articles.

1. NETWORKED THINKING IN COMPUTATIONAL SCIENCES

Computation Mechanics needs the networked interaction of mechanics, mathematics and computer
science, which is symbolized on the graphics by M.C. Escher from 1956, called “Bond of Union” and
expressing “creativity by communication and reproduction”. It symbolizes the networked thinking
in Computational Sciences, Fig. 1.

Fig. 1. “Bond of Union” by M.C. Escher, 1956, expressing “creativity by communication and reproduction”.
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John H. Argyris stated in the early 1960s:

“The computer shapes the theory”,

i.e., not only the numerical methods and the solution algorithms are highly influenced by the com-
puter facilities but also the physical and mathematical modeling. The complexity and theoretical
depth of multi-physical and multi-scale mathematical models and – of course – the number of un-
knowns which have to be solved in reasonable time, crucially depend on the computer architecture,
the processor speed and the available data storage. Their growth still follows Moore’s law, [64].
There is no doubt that verification (bounded error control of the discretized solution) and valida-

tion (coupled bounded error control of mathematical modeling in conjunction with relevant exper-
imental data, coupled with numerical and experimental verification) are major tasks for reliability
and trustworthyness of computational methods and results in application to real-life problems.
This requires holistic thinking, various interactions and the collaboration of specialists from

many disciplines and subjects in science, engineering development and design, of developers and
distributors of general purpose software systems and within industrial developments and production
of modern technological objects.

2. EMINENT SCIENTISTS IN NUMERICAL AND STRUCTURAL ANALYSIS
OF ELASTO-MECHANICS

A rough overview of the historical development of numerical analysis in elasto-mechanics is shown in
Fig. 2. We have to decide between the mathematical treatment of numerical solutions for boundary
value problems of ordinary and partial differential equations on the left side of Fig. 2, and mechanical
modeling and numerical calculation of structures on the right side, which – of course – have the
same mathematical modeling in the background.

Fig. 2. Eminent scientists in numerical and structural analysis of elasto-mechanics since the 17th century

Left-hand side of Fig. 2: We do not consider here finite difference and collocation methods but
direct variational methods only. This begins in 1697 with the first seminal variational calculus by
Jacob Bernoulli and the first idea of a direct variational method by Gottfried Wilhelm Leibniz in
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Acta Eruditorum with seven solutions for the so-called brachistochrone problem (named by Johann
Bernoulli). A strong development took place since the end of the 19th and especially in the 20th
century with test and trial functions in the whole domain of a problem with restricted applications.
Important contributions came from Lord Rayleigh, Walter Ritz and Boris Grigoryevich Galerkin
and some others. The real FEM, id est with test and trial functions in regular subdomains which
are topologically equal for the same given operator in the whole domain – the finite elements –,
were developed in the middle of the 20th century like a ping-pong match between mechanics and
mathematics with joint and stormy international efforts until today.
For this we have to mention primarily Ivo M. Babuška, Werner C. Rheinboldt, Franco Brezzi,

Claes Johnson and Rolf Rannacher.
Right-hand side of Fig. 2: Mechanical modeling and numerical simulation also started in the

middle of the 20th century – according to the upcoming facilities of digital computers – but only
with direct simplified modeling of a continuous 3D structure by 1D truss-works and grillages. In
this frame matrix structural analysis with systematic application of the principle of virtual work
and its generalizations was developed by Langefors, Argyris and many others. The deciding step
to FEM was the use of topologically equal subdomains for discretization with respect to the whole
domain and using the already known methods of matrix structural analysis, first published by Ray
Clough et al. in 1956. Then a plenty of finite elements for a great variety of engineering problems
followed until the end of the 20th century by Wilson, Argyris, Zienkiewicz, Taylor, Szabo and many
others.
There was never before and never after a joint photo opportunity for the “Big Three”, as it

happened in Munich in 1999, Fig. 3.

Fig. 3. Three eminent pioneers, the “Big Three” of the finite element method based on structural mecha-
nics: John H. Argyris, Ray W. Clough and Olgierd C. Zienkiewicz (from left to right) at the first European

Conference on Computational Mechanics (ECCM) 1999 in Munich, photo by E. Ramm.

3. THE BEGINNING OF CYBERNETIC AND HOLISTIC THINKING IN PHILOSOPHY
AND NATURAL SCIENCES

The 17th century can be considered as the cradle of modern natural sciences and technology. In
condensed form these developments are, [81, 82]:

• New (mechanistic) natural philosophy at the beginning of the Age of Enlightenment by F. Bacon,
T. Hobbes, R. Descartes, B. Spinoza, J. Locke, G.W. Leibniz, . . .
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Descartes: cogito ergo sum, dualism of mind and body,
Leibniz: nihil sine ratione, theoria cum praxi, harmonia est unitas in multitudinae

• The laws of the planetary orbits, by J. Kepler.
Theory-guided systematic experiments for the mathematical formulation of physical laws, by G.
Galilei: Measure what can be measured, make measurable which is not yet measurable!

• Analytical geometry by R. Descartes

• Infinitesimal calculus by I. Newton and G.W. Leibniz;
binary number system by T. Harriot and G.W. Leibniz

• Axiomatic mechanics (Mechanica Rationalis) by I. Newton in his Philosophia Naturalis Principia
Mathematica

• Conservation and extremum principles in mechanics by E. Torricelli, P. de Fermat and G.W.
Leibniz

• Construction of the first mechanical calculating machines by W. Schickard, B. Pascal and G.W.
Leibniz

• Many further technical inventions by C.H. Huygens (watches), G.W. Leibniz (improvements of
technical equipment for mining), O. von Guerricke (technical applications of air pressure and
vacuum, especially the Magdeburg hemispheres), . . .

4. PRE-HISTORY OF THE FINITE ELEMENT METHOD (FEM)
IN THE 17TH AND 19TH CENTURY

4.1. Torricelli’s principle of minimum potential energy of a system of rigid bodies
under gravity loads in stable static equilibrium

The first minimum principle in mechanics was established by Evangelista Torricelli (1608–1647),
secretary to Galileo Galilei, about 1630, Fig. 4. He found that a mechanical system of two rigid
bodies finds its stable static equilibrium in a configuration that the total center of gravity S takes
the lowest possible position, Fig. 5, [93].

Fig. 4. Evangelista Torricelli (1608–1647).

Fig. 5. Two spheres or discs, connected by a hinged bar and moving within a larger spherical or circular
foundation. The gravity center S takes the lowest possible position.
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4.2. Galilei’s approximated solution of minimal time of a frictionless downgliding
mass under gravity load

The next important step originates from Galileo Galilei’s first formulation of the following opti-
mization problem: Find the curve of a mass which is frictionlessly gliding down a guided path due
to gravity in least time, published in his Discorsi, Leiden (1638), [39].

Fig. 6. Galileo Galilei (1564–1642).

Fig. 7. (left) Galilei’s empirical approximation of the optimal curve: a quarter of a circle, after testing different
polygons as improvements of the straight line, t(BC) > t(BDC) > t(BDEC) > t(BDEFC) > t(BDEFGC);

(right) Velocity of the gliding mass, v =
√
2gh.

According to the important results of Galilei’s problem from 1697, the optimal path of the
gliding mass is the common cycloid. This will be treated a little bit later. But it is advantageous
to show some important properties of the cycloid in advance.
The cycloid and its evolute (which is again a congruent cycloid) is shown in Fig. 8. It can be

generated by a rolling wheel on a straight line as shown in Fig. 9. Important properties of the
cycloid are: normal SK = n and curvature radius SM = ρ = 2n.
In the 1660s and 1670s tautochrony or isochrony properties of the cycloid were discovered by

Christiaan Huygens, Isaac Newton and Gottfried Wilhelm Leibniz. It has the astonishing property

Fig. 8. The cycloid and its evolute are congruent cycloids.
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Fig. 9. Generation of a cycloid by a rolling wheel on a straight line.

that two masses A and C ′, Fig. 10, need the same time for frictionless gliding to the lowest point

B0, as tAB0
= tC′B0

and
tAB0

tMB0

=

⌢
AB0

AA′
=

4r

2r
= 2.

Fig. 10. Tautochrony or isochrony property of the common cycloid.

4.3. Snell’s law of light refraction and Fermat’s principle of least time for the optical
path length

Willebrord van Royen Snel (1580–1626) published in 1621 the law of light refraction which was
better reasoned later by Christiaan Huygens with the principle that every point of a wave is the
source of a new wave, [48]. This law reads, Fig. 11a,

sinα1 =
c1∆t

AB
, sinα2 =

c2∆t

AB
,

yielding

sinα1

sinα2
=
c1
c2

= n,
sinα1

c1
=

sinα2

c2
= const,

n is the refraction coefficient.
Pierre de Fermat (1601 or 1607/8–1665) established the principle of the light path in minimal

time using Cartesian coordinates, [33]:

T = s1/c1 + s2/c2 = n1/s1 + n2/s2, T = n1
[
(x− x1)

2 + y21
]1/2

+ n2
[
(x2 − x)2 + y22

]1/2
.
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The stationarity condition written with the derivative in the later formulation by Newton and
Leibniz reads dt/dx(P1, P2;x) = 0 → n1(x− x1)/s1 − n2(x2 − x)/s2 = 0 or

sinα1/c1 = sinα2/c2. (1)

In case of linearly varying density from a more to a less dense medium, Fig. 11b, the light path
fulfills the optimality (stationarity) condition:

TAB =

∫
ds/c(y)

√
y = min; dt = ds/c(y), yelding sinα(y)/c(y) = const, (2)

which describes a common cycloid.

a) b)

Fig. 11. a) refraction of light at the transition from a less dense medium (air) to a denser medium (water)
with the velocities c1 and c2; b) the common cycloid as the light path at least time in a medium with linearly

varying density.

Fermat’s principle had significant influence on the finding of conservation principles for physical
problems in the 17th and 18th century. It will be shown in Sec. 3 that the famous problem of a
guided frictionless down-gliding mass due to gravity in shortest time, first posed by Galilei in his
Discorsi from 1638, also has the solution of the common cycloid.

4.4. Johann I Bernoulli’s call for solutions of Galilei’s problem now called
brachistochrone problem in 1696 and the solutions published by Leibniz in 1697

Johann Bernoulli, Fig. 12b, from Basel published in 1696 in Acta Eruditorum a call for the solution
of Galilei’s problem: to find the function of the curve with minimal time which a frictionless guided
downgliding mass needs. The problem should be solved in one year’s time and published in the
same journal. Johann Bernoulli called this searched curve brachistochrone (curve of descent in least
time).
A total of seven solutions were submitted and published by Leibniz in 1697, [58]:

(1) one by Johann’s older brother Jacob Bernoulli, Fig. 12a, the mathematically most important
with the first version of variational calculus,

(2,3) two by Johann Bernoulli himself with elegant geometrical and analytical ideas. One solution
concerned directly the brachistochrone problem, and the other treated the corresponding
problem of the shortest time of the light path through a medium with linearly changing
density,

(4) one graphical solution by Leibniz with a geometrical integration of the ODE of the cycloid
by using his transmutation theorem from 1674,
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a) b)

Fig. 12. a) Jacob Bernoulli (1655–1705), the inventor of probability calculus and variational calculus and
b) Johann Bernoulli (1667–1748) who contributed a lot to infinitesimal and variational calculus and to

mechanics.

(5) one approximated discrete solution by Leibniz, using the same primal idea as Jacob Bernoulli
but proposing then in a rough draft a discretized numerical method with parametrized equal
finite time steps,

(6) one anonymous solution by Newton without proof, which was only provided in 1724,

(7) one incomplete solution by L’Hôpital and Tschirnhaus.

The mathematical solution of the “brachistochrone problem” was the origin of variational cal-
culus, especially by Jacob Bernoulli, in [58], about 45 years before the seminal work of Leonhard
Euler (1707–1783).
Jacob Bernoulli’s ingenious derivation of the ODE for the stationary solution of the brachis-

tochrone problem – the curve of a down-gliding mass in shortest time – in anticipation of Leonhard
Euler’s piece-wise discrete test functions for the first variation of a functional (1743), [37].
Jacob Bernoulli’s solution method follows the idea to reduce first the problem to a finite number

of problems of infinitesimal calculus: a discrete variation of the extremal curve by triangular test
functions between equidistant points y − h; y; y + h, with the distance h, is introduced, Fig. 13.
Then, the discrete stationarity condition reads for each discrete point:

tCG + tGD
!
= tCL + tLD. (3)

The continuous limit for the step h→ 0 yields the ordinary differential equation of the cycloid,

ds

dx
∼ k√

y
,

dx

dy
= tanα =

√
y

k2 − y
, k2 = 2r. (4)

Jacob Bernoulli thus anticipated Leonhard Euler’s discrete concept for the derivation of the
differential equation of the extremal function in his famous book Methodus inveniendi lineas curvas
... from 1743/44, as can be seen in Euler’s original drawing, Fig. 14.
In distinction from Jacob Bernoulli, Euler solved the more general extremal problem of the

functional

Z∫

x=A

F (y(x), y′(x), x)dx = min
y(x)
with the unknown extremal function y = f(x).
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a) b)

Fig. 13. a) figure by Jacob Bernoulli with discrete triangular test functions providing the stationarity
condition; b) figure by Johann Bernoulli for his derivation of the cycloid as minimal curve.

Fig. 14. Original drawing in L. Euler’s derivation of the differential equation for the extremal function of
isoperimetric variational problems with one unknown, from [37].

As can be seen in Fig. 14, Euler also introduced triangular test functions on equidistant discrete
abscissa points x and analyzed the difference quotients at pointsM,N,D with distance h. Instead of
envisaging a special problem, e.g. the brachistochrone problem, he performs the infinitesimal limit
for h → 0 for the more general functional F (y, y′, x) and gets the ordinary differential equation of

the extremal function y(x) as Fy −
d

dx
Fy′ = 0.

4.5. Leibniz’s discovery of the kinetic energy of a mass as a conservation quantity

In his article Brevis demonstratio erroris memorabilis Cartesii et aliorium circa legem natura in
Acta Eruditorum in 1686 Gottfried Wilhelm Leibniz (1646–1716) falsificates the solution of Réné
Descartes (1596–1650) for an exciting problem of this time, namely finding the “true measure of
the living force”. Descartes, Fig. 15a, assumed in [35] that the product of mass and velocity is a
conservation quantity. This can not be true because the velocity is a vector. Furthermore, Descartes
derived on this basis seven laws for impacting bodies which are all wrong, see Szabo, [91]. In the
application of his “principle” to the postulate that the whole quantity of motion in the universe is
conserved, he uses the scalar quantitym·|v| instead of v2, but this is formulated in a mathematically
non-understandable way. Leibniz, Fig. 15b, introduced the expression m ·v2 for the “true measure”,
Fig. 16, and thus discovered the kinetic energy of a moved body in the quasi-static case but without
the factor 1/2, expressing it as a law of proportionalities, [57].
In the treatise of J. S. Koenig (1712–1757) from 1751, [53], he claims by referring to a copy

of a letter from Leibniz to J. Hermann (1678–1733), dated from October 1708, that Leibniz had
discovered the principle of least action (in terms of today: the extremum principle for the total
potential and kinetic energy of a moved mass-system)which is a minimum in the quasi-static case
and a minimum or a maximum in the kinetic case. With this statement Koenig declares that
Leibniz had discovered this principle before Maupertuis, President of the new Preussische Akademie
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a) b)

Fig. 15. a) Réné Descartes (1596–1650); b) Gottfried Wilhelm Leibniz (1646–1716).

Fig. 16. Leibniz’s original drawing in [57] for the derivation of the kinetic energy of a falling body under
the action of gravity. With the added measures in blue color the law takes the form 1/2m1v

2
1 = 1/2m2v

2
2 , i.e.

4g = 4g.

der Wissenschaften in the years 1746–1756, who published his “Principe général” in 1746 in the
“Memoirs of the Academie des Sciences” in Paris; it postulates in a speculative way that the
quantity of actions (defined by the product of velocity and path) is always a minimum – which is
not true in the kinetic case of a moved mass. His proofs for some applications violate Newton’s laws,
especially the inertia axiom (already formulated by Galilei in his “Discorsi”). He saw his principle
as a law of economy of nature. Maupertuis was criticized after his publication, and famous scientists
like Euler did not regard it as a serious work. But nevertheless Maupertuis fought for his priority
of the principle of least action against Koenig who had become a member of the Preussische
Akademie (the Prussian Academy), and even the Prussian King Frederick II was involved and
supported Maupertuis. The problem was, that Koenig could not provide the original letter of
Hermann and was blamed of forgery; he finally drew the consequence and quitted the membership
in the Preussische Akademie.
In Immanuel Kant’s inglorious first treatise, [51], translated: “Thougths on the true estimation of

the Living Forces”, he tries to prove that Descartes was right and Leibniz was wrong. His arguments
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violate Newton’s laws of motion, and in his philosophical arguments he claims that mathematics
does not provide the ultimate arguments for the validity of a theory. It is well-known that Kant did
not understand Newton’s “Principia” because he had severe problems with advanced mathematics
and mechanics of his time.

Remark

All the attempts in the 17th and the first half of the 18th century for finding a general law for energy
balances of moved masses – the principle of least action – were incomplete and had inconsistencies.
From the today’s view we only need to consider the integration in time and in space of Newton’s

fundamental law F = m
dv

dt
for constant mass in time.

Integration along a path s of the force F yields

∫

s

F ·ds =

∫

s

m
d

dt

(
ds

dt

)
·ds =

∫

v

mv·dv =
mv2

2
.

Integration over the time yields

∫

t

F dt =

∫

t

m
dv

dt
dt; F dt = m dv.

Leibniz’s law for the kinetic energy of a rigid body together with Torricelli’s law of minimum
potential energy of a system of bodies yield the principle of total potential energy of rigid bodies in
the 18th century with severe quarrels about the authorship as outlined above. Based on this, the
variational calculus of rigid and elastic bodies in static and kinetic equilibrium, i.e., the analytical
mechanics, was developed in the 18th and 19th century by Leonhard Euler, especially by Joseph
Louis Lagrange, Lejeune Dirichlet, William Rowan Hamilton and Lord Rayleigh.

4.6. Leibniz’s draft of a discrete (direct) solution of the brachistochrone problem

Leibniz’s second contribution to the brachistochrone problem, [58], is of special interest for the
history of the finite element method and presented as follows.
He pursues the same idea as Jacob Bernoulli by reducing the continuous problem to a discrete

one with equidistant support points and triangular test functions between three subsequent points,
Figs. 17a and 17b.

a) b)

Fig. 17. Leibniz’s original figures for his discrete solution: a) discrete solution with linear trial and test

functions for one unknown, ED at point E; b) representation of piecewise triangular trial and test functions
at three equidistant points E,C′, C′′.

Leibniz did not give the analysis of the method which only was done in the 19th century by
K.H. Schellbach, [78], see (7). Even after a request by Johann Bernoulli to continue this research,
Leibniz responded that he would not have time and interest.
Due to the importance of Leibniz’s first idea for a discrete variational method, the analysis for

one discrete unknown is presented hereafter by the author, Fig. 18.
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Fig. 18. Measures for the derivation of the stationarity condition for a path in minimal time with one
discrete unknown.

The minimum problem reads

TAB =

B∫

A

dt =

yB∫

yA

ds(y)

v(y)
=

yB∫

yA

√
1 + (x′(y))2√

2gy
dy = min.

x(y)

(5)

The first approximation with one discrete unknown x1(y1) = x(h) yields

TAB =
AD

vAD
+
DB

vDB
=

s1
v(h)

+
s2

v(2h)
=

√
h2 + x2√
2gh

+

√
h2(l − x)2√
2g · 2h = min.

xh(y)

(6)

The discrete stationarity condition, not given by Leibniz, is

∂TAB

∂x

!
= 0 

x√
h2 + x2

· 1√
2gh

− l − x√
h2 + (l − x)2

· 1√
2g2h

!
= 0, (7)

yielding

sinϕ1

v1
− sinϕ2

v2

!
= 0. (8)

This is the same condition as for the minimum time of a light path moving through a medium
with linearly varying density which has the same variational formulation.
The above stationarity condition yields the 4th order polynomial

f(x) = x4 − 2lx3 + x2(l2 + h2) + 2h2lx− h2l2
!
= 0, (9)

with the linear approximation xlin = 0, 5 l and the exact solution

x = 0, 69 l. (10)

The discrete stationarity conditions for n equidistant nodal points read

sinϕi =
xi − xi−1

si
= const ; i = 1, 2, ..., n. (11)

This representation shows that Leibniz’s idea and draft was the first precursor of the finite
element method.
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4.7. Schellbach’s discrete formulation of direct variational stationarity conditions
according to Leibniz

Following the ideas of Jacob Bernoulli and Leibniz in [58], Karl Heinrich Schellbach (1805–1892)
published in 1851 in the Journal of A.L. Crelle, [78], the discrete algebraic equations of the brachis-
tochrone and other optimization problems by analytical calculation of the integrals for equidistant
support points, and in total the discrete algebraic equations in analytical form of 12 variational
problems for different boundary and field conditions of the related brachistochrone problem.

In order to point out the status of variational calculus in the middle of the 19th century, we cite
from the introduction of [78]: “The reasons for Bernoulli’s, Euler’s, and Lagrange’s methods [for
the variational calculus] can not be clearly understood yet . . . the variational calculus is the most
abstract and most sublime area of all mathematics.”

Discrete analytical representations of 12 variational problems using equidistant nodal points are
given:

1. Minimum area of a polygon with fixed ends with given length and extensions (Fig. 19.1),

2. Minimum area of a rotational surface with given meridian arc length and boundary conditions,
with extended versions (Fig. 19.1),

3. Brachistochrone problem with generalized boundary conditions in B and B′ (Fig. 19.2),

4. Brachistochrone problem in a resisting medium (Fig. 19.2),

5. Problem similar to 3. and 4., but with the condition of largest or smallest final velocity in B′

(Fig. 19.2).

Fig. 19. Figures in Schellbach’s article [78] for the discrete (direct) variational solution of geometrical and
mechanical optimization problems.

5. THE DEVELOPMENT OF FINITE ELEMENT METHODS IN THE 19TH AND 20TH
CENTURY

5.1. Lord Rayleigh’s variational approach to eigenvalue problems of differential
equations – the Rayleigh quotient

The first variational formulation of mechanical eigenvalue problems and their approximated (dis-
cretized) solution in form of the Rayleigh quotient were given by John William Strutt, the 3rd
Baron Rayleigh (1842–1919), Fig. 20, in his famous book Theory of Sound from 1877, [50].
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Fig. 20. Lord Rayleigh.

5.1.1. Linear algebraic eigenvalue problem of a Hermitian matrix

The eigenvalue problem of a Hermitian matrix A reads

Ax = λx = λIx; Aij ∈ R, i, j = 1, 2, ..., n; A = AT; detA > 0, (12)

(A− λI)x = 0; x 6= 0 det(A− λI) = 0, (13)

yielding the characteristic polynomial

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0; −an−1 = trA; (−1)na0 = detA (14)

with n real-valued eigenvalues

λ1, λ2, . . . , λn 6= 0, with λi > λi+1; λ1 = maxλi, λn = minλi. (15)

5.1.2. Orthogonality of the eigenvectors

From the symmetry and positive definiteness of Matrix A we get the orthogonality of n linear
independent eigenvectors for n real-valued eigenvalues, as

xT
k (Axi = λixi),

(xT
kA = λkx

T
k )x

T
i

}
 0 = (λi − λk)x

T
k

yi︷︸︸︷
Axi; λi 6= λk (16)

 xT
k yi = 0 i.e. xk ⊥ yi. (17)

5.1.3. Rayleigh quotient for λi

This yields the Rayleigh quotient for the eigenvalue λi:

xT
i (Axi = λixi) xT

i Axi = λix
T
i xi, (18)

λi =
xT
i Axi

xT
i xi

; λi = R(xi) (19)

with orthonormal eigenvectors

[
∗
x1

∗
x2 . . .

∗
xn] =

∗
X , i.e.

∗
xi

T ∗
xj= δij , (20)

[diag λi] =
∗
X

T

A
∗
X . (21)
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5.1.4. Variational (weak) form of equilibrium and minimum principle of total
potential energy of a linear elastic solid body

The static deformations of a linear elastic solid body – kinematically a C1 manifold – are described
in the primal form by the three Navier-Lamé’s partial differential equations for the displacements
in Cartesian coordinates, extended here for elastodynamics.

5.1.5. Lamé’s equations for linear elastodynamics with mixed BCs

(i) Kinematic relations:

u(x, t) = ui(x, t)ei ; x = xiei ∈ Ω ⊂ R3; i = 1, 2, 3, (22)

ǫ(x, t) = ǫijei ⊗ ej := gradsu(x, t), (23)

(ii) Constitutive equations:

σ(x, t) = C : ǫ(u(x, t)); σ = σijei ⊗ ej ; Cijkl ∈ R, C = CT, detC > 0, (24)

(iii) Equilibrium conditions:

divσ(u(x, t)) + f − ρü = 0; div [C : gradsu(x, t)] + f − ρü = 0. (25)

By eliminating the stresses and physical strains we get the three coupled hyperbolic differential
equations of 2nd order for the displacements, depending on the position vector x and time t, with
the symmetric differential operator matrix L, Eq. (26). We restrict ourselves to Dirichlet boundary
conditions. Furthermore, the boundary tractions t(x, t,n) are given by Cauchy’s theorem.

∥∥∥∥∥∥

L[u(x, t)] + f(x, t)− ρü(x, t) = 0

u = 0 at ΓD; ΓD ∪ ΓN = ∂Ω

B[u(x, t)] = σ(x, t) · n(x, t)|ΓN
= t(x, t,n) at ΓN .

(26)

In vectorial operator form, these PDEs read

(µ + λ)grad(divu(x, t)) + µdiv(grad(u(x, t)) + ρb = ρü(x, t) ∀x ∈ Ω ⊂ R3 (27)

or

(µ + λ)grad e+ µ∆u+ ρb = ρü ; e = divu, ∆u = div(gradu). (28)

5.1.6. Variational form and minimum principle with test functions v(x, τ)

Introducing admissible test functions

v(x, τ) ∈ V; V = {v ∈ [H1(Ω)]3; v = 0 at ΓD} at time t = τ, (29)

multiplying with Eq. (25) and integrating over the spatial domain Ω
∫

Ω

[(divσ) · v + f ] · v dΩ−
∫

Ω

ρü · v dΩ
!
= 0 (30)

as well as partial integration and applying the divergence theorem to the 1st term, using the
properties of the test function

∫

Ω

div(σ) · v dΩ =

�
�
�
�
�
�
�
��∫

S

div(σ · v) dS −
∫

Ω

σ : gradsv dΩ (31)
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yields the weak form, also introducing the bilinear form a(u,v), multiplied with −1



−
∫

Ω

[C : ǫ(u)] : ǫ(v) dΩ

︸ ︷︷ ︸
+a(u,v)=a(v,u)

+

∫

Ω

f · v dΩ +

∫

ΓN

t · v dS

︸ ︷︷ ︸
−F (v)

+

∫

Ω

ρü · v dΩ

︸ ︷︷ ︸
−ρ(ü,v)

= 0



· (−1), (32)

and with the further property

∫

Ω

ü · v dΩ =

�
�
�
�
�
�

∫

S

(u̇·v)� dS −
∫

Ω

u̇ · v̇ dΩ, (33)

we arrive at the extremum principle for the functional J [v] by L. Dirichlet (1857)

Π+K = J [v] =
1

2
a(v,v)
︸ ︷︷ ︸
Πint(v)

−F (v)︸ ︷︷ ︸
Πext(v)

− ρ

2
(v̇, v̇)
︸ ︷︷ ︸
K(v̇)

; J [u] = min
v∈V

J [v]. (34)

5.1.7. Stationarity condition as variational form or principle of virtual work

The stationarity condition of the functional J [v] yields the weak variational form for the searched
extremal problem, or in mechanical terms, the principle of virtual work in space and time

∂Π+ ∂K = ∂J [v] = a(v,v)− F (v)− ρ(v̇, v̇)
!
= 0. (35)

5.1.8. Proof of the minimum property of J [u]

Theorem:

J [u+ κv] ≥ J [u],u,v ∈ V (36)

Proof:
Assume a solution ũ = u+ κv, κ ∈ R, ũ ∈ V

J [u+ κv] =
1

2
a(u+ κv,u+ κv)− F (u+ κv)− ρ

2
(u̇+ κv̇, u̇+ κv̇) (37)

= J [u] + κ

[
a(u,v)− F (v) +

1

2
κ2a(v,v)− ρ

2
κ2(v̇, v̇)

]
(38)

for κ = 1 : = J [u] +
1

2
a(v,v)
︸ ︷︷ ︸

≥0

− ρ

2
(v̇, v̇)
︸ ︷︷ ︸

≥0

 J [u] = min
v∈V

J [v] ;
ρ

2
(v̇, v̇) ≤ 1

2
a(v,v). (39)

The kinetic energy is limited by the elastic energy in case of Dirichlet boundary conditions.

5.1.9. Rayleigh-Ritz direct variational method for the smallest eigenvalue

With F (v) ≡ 0 and the time-harmonic ansatz

v(x, t) = v(x) cos(ωt); v̇(x, t) = −v(x)ω sin(ωt) (40)
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we get the stationarity conditions in time and space

a(v(x, t),v(x, t)) = a(v(x),v(x))

∫

2π

cos2(ωt)dt; (41)

−ρ(v̇(x, t), v̇(x, t)) = −ρ(v(x),v(x)) (−ω)2
∫

2π

sin2(ωt)dt ; λ := ω2, (42)

yielding in total the 1st variation of the functional J with the eigenvalue λ

δJ [v(x)] = a(v(x),v(x))− λ(v)ρ(v(x),v(x))
!
= 0. (43)

5.1.10. Rayleigh-Ritz quotient

The above condition (43) directly yields the Rayleigh-Ritz quotient with the important minimum
property of the eigenvalue λ(v)

λ(v) =
1

ρ

a(v(x),v(x))

(v(x),v(x))
=

∫

Ω

ǫ(v) : C : ǫ(v) dΩ

∫

Ω

√
ρv ·

√
ρv dΩ

; λ(u) = min
v∈V

λ(v). (44)

The n-parametric Rayleigh-Ritz ansatz in the total spatial domain

ṽ(x) =
N∑

I=1

CIϕI(x) ∀ ϕI(x) ∈ Ṽ ⊂ V (45)

with Ritz parameters CI results in a minimal sequence for λ(v)

minλ = λ1; λ1,N for N test functions; λ1,N ≥ λ1. (46)

The proof of the minimum property of the approximated smallest eigenvalues was given by Walter
Ritz (1878–1909) in 1909, [74].

5.2. Ritz’s first mathematical foundation of direct variational methods for the
Kirchhoff plate equation

Walter Ritz (1878–1909), at last professor of mathematics at the Universität Göttingen, Fig. 21,
published his famous article, [74], translated: “On a New Method for the Solution of Certain
Problems in Mathematical Physics”, in 1909.
We cite from the introduction with translation into English:

The boundary value problems in mathematical physics usually require the representation of
finite, continuous functions in prescribed finite domains. Only exceptionally, the expansion
in power series is possible, and even more seldom this is numerically usable in the total
domain. . .
Thus, there is a request for an approximated representation of the integrals in the total pre-
scribed domain by a polynomial of given degree n. . . in a way that for growing n the accu-
racy is growing unlimited, finally resulting in polynomial expansions of the integrals . . . Also
Fourier series can be useful. In general, one can use most of those functions ψ1, ψ2, . . . , ψn

which can be chosen according to qualitative observation.
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Fig. 21. Walter Ritz (1878–1909).

In the following a condensed representation of Ritz’s article is presented. The power series of
linear independent and relative complete chosen functions ψi(x, y) for 2D problems reads

wn = ψ0 + a1ψ1 + a2ψ2 + · · ·+ anψn, (47)

with the unknown so-called Ritz-parameters ai, i = 1 . . . n.
Ritz presents in his article the numerical method and its convergence proof for the determination

of the ai, under the presumption that the variational problem

J =

b∫

a

f(x,w,w′, w′′, . . . w(0)) dx = min
ai

(48)

has to be solved. The parameters ai are determined through the n stationarity conditions

∂Jn
∂a1

= 0,
∂Jn
∂a2

= 0, . . .
∂Jn
∂an

= 0, (49)

which yield a linear system of algebraic equations for the ai.

5.2.1. Solution for the Kirchhoff biharmonic elastic plate equation for rectangular
clamped domains

The Kirchhoff plate equation for lateral load f(x, y) ∈ L2(R)
2 reads

∆∆w ≡ ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
= f(x, y), (50)

where at the total boundary L = ∂R clamped boundary conditions

w = 0,
∂w

∂n
= 0 (51)

have to be fulfilled.
Ritz postulates the finiteness and continuity of the lateral displacement of the plate middle

surface w and its derivatives up to order 4 in R and at L, which can be reduced by using today the
adequate Sobolev functional analysis with weak derivatives at the boundary.
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For the 2D clamped plate problem the integral (48), which is only given for 1D problems, takes
the form

J =

∫∫

R

[
1

2
(∆w)2 − f(x, y)w

]
dS. (52)

Partial integration yields
∫∫

R

∆U∆V dS =

∫∫

R

V∆∆U dS +

∫

L

[
∆U

∂V

∂n
−∆V

∂U

∂n

]
ds. (53)

The first variation of J reads

δJ =

∫∫

R

[∆wδ∆w − fδw] dS, (54)

with U = w, V = ∂w and regarding w = 0, ∂w∂n = 0 and δw = 0, ∂δw∂n = 0 at L, resulting in

δJ =

∫∫

R

[∆∆w − f ]δw dS. (55)

One can show that each solution of this equation yields a minimum of J .
Existence and convergence proofs for the numerical solution of the Kirchhof plate PDE with

convex domains and clamped edges are following in Ritz’s article.

5.2.2. Remarks on Trefftz method from 1926

A remarkable counterpart to Ritz’s direct variational calculus is Trefftz’s method, Erich Trefftz
(1888–1937) – see E. Trefftz: Ein Gegenstück zum Ritzschen Verfahren, in: Verhandlungen des
2. Internationalen Kongresses für technische Mechanik, 131–137, Zürich 1926. Herein, the homo-
geneous PDEs are fulfilled a priori in the whole domain, either by analytical solutions for the
displacements or by stress functions, fulfilling the bipotential Beltrami PDEs. Opposite to Ritz
method, mixed boundary conditions are fulfilled approximately by the discrete variational method.
For second order elliptic self-adjoint and well-posed BVPs, this yields symmetric positive definite

system matrices for admissible test and trial functions at the boundaries, and convergence is assured
for complete test and trial polynomials at the boundary – in Trefftz original work considering the
whole boundary – as in Ritz method.
In case of the fourth order bipotential Kirchhoff plate equation or of corresponding shell bending

theories, Trefftz’s method is only consistent for pure displacement boundary conditions (BCs), i.e.,
for clamped edges. In case of so-called Navier BCs and free edges (with pure Neumann conditions)
an additional least-squares term for the integral of the errors of the kinematical BCs, multiplied
with a penalty factor, has to be inserted for achieving unambiguous and thus converging results of
Trefftz approximations.
These problems were treated in the author’s doctoral thesis from 1964, in the doctoral thesis of

P. Weidner from 1967 and also in the habilitation thesis of the author from 1969. From the 1970s to
the 1990s Zienkiewicz et al., Stein & Peters, Jirousek, Piltner, Zielinski and some others generalized
Trefftz’s method for discrete boundary element techniques.
By generalizing Trefftz method to finite (discrete) boundary elements there arose a competition

with the important discrete boundary integral equation method (BIEM or simply BEM) with the
advantageous kernel functions derived from integral transformations based on the Signorini identity.
However, there are recent improvements of Trefftz methods by choosing hybrid mixed variational

formulations and special test and trial functions, e.g., applying a domain decomposition method
for solving the algebraic equations.
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In this treatise, Trefftz method was not presented as a whole chapter because then also BIEM
had to be presented with comparisons what would have increased the size of this work considerably;
this might be the subject for a separate article.

5.3. Galerkin’s discrete variational method for linear elliptic differential equations

Boris Grigoryevich Galerkin (1871–1945), Fig. 22, substantially contributed to the foundation of
discrete variational methods for linear elastic problems, i.e. for linear elliptic boundary value prob-
lems, in his famous article on beams and plates [38] from 1915, Fig. 23.

Fig. 22. Boris Grigoryevich Galerkin (1871–1945).

Fig. 23. First page of Galerkin’s article in Wjestnik Ingenerow, Petrograd 1915, entitled “Application of
series to the problems of equilibrium of elastic beams and plates”, [38].
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Galerkin’s discrete variational method for linear elliptic differential equations with ansatz func-
tions in the whole domain, starts directly from the variational form (weighted residual or 1st

variation of the corresponding functional) instead of beginning with the energy functional in Ritz’s
work, or, in terms of mechanics, using the principle of virtual work as the weak formulation of
equilibrium for admissible strains.
In the following the original representation of Galerkin in Cartesian coordinates is adapted to

modern terminology, using vector notation.
The mixed boundary value problem reads, e.g. of the Lamé PDEs of linear elasticity, Eqs. (27)

and (28),

L[u] = f in Ω ∈ R2, (56)

with L as the linear elliptic differential operator of order 2m, m = 1 for the Lamé equations, and
the kinematic (Dirichlet) boundary conditions

Bm[u] = 0 on ∂Ω. (57)

The ansatz functions

{uj(x, y)}nj=1 , s.t. Bm[uj] = 0 on ∂Ω ∀ j (58)

are chosen such that the essential (kinematic) boundary conditions are fulfilled.
The discrete approximation of solution u with admissible ansatz functions uj(x, y) and the

unknown scalar parameters αj reads

ũ =

n∑

j=1

αjuj(x, y), (59)

with the necessary conditions

Bm[ũ] = 0 on ∂Ω. (60)

The main new idea of Galerkin is to postulate the orthogonality of the uj with respect to the
strong residuum R[ũ] = L[ũ]− f in Ω

∫

Ω

L[ũ] · uj dA =

∫

Ω

f · uj dA ∀ j, dA = dxdy, (61)

or
∫

Ω

(L[ũ]− f)︸ ︷︷ ︸
R[ũ]

·uj , dA = 0, j = 1, 2, . . . , n. (62)

Thus, Galerkin’s approximation method is an inner product projection – not a L2 projection – of
the whole analytical solution space V(Ω) of the BVP into the reduced discretized function space
Vh ⊂ V. In case of well-posed selfadjoint elliptic BVPs, the approximated inner product yields
symmetric and positive definite global stiffness matrices with the presumption that the discrete
ansatz functions in the whole domain are kinematically admissible and complete.
Replacing f = L[ũ] in (62) yields

∫

Ω

(L[ũ]−L[u]) · uj dA = 0 (63)
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and furthermore for the whole approximated solution, which is not given in Galerkin’s article,

∫

Ω

(L[ũ]−L[u]) · ũ dA = 0, (64)

and using the linearity of operator L, we finally get for the discretization error e := ũ− u

∫

Ω

L[ũ− u︸ ︷︷ ︸
e

] · ũ dA = 0. (65)

Integration by parts and applying the divergence theorem yields the variational or weak form of
the approximated problem

a(ũ− u, ũ) = a(e, ũ) = 0, (66)

which is the important orthogonality condition, also addressed as Galerkin orthogonality, which
states that the Galerkin method yields the orthogonality of the error e with respect to the approx-
imation ũ. This is a system of linear symmetric algebraic equations (for symmetric operators L)
for determining the coefficients αj , j = 1 . . . n.

Remark

In case of the finite element method with ansatz and test functions in finite subdomains of the
whole domain, the variational condition in the whole domain must be fulfilled in each subdomain
Ωe of each finite element e, yielding the algebraic system for the whole domain Ω =

⋃
e
Ωe

⋃

Ωe

ae(uh − u︸ ︷︷ ︸
eh

,uh) = 0 ∀ uh ∈ Vh ⊂ V; u ∈ V. (67)

However, due to jumps of the derivative ∂uh

∂n and thus of the tractions at element interfaces, con-
vergence cannot be shown at this level, but requires the introduction of Sobolev approximation
spaces, as shown in Sec. 7.2.
Also the engineer I. Bubnov introduced in his book on structural mechanics of ships from 1914

with 650 pages variational approximations and applications to structural systems, [23].

5.4. Courant’s first introduction of finite elements

The famous applied mathematician Richard Courant (1888–1972), Fig. 24, first conceptually intro-
duced trial and test functions in finite subdomains of the 2D boundary value problem of St. Venant’s
torsion of prismatic beams without warping resistance, [30]. We cite from his introductory remarks:

As Henri Poincaré once remarked, “solution of a mathematical problem” is a phrase of
indefinite meaning. Pure mathematicians sometimes are satisfied with showing that the
non-existence of a solution implies a logical contradiction, while engineers might consider
a numerical result as the only reasonable goal.

This address will deal with a topic in which such a synthesis of theoretical and applied
mathematics has become particularly convincing. Since Gauss and W. Thompson, the equiv-
alence between boundary value problems of partial differential equations on the one hand
and problems of the calculus of variations on the other hand has been a central point in
analysis. At first, the theoretical interest in existence proofs dominated and only much later
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Fig. 24. Richard Courant (1888–1972). He was the first mathematician who introduced finite subdomains
for discrete variational methods.

were practical applications envisaged by two physicists, Lord Rayleigh and Walter Ritz; they
independently conceived the idea of utilizing this equivalence for numerical calculation of
the solutions, by substituting for the variational problems simpler approximating extremum
problems in which only a finite number of parameters need be determined.

In his so-called address he outlines his idea for the St. Venant’s torsion of prismatic bars with
arbitrary cross section, within a domain B and “finite elements”, i.e., regular subdomains with
contours C1, C2, C3, . . . and areas A1, A2, A3, . . . .The multiply connected domain between C and
C1, C2, C3, . . . may be called B

∗, Fig. 25.

Fig. 25. Figures of the St. Venant’s torsion problem of prismatic bars with arbitrary multi-connected cross
sections.

We further cite from Courant’s article:

Then the adequate variational formulation of the torsion problem in proper units is: To find
a function φ = u continuous in B + C, having piecewise continuous first derivatives in B,
having the boundary values zero on C and constant, but not prescribed values ci in the holes
Bi, such that for the whole domain B

D(φ) =

∫∫
[(φ2x + φ2y) + 2φ] dxdy (68)

attains its least value d for φ = u. The function u then will give the stresses in the cross
section by differentiation.
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The paper denoted as an “address” is motivating the essential generalization of Ritz’s method
to ansatz functions in finite subdomains and presents in the appendix the example in Fig. 25,
herein Figs. 2 and 3 for a quadratic cross section with 4 quadratic cutouts, using linear triangular
elements. Also some roots of the analysis are mentioned. Courant is considered by the mathematical
community to be the founder of primal FEM.

5.5. The seminal first engineering derivation and application of the finite element
method in structural mechanics by Clough et al.

In 1956, M.J. Turner, R.W. Clough, H.C. Martin and L.J. Topp published the article on the
stiffness and deflection analysis of complex structures, [94], which was a joint work of the structural
mechanics group at the University of California at Berkeley with Professor Ray W. Clough (*1920),
Fig. 26, as the leading scientist and engineers from the Boeing Aircraft Company in Seattle. The
underlying severe technical problem was the sufficiently accurate analysis of stresses and strains in
skew stiffened box girder wings of aircrafts which became very important during World War II and
thereafter, Fig. 27.

Fig. 26. Ray W. Clough (*1920) who developed the first engineering-based derivation and application
of the finite element method for structural problems of aircraft wings.

Fig. 27. Figures of the St. Venant’s torsion problem of prismatic bars with arbitrary multi-connected cross
sections. Original Fig. 3: Numerical simulation of wing structure breakdown; original Fig. 6: Stiffened cover
skin element. The quadrilateral plate element 1 − 2 − 3 − 4 is assumed to possess in-plane stiffness only.
Since two independent displacement components can occur at each node, the order of the K-matrix (stiffness

matrix K) for this (plane stress) plate element will be 8× 8.
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Remark

As pointed out in Fig. 2, structural engineers approximated plates, folded plates and shells, es-
pecially as stiffened structures, by systems of beams and rods which could be analyzed in the
1930s and 1940s using matrix calculus and electrical calculating machines for solving the algebraic
equations. Also the discretization by finite difference methods was further developed, especially in
the form of generalized finite difference methods (Mehrstellenverfahren), but herein there arises
the problem of developing finite difference stars at boundaries which is a special problem at skew
boundaries.

Therefore, the idea of using topologically equal subdomains (finite elements) of the whole domain
for equal trial and test functions for all elements in a variational setting was the striking idea and the
birth of modern computational mechanics. The main advantage is that the element stiffness matrices
only need the topology and the metric of the finite elements themselves but not of neighboured
elements and not at and outside the boundary. The second advantage is gained by the fact that
the resulting displacements, strains and stresses are the corresponding approximated values of the
mathematical model of the real structure with the same topology and metric.

5.5.1. The stiffness matrix for a triangular plane stress plate element with a linear
displacement trial and test functions

With the assumption of a linear elastic plane stress problem, the trial and test functions for a linear
displacement ansatz are used for deriving the stiffness matrix of such an element, Fig. 28. In matrix

a)

b)

Fig. 28. a) Triangular plane stress element with six nodal degrees of freedom ux1, uy1, ux2, . . . , uy3;
b) Symmetric stiffness matrix of order 8× 8 of the plane stress triangle.
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notation, the relation between the fictitious (energy-equivalent) nodal forces Fj and corresponding
nodal displacements δj is derived, Fig. 28 (b), as, [94],

{F} = [K]{δ}; [K] = [K]T, (69)

{δ}T = {ux1 uy1 ux2 . . . uy3}, (70)

{F}T = {Fx1 Fy1 Fx2 . . . Fy3}. (71)

[K] has the correct rank 5, i.e. 8 − 3, where 3 is the number of admitted rigid body modes (two
displacements and one rotation).

5.5.2. The Berkeley School of Computational Mechanics

The first strong development of finite element methods for rods, plates and shells took place in the
Department of Structural Engineering at the University of California at Berkeley with the eminent
Professors Ray Clough, Ed Wilson, R.L. Taylor and their students and postdocs, later professors,
such as Jürgen Bathe, Peter Wriggers and Juan Simo, who unfortunately died very early. They
developed numerous important finite elements for all types of structures, the algorithms and solvers.
R.L. Taylor created especially the program system FEAP with a macro language, which was further
continuously extended and is used today in academia all over the world.

5.6. The primal finite element method (FEM) for linear theory of elasticity with
matrix notation since the 1960th

It is useful to present at this point the primal FEM for 3D linear elastic systems, based on the
principle of virtual work, using matrix notation, [2, 3, 5, 26, 34, 40, 60, 68, 97], as it will be also
used for the dual (or stress) FEM as well as for the hybrid stress FEM and the dual mixed FEM.
The mixed BVP of the Lamé’s equations is given as follows:

(1a) Definition of the displacement vector and its components as a column vector

uT(x) =
{
u1(x) u2(x) u3(x)

}
; xT =

{
x1 x2 x3

}
, (72)

(1b) with the geometric boundary conditions u−u = 0 at ΓD, ΓD ∪ ΓN = Γ = ∂Ω, ΓD ∩ ΓN = ∅.

(2) The geometrically linear strain tensor is presented by the column vector of the strain compo-
nents

ǫT(x) =
{
ǫ11(x) ǫ22(x) ǫ33(x) 2ǫ12(x) 2ǫ23(x) 2ǫ31(x)

}
(73)

and defined as

ǫ(x) := Du(x) in Ω, (74)

with the differential operator matrix

D =




∂1
∂2

∂3
∂1 ∂2

∂3 ∂2
∂3 ∂1



; ∂i = ∂/∂xi; (75)

Du is equivalent to the symmetric gradient operator ∇sym.
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(3a) Definition of stresses:

σT(x) = {σ11(x) σ22(x) σ33(x) σ12(x) σ23(x) σ31(x)}, (76)

(3b) Equilibrium conditions:

DTσ + ρb = 0 in Ω (77)

(3c) Tractions and their equilibrium conditions at Neumann boundary, using the Gauss’s diver-
gence theorem

t(x) = NTσ(x); t(x) = t(x) at ΓN , (78)

with the direction matrix N which has the same structure as the operator matrix D, (75),

N =




cos(n,e1)

cos(n,e2)

cos(n,e3)

cos(n,e2) cos(n,e1)

cos(n,e3) cos(n,e2)

cos(n,e3) cos(n,e1)




(79)

(4) The constitutive equation – elasticity law for isotropic material – is

σ = Cǫ, (80)

with the symmetric and positive definite matrix of the elasticity tensor

C =
E

(1 + ν)(1− 2ν)




1− ν ν ν

ν 1− ν ν

ν ν 1− ν

1− 2ν

1− 2ν

1− 2ν



, (81)

and

C = CT; detC 6= 0;

ǫTCǫ =

{
6= 0 for ǫ 6= 0

= 0 for ǫ = 0

(82)

and the inverse or complicance matrix
∗
C according to ǫphys =

∗
C σ;

∗
C= C−1.

The principle of virtual work (weak form of equilibrium) reads for the continuous system

δA =

∫

Ω

δuT(DTσ(u) + ρb) dΩ+

∫

ΓN

δuT(t− t(u)) dΓ
!
= 0, (83)

under the conditions that ǫphys = ǫgeom := Du and δǫ(u) are C1-continuous in Ω, δu = 0 at ΓD,
b is square-integrable in Ω and t is quare-integrable at ΓN .



Milestones of Direct Variational Calculus and its Analysis. . . 37

Partial integration of the first term in the first integral and applying the Gauss’s divergence
theorem results in

δA =

∫

ΓN

(δu)T(NTσ︸ ︷︷ ︸
t(u)

dΓ−
∫

Ω

((δuT)DT)︸ ︷︷ ︸
(Dδu)T=δǫTgeom

C(Du) dΩ

+

∫

Ω

δuTρb dΩ +

∫

ΓN

δuT(t − t(u)) dΓ
!
= 0, (84)

and finally in the variational form or the principle of virtual work

∫

Ω

δǫT(δu)Cǫ(u) dΩ

︸ ︷︷ ︸
a(u,δu)

=

∫

Ω

(δuTρb dΩ+

∫

ΓN

(δu)Tt dΓ

︸ ︷︷ ︸
l(δu)

, (85)

where a and l are the bilinear and linear forms of the variational problem.
The same result is obtained from the principle of minimum of total potential energy, i.e. the

functional F(u)

F(u) = U(u) + Π (b, t) =
1

2

∫

Ω

ǫT(u)Cǫ(u) dΩ−
∫

Ω

uTρb dΩ−
∫

ΓN

uTt dΩ
!
= min

u
, (86)

with the stationarity condition

δF(u) =

∫

Ω

δǫTCǫ(u) dΩ−
∫

Ω

δuTρb dΩ−
∫

ΓN

δuTt dΓ
!
= 0. (87)

Partial integration and divergence theorem, applied to the first term, yields

δF(u) =

∫

ΓN

δuTNTσ(u)︸ ︷︷ ︸
t(u)

dΓ−
∫

ΓN

δuTt dΓ−
∫

Ω

δuT(DTσ(u)) dΩ−
∫

Ω

δuTρb dΩ
!
= 0, (88)

and finally the weak form of equilibrium

δF(u) =

∫

ΓN

δuT[t(u)− t] dΓ−
∫

Ω

δuT[(DTσ(u)) + ρb] dΩ
!
= 0. (89)

Direct variational approximation with finite elements – FEM – using trial and virtual displace-
ments is done as

uh,e(x) = N (x)ûe; δuh,e = Nδûe in Ωe, with uh,e(x) ∈ H1(Ω) ⊂ R3, (90)

with the trial and test shape functions

N (x) =



φT
u1
(x)

φT
u2
(x)

φT
u3
(x)


 , (91)

where the column vectors φui;i=1,2,3
(x) are complete polynomials, usually chosen as Lagrange or

Legendre polynomials, describing unit displacement states for the introduced nodal degrees of
freedom.
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The discretized strain takes the form

ǫh,e(x) = DN (x)︸ ︷︷ ︸
B(x)

ûe; δǫh,e = B(x)δûe, (92)

under the conditions that the strains ǫh,e = Duh,e and δǫh,e are C1-continuous in Ωe, the uh,e and
δuh,e are C1-continuous at all element interfaces Γe, i.e., [[uh,e]] = 0 at Γe; [[δuh,e]] = 0 at Γe and
δuh,e = 0 at ΓD,e.
The extension of the principle of virtual work, (85), to the discretized system then reads

⋃

e

{δûT
e

∫

Ωe

BT(x)CB(x) dΩ

︸ ︷︷ ︸
ke=kT

e ; detke=0

ûe} =
⋃

e

{
δûT

e



∫

Ωe

NT(x)ρb dx+

∫

ΓN,e

NT(x)t dΓ




︸ ︷︷ ︸
p̂e

}
. (93)

Assembling of the elements to the system by Boolean matrices ae, according to the unknown
global reduced nodal displacement vector Û , where global means the geometric assembling of the
elements at the nodes and reduced means the elimination of nodal displacements at Dirichlet bound-
aries ΓD,e, at least avoiding rigid body displacements without linear dependencies, results in

ûe = aeÛ ; δûe = aeδÛ ; p̂e = aeP̂ . (94)

Of course, these large rectangular incidence matrices ae, which are mainly occupied with zeros,
are not directly used but realized by index lists attached as column vectors to the element stiffness
matrices (stored as upper triangular matrices), from which they are inserted into the global reduced
stiffness matrix.
Inserting (94) into (93) yields the kinematic assembling process

δÛ
T

︸︷︷︸
6=0

{
⋃

e

[ aT
e keae︸ ︷︷ ︸

K=KT; detK 6=0

]Û} = δÛ
T{
⋃

e

aT
e p̂e

︸ ︷︷ ︸
P̂

} (95)

and thus the linear algebraic equation system for solving the global nodal displacement vector

KÛ = P̂  Û = K−1P̂ . (96)

The nodal displacements of element e are

uh,e(x) = N (x)aeÛ (97)

and the stresses

σh,e(x) = CB(x)aeÛ . (98)

5.7. h- and p-test and trial functions as lagrangian interpolation polynomials
in 1D representation

In the 1960s node- and element-wise h-discretizations (h is the characteristic element length) based
on Lagrangian polynomials were first used.
For a given set of distinct points ξj and numbers ηj , the Lagrangian polynomial is the one of

least degree that at each ξj assumes the given value ηj at this point. The interpolating polynomial
of least degree is unique, but changing the coordinate ξj requires a complete recalculation of the
interpolant.
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For a given set of k + 1 data points (ξ0, η0), . . . (ξj , ηj) . . . (ξk, ηk) with disjoint points j, the
interpolation polynomial is a linear combination

L(ξ) :=
k∑

j=0

lj(ξ)

of the Lagrangian basis polynomial

lj(ξ) :=
∏

0≤m≤k
m6=j

ξ − ξm
ξj − ξm

=
ξ − ξ0
ξj − ξ0

ξ − ξ1
ξj − ξ1

. . .
ξ − ξj−1

ξj − ξj−1

ξ − ξj+1

ξj − ξj+1
. . .

ξ − ξk
ξj − ξk

, (99)

and thus

li(ξi) =
∏

m6=i

ξi − ξm
ξi − ξm

= 1 (100)

and the orthogonality lj(ξi) = δji = δij .
The standard Lagrangian finite element ansatz has a nodal basis, for the polynomial order p = 1

with equidistant nodes k, Fig. 29.

Fig. 29. 1D nodal basis of linear lagrangian shape functions.

The piecewise linear node-based Lagrangian polynomials for p = 1 at an inner nodal point k

read, using the dimensionless coordinate ξ =
l

2
; 0 ≤ ξ ≤ 1,

Nk(ξ) =





2ξ, 0 ≤ ξ ≤ 1

2

2

(
1

2
− ξ

)
,

1

2
≤ ξ ≤ 1

. (101)

Correspondingly, hierarchical linear shape functions are depicted in Fig. 30.

Fig. 30. 1D hierarchical nodal basis of linear Lagrangian shape functions.
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Element-wise linear shape functions as lagrangian polynomials are shown in Fig. 31.
The element-wise linear Lagrangian polynomials read

Ne(ξ) =

{
Ne,k(ξ) = 1− ξ

Ne,k+1(ξ) = ξ

}
0 ≤ ξ ≤ 1. (102)

Fig. 31. 1D element basis of linear Lagrangian polynomials.

For higher p orders the element shape functions for p = 1; 2; 3 are shown in Fig. 32.

Fig. 32. Lagrangian shape functions of a 1D element for p = 1; 2; 3.

The p-version of finite element spaces is constructed – in contrast to the nodal basis of Lagrangian
type polynomials – by a hierarchical basis such that the lower order shape functions are contained
in the higher order basis, Fig. 33.

Fig. 33. 1D hierarchical basis functions of the p-version for p = 1; 2; 3.

This p-version was first published by Szabó, Babuška et al. in 1978 and 1981, [90] and [12] and
then in 1991, [89].
The ansatz spaces for 2D and 3D problems with quadrilateral and hexagonal elements are built

by tensor products of the shape functions of Fig. 33.

5.7.1. Cubic Hermitian polynomials for beams

The Euler-Bernoulli static theory of thin elastic beams yields the 4th order differential equation

d4w(x)

dx4
=
p(x)

EI
. (103)
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The solutions are in Hilbert spaces H4(Ω) ∈ R1. The primal FEM then requires test and trial
functions vh(x) ∈ H2

0(Ωe) for finite elements Ωe, and furthermore the shape functions have to be
C1-continuous at element interfaces, Fig. 34.

a)

b)

Fig. 34. a) Clamped beam with discretization into three beam elements, each with constant inertia moment
I ; b) beam element e with the four nodal kinematic unknowns wk, ϕk, wk+1 and ϕk+1 and the deflection w(x).

Using the dimensionless coordinate ξe = x/le and introducing the monomial 1; ξ; ξ
2; ξ3, ξ ≡ ξe,

the four cubic Hermitian polynomials (unit displacement states)

N1(ξ) = 1− 3ξ2 + 2ξ3, (104)

N2(ξ) = l(ξ − 2ξ2 + ξ3), (105)

N3(ξ) = 3ξ2 − 2ξ3, (106)

N4(ξ) = l(−ξ2 + ξ3) (107)

are derived, [43].

5.7.2. Legendre polynomials

For implicit residual error estimators enhanced h- or p-test spaces are required. Therefore, it is
suitable to introduce orthogonal polynomial bases as p- and h-versions. Legendre polynomials as
linear combinations of Lagrange polynomials are adequate for this technique, [55, 56].
The Legendre polynomials are defined as

Pn(x) :=
1

2nn!

dn

dxn
[(x2 − 1)n], (108)
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with the orthogonality property

1∫

−1

PnPm dx =
2

2m+ 1
δnm , m ≥ n; δnm =

{
1, n = m

0, n 6= m
;

Pn(x) :=
1

2nn!

dn

dxn
[(x2 − 1)n].

(109)

A hierarchical basis Ln(r) based on Legendre polynomials is defined as

L0(r) :=
1

2
(1− r) L1(r) :=

1

2
(1 + r), (110)

and for n ≥ 2 we get

Ln(r) :=

r∫

−1

Pn−1(x) dx =

r∫

−1

1

2n− 1

d

dx
(Pn − Pn−2) dx (111)

and finally

Ln(r) :=

[
1

2n− 1
(Pn − Pn−2)

]r

−1

=
1

2n− 1
[Pn(r)− Pn−2(r)]. (112)

These hierarchical polynomials have the boundary properties

L0(−1) = 1 ; L0(+1) = 0 ; L1(−1) = 0 ; L1(+1) = 1 ; Ln(±1) = 0 for n ≥ 2. (113)

If n is the maximal order of the actual approximation space then the hierarchically expanded test
space is derived by the orthogonality condition

+1∫

−1

[Ln(x) · Lk(x)] dx = 0 for k < n and k 6= n− 2. (114)

5.7.3. Remark on 2D and 3D ansatz spaces

The extension of 1D shape functions to those for 2D and 3D problems, using Cartesian coordi-
nates, polar-, cylinder- or spherical coordinates is usually done be tensor products of the 1D shape
functions.
For the special case of triangular elements area coordinates are favorable, see Subsec. 5.8.

5.8. h- and p-test and trial functions as Lagrangian interpolation polynomials for
triangular 2D elements

Suitable shape functions for triangles as nodal unit displacement states are presented with homoge-
neous area coordinates λ1, λ2, λ3, Fig. 35. A point P within the triangle is given by λ1 = A1/A, λ2 =

A2/A, λ3 = A3/A, with λ1 + λ2 + λ3 = 1, i.e. λ3 = λ̂3(λ1, λ2), [60].
The relation between the area coordinates and the cartesian coordinates of an arbitrary point

P (xP , yP ) is





λ1
λ2
λ3



 =

1

2A



A0

1 α1 β1
A0

2 α2 β2
A0

3 α3 β3







1

xP
yP



 , (115)
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Fig. 35. Unit displacement states using area coordinates λi for the nodes 1, 2, 3.

with A0
i = det

[
xi+1 yi+1

xi+2 yi+2

]
and

αi = yi+1 − yi+2

βi = −xi+1 + xi+2
, with i = 1, 2, 3 cyclic.

The inverse relation easily reads




1

xP
yP



 =



1 1 1

x1 x2 x3
y1 y2 y3







λ1
λ2
λ3



 . (116)

The bilinear shape functions for the displacements ux, uy of an element with six nodal degrees
of freedom, Fig. 36, read

ux,h =

3∑

k=1

λkûx,k, uy,h =

3∑

k=1

λkûy,k. (117)

Fig. 36. Plane linear triangular element for 2D linear elastic problems with six nodal degrees of freedom
in the three corner points.

The finite element trial functions then become
{
ux,h
uy,h

}

e

=

[
λ1 λ2 λ3 0 0 0

0 0 0 λ1 λ2 λ3

]{
ûx,1 ûx,2 ûx,3 ûy,1 ûy,2 ûy,3

}T
e
. (118)

In the same fashion quadratic shape functions can be used as unit displacement states, introducing
the three midside points additionally to the corner points.

5.9. Important early finite elements for plane stress and plate bending

It is notable that already in the 1950s and 1960s a lot of displacement elements were derived in the
engineering community, especially by Clough, Wilson, Melosh et al. at the University of California
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at Berkeley and by Argyris and his collaborators at the University of Stuttgart (using the so-
called “natural mode technique”, [4]). The following Figs. 37, 38 and 39, elaborated by Buck and
Scharpf, [24], show the systematic creation of finite elements with growing polynomial orders.

Fig. 37. Early rod and plane stress finite elements from the 1950s and 1960s, from [24].



Milestones of Direct Variational Calculus and its Analysis. . . 45

The derivation of element stiffness matrices, especially of plates in bending, by variational meth-
ods was given by Stein and Wunderlich, [86].

Fig. 38. Early 3D finite elements for elastic continua from the 1950s and 1960s, from [24].
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Fig. 39. Early plate bending finite elements for the Kirchhoff-Love plate equation with compatible
displacement ansatz functions from the 1950s and 1960s, from [24].

5.10. Isoparametric linear and quadratic quadrilateral elements
by Irons and Zienkiewicz

In 1968 B. M. Irons and O.C. Zienkiewicz published the so-called isoparametric 2D elements by
bijective mapping unit square elements to arbitrary quadrangles with bilinear shape functions for
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the geometry and the elastic displacements, Fig. 40a, with biquadratic shape functions to curved
quadrangles in Fig. 40b, and higher polynomials in the same fashion, [49].

a)

b)

Fig. 40. Isoparametric finite element shape functions with a) bilinear and b) biquadratic polynomials.

The derivatives of the shape functions Ni(ξ, η) with their dimensionless coordinates ξ and η are
required with respect to the coordinates x and y of the given structural problem, as

∂Ni

∂ξ
=
∂Ni

∂x

∂x

∂ξ
+
∂Ni

∂y

∂y

∂ξ
. (119)

The shape functions for the bilinear Q1-element read

Ni(ξ, η) =
1

4
(1 + ξiξ)(1 + ηiη). (120)

For both derivatives we get in matrix notation





∂Ni

∂ξ

∂Ni

∂η





=




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η








∂Ni

∂x

∂Ni

∂y





= J





∂Ni

∂x

∂Ni

∂y




, (121)

with the Jacobian matrix J and the inverse relation




∂Ni

∂x

∂Ni

∂y





= J−1





∂Ni

∂ξ

∂Ni

∂η




, (122)

with the inverse mapping condition detJ > 0.
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The strains

ǫ(x, y) =





ǫx
ǫx
γxy



 =




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x




︸ ︷︷ ︸
D

{
ux(x, y)

uy(x, y)

}
= Du(x, y) (123)

are approximated as

ǫh(x, y) = D(x, y)J−1N (ξ, η)︸ ︷︷ ︸
B(ξ,η)

ûh, (124)

with the vector of nodal displacements ûh.
Isoparametric elements for 2D and 3D problems are available in all general purpose finite element

programs.

6. THE COMPLEMENTARY FINITE ELEMENT METHOD WITH DISCRETIZED STRESS
APPROACHES, THE HYBRID STRESS METHOD AND DUAL MIXED METHODS

In the development of computational mechanics we first have to consider systematic energy-based
matrix structural analysis of the complementary so-called force method and the displacement
method for static analysis of statically overdetermined beam systems, truss-works and grillages
referring to the names in the right column of Fig. 2, Langefors, Argyris, . . . , Fenves from the 1950s
to the 1970s.
First the force method (based on elastic flexibilities) was developed since the beginning of the

20th century, e.g. by Müller-Breslau, [63], and secondly the displacement method (based on stiff-
nesses) in the 1920s by Ostenfeld, [67], and many others.
The finite element displacement method (primal FEM) for rods and beams can be easily in-

terpreted as a generalization of the classical displacement method; herein all adjacing beams in a
node are rotated together, whereas in primal FEM the connections of the beams with a node are
seperated and only reconnected by kinematic assembling of the finite elements to the global system.
In the complementary fashion, the finite element force (or stress) method (complementary FEM)

can be seen as a generalization of the classical force method for calculating statically overdetermined
beam systems, e.g., frames and trusses; therein the statically overdetermined system has to be
weakened by dissolving kinematic continuities, e.g., introducing hinges in 1D continuous beams at
the supports and in the same moment related statically overdetermined unknowns. The introduction
of linear independent statically determined systems with the related overdetermined unknowns is
rather easy for trained engineers but it is complicated in case of automatic generalization for
arbitrary systems, realized in a computer program. For this purpose, one needs topology matrices
for the recognition of statically determined systems, e.g. in [52] and [62]. Many attempts have been
made from the 1950s to the 1970s to automize the traditional force method towards a rather general
finite element stress method, assigned to John H. Argyris, [2, 3, 5], Fraijs de Veubeke, [34], and
Robinson, [76].

6.1. The theorems of Betti and Maxwell, and the theorems
of Castigliano and Menabrea

A systematic basis for strucutral analysis of linear elastic static beam and truss systems, governed
by ordinary differential equations of 2nd and 4th order was given by Carlo Alberto Castigliano
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(1847–1884), [29], and an amendment by Federico Luigi Menabrea (1809–1896), [61], based on the
reciprocity theorems of Enrico Betti (1823–1892), [15], and James Clerk Maxwell (1831–1879), [59].

The stored elastic strain energy of a linear elastic solid system reads

U(ǫ) =
∫

Ω

1

2
σij(ǫ)ǫij dΩ =

1

2
Cijklǫklǫij , Ω ⊂ R3, (125)

with the symmetric stress components σij and the symmetric strain tensor ǫ = ǫijei ⊗ ǫj, ǫij :=
1
2(ui,j + uj,i); u(x) = ui(x)ei, in matrix notation

U(ǫ) =
∫

Ω

1

2
σT(ǫ)ǫ dΩ =

1

2

∫

Ω

ǫTCǫ dΩ. (126)

The constitutive equation σ = Cǫ, C = CT; ǫTCǫ > 0 for ǫ > 0; ǫTCǫ = 0 for ǫ = 0, and
the complementary constitutive equation ǫ = C−1σ, then yield two conjugate forms of the stored
elastic energy, namely the primal form or strain energy

U(ǫ) =
∫

Ω

1

2
ǫTCǫ dΩ (127)

and the dual form or stress energy

∗
U (σ) =

∫

Ω

1

2
σT

∗
C σ dΩ. (128)

The work of the given physical forces F k for static loading at points k along displacements uk,
using the superposition law for linear elastic systems, i.e. an arbitrary sequence of loading, is

W =
1

2

∑

k

F k · uk =
1

2

∑

k

Fkuk cosαk =
1

2

∑

k

Fkfkk, (129)

presuming that the solution spaces of the structural members (stretched or bended or torsioned
beams) admit point loads. Otherwise, e.g., for plane stress problem or plates in bending, distributed
loads acting within a finite support have to be applied in order to avoid singularities.

The static energy theorem for the isothermal state reads

U = W and
∗
U= W =

∗
W, (130)

which takes the form, e.g., for stretching of prismatic beams

Ustretch =
1

2

∫

l

EAǫ2(x) dx;
∗
Ustretch=

1

2

∫

l

N2(x)

EA
dx (131)

and for bending of beams with Bernoulli-Euler theory

Ubend =
1

2

∫

l

EIκ2(x) dx;
∗
U bend=

1

2

∫

l

M2(x)

EI
dx. (132)
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6.1.1. The theorems of Betti and Maxwell

The reciprocity theorem of Betti, mathematician, physicist, and professor at the University of Pisa,
is the basis of the force method for statically overdetermined linear elastic beam systems using
symmetry properties of the work done by exterior forces, [15].
It is important to state again that the solution spaces of the given 1D-4th order-differential

equations and their boundary conditions with Sobolev spaces H4(Ω) as test and solution spaces ad-
mit single forces and moments acting at points of a structure without generating singular stresses.
This holds for beams, loaded by axial forces (yielding axial normal stresses, modeled by a dif-
ferential equation of 2nd order), transverse forces (yielding axial bending stresses and transverse
shear stresses, approximately modeled by a differential equation of 4th order of Euler-Bernoulli
type without transverse shear deformations or of Timoshenko type with constant transverse shear
deformations), and also for eccentric transverse forces, leading to shear stresses due to torsion,
developed by de St. Venant.
The admissibility of single forces and moments does not hold for all other 2D and 3D linear and

nonlinear elastic systems, e.g., for 2D plane stress analysis where stress singularities appear in the
vicinity of an acting single force.
For a given force F i acting on a linear elastic beam at point i, Fig. 41, we get the “eigen-work”

for static loading along the displacement ui

Wii =
1

2
F i · ui =

1

2
Fi(vi cosαi) =

1

2
Fifii, (133)

with the projection

fii = ui cosαi, (134)

and further introducing

fii = δiiFi; δii =
fii
Fi
. (135)

Fig. 41. Force F i, acting at point i of a beam, causing the displacement (projection) fii in the direction of
F i.

Next, two forces F i and F k are acting one after the other at the points i and k, Fig. 42.

Fig. 42. First F i is acting at point i and then additionally F k at point k.



Milestones of Direct Variational Calculus and its Analysis. . . 51

First, only F i is acting, yielding

Wii =
1

2
F i · uii =

1

2
Fifii =

1

2
FiδiiFi. (136)

Then, additionally F k is acting statically at point k, causing the displacement ukk and the “eigen-
work”

Wkk =
1

2
F k · ukk =

1

2
Fkfkk =

1

2
FkδkkFk, (137)

with δk =
fkk
Fk
.

But F i is acting in full size during the loading with F k along uik (index i marks the point and
the index k the cause), and thus does the so-called “foreign work”

Wik = 1F i · uik = Fifik = FiδikFk, (138)

with fik = uik cosαi; δik = fik
Fk
.

In total we get the work

W(1) = Wii +Wkk +Wik. (139)

Changing the sequence of loading, i.e., first F k and then F i yields the work

W(2) = Wkk +Wii +Wki. (140)

Because the loading sequence of a linear elastic system is arbitrary according to the superposition
theorem, it holds

W(1) = W(2) and thus Wik = Wki, (141)

which is Betti’s reciprocity theorem, further yielding

δik = δki, (142)

Maxwell’s theorem, which is Betti’s theorem for unit loads; Maxwell was a great physicist,
mathematician and famous professor at the Universities of Edinburgh and Cambridge.
For n forces F i,F k acting with arbitrary sequence we get the total work by superposition

W =
1

2

n∑

i=1

n∑

k=1

FiFkδik︸ ︷︷ ︸
Wik

. (143)

Differentiating the total complementary work
∗
W with respect to the nominal value Fj of force

F j at point j, we get

∂W
∂Fj

=
1

2

n∑

k=1

Fkδjk +
1

2

n∑

i=1

Fiδij ; δij = δji (144)

∂W
∂Fj

=

n∑

i=1

Fiδij = fi, (145)

which is the 2nd theorem of Castigliano, also often addressed as the complementary 1st
theorem.



52 E. Stein

Using the energy theorem W =
∗
U , Eq. (130), we arrive at

∂W
∂Fj

=
∂

∗
U

∂Fj
=

∂

∂Fj

[
1

2

(∫

l

N2(x)

EA
dx+

∫

l

M2(x)

EI
dx+ . . .

)]
, (146)

with

∂N(x)

∂Fj
= N j(x), (147)

which is the function of normal forces due to the unit load Fj = 1 at point j, and further

∂M(x)

∂Fj
=M j(x), (148)

correspondingly. This finally yields

∂
∗
U

∂Fj
=

∫

l

N(x)

EA︸ ︷︷ ︸
ǫ(x)

N j(x) dx+

∫

l

M(x)

EI︸ ︷︷ ︸
κ(x)

M j(x) dx+ . . . . (149)

6.1.2. The 1st and 2nd theorem of Castigliano and the theorem of Menabrea

The 1st Castigliano’s theorem states, [29],

∂U
∂uj

= |F j| cosαj = Fj (150)

and the complementary 2nd Castigliano’s theorem reads

∂
∗
U

∂Fj
= |uj | cosαj = fjj, (151)

where the given forces F j and the displacements uj naturally have different directions.
A natural extension of the 2nd Castigliano’s theorem to statically overdetermined (unknown)

forces Xj was given in the theorem of Menabrea, [61], Frederico Luigi Conte di Menabrea (1809–
1896), professor of mechanics at the military academy of the University of Torino. It states that
the derivative of the complementary energy with respect to static overdetermined unknown Xj is
zero,

∂
∗
U

∂Xj
= 0, (152)

because the Xj have to realize the kinematic continuity which was released by introducing a static
determined system and the Xj as exterior forces, according to the cutting principle by Leonard
Euler.
For a statically overdetermined linear elastic static system with n unknown forces or/and mo-

ments Xi; i = 1, 2, . . . , n, introduced in an admissible statically determined system, and m acting
forces Fk, the theorem of Menabrea yields the linear algebraic system of elasticity equations for
calculating the static unknowns Xi, with a symmetric positive definite equation matrix of the unit
deformations δik.
With the work of the Xi and Fk,

W = Ŵ(Xi, Fk); i = 1, 2, . . . , n; k = 1, 2, . . . ,m (153)
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the Menabrea theorem postulates

∂W
∂Xj

=
∂

∗
U

∂Xj
= fj =

n∑

i=1

δijXj +

n∑

i=1

δi0
!
= 0, (154)

with

δij =

∫

l

N i(x)

EA
N j(x) dx+

∫

l

M i(x)

EI
M j(x) dx+ . . . (155)

and

δi0 =

∫

l

N i(x)

EA

m∑

k=1

Nk(x)Fk

︸ ︷︷ ︸
N0(x)

dx+

∫

l

M i(x)

EI

m∑

k∗=1

Mk∗(x)Fk∗

︸ ︷︷ ︸
M0(x)

dx+ . . . . (156)

Thus, the “force method” leads to a linear algebraic system of equations for determing the Xj , in
matrix notation

[δij ](n,n){Xj}(n,1) = −{δi0}(n,1). (157)

These equations realize the kinematic continuity of the system at the virtual discontinuities in
connection with introducing the Xi, according to Euler’s cutting principle.
Extension: The applied loads can also be distributed. The only condition is that the energy

expressions are square-integrable.

Remark

As mentioned above, this classical “force method” of matrix structural analysis from the 19th
century is hard to generalize for automatic generation of the δij-matrices. This needs a topological
description and decomposition of the given system into a statically determined one including the
choice of the admissible statical unknowns, [52].
Important contributions to the finite element force method originate from de Veubeke, [34].
Thus, a computer based automized finite element force method, applicable for a wide range of

structural engineering systems, is scarcely to elaborate, especially in the manner of a finite element
method, where the whole structure is virtually dissolved into single beam elements.
However, the complementary force method namely the “displacement method” for beam sys-

tems, which was developed by Asger Skovgaard Ostenfeld (1866–1931) since the 1930s, [67], can be
organized very efficiently, e.g., for stiff frame systems. One can see the primal FEM with displace-
ment discretizations as a generalization of Ostenfeld’s method. Herein, the rotation angle of a node
of a frame system with all ending beams is an unknown kinematic quantity which has to be de-
termined by the equilibrium conditions at the node. More effort is necessary for unknown rotation
angles of beams. It is important to do this with the principle of virtual work in order to get – as in
the force method – symmetric equation systems for the unknown node and beam rotation angles.
This was systematically done by John Argyris (1913–2004) in his important papers, [2, 3, 5].
It is evident that it does not provide topological problems in defining the kinematically de-

termined (stiff) systems within the displacement method – in contrast to finding an admissible
statically determined (soft) system in the force method.
And there is a straightforward transition from Ostenfeld’s displacement method to primal FEM

by first dissolving all kinematic connections of beams at the nodes, choosing displacement discretiza-
tions with unknown nodal rotations for each single beam (or even parts of it) as finite elements
and then postulating all kinematic connectivities by the equilibrium conditions at the introduced
nodes.
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6.2. Dual or stress finite element method in matrix notation

The principle of complementary virtual work (weak form of the kinematic equations) of a 3D elastic
system with pure Dirichlet boundary conditions reads, compare the principle of virtual work (83)
and (85),

δ
∗
A=

∫

Ω

(δσ)T (
∗
C σ︸︷︷︸
ǫphys

− Du︸︷︷︸
ǫgeom

)

︸ ︷︷ ︸
!
=0

dΩ+

∫

ΓD

δtT (u(σ)− u)︸ ︷︷ ︸
!
=0

dΓ
!
= 0, (158)

under the conditions that the trial and test stresses fulfill the equilibrium conditions

DTσ + ρb = 0 in Ω and DT(δσ) = 0 in Ω, (159)

and the tractions satisfy the equilibrium conditions at Neumann boundaries,

NTσ =: t = t at ΓN and δ(NTσ) = δt = 0 at ΓN , (160)

and the physical strains are ǫphys =
∗
C σ.

Then applying partial integration to the second term of the first integral of (158) and the
divergence theorem to the first resulting term, the principle reads

δ
∗
A=

∫

Ω

(δσ)T
∗
C σ dΩ−

∫

ΓD

(δσTN )︸ ︷︷ ︸
δtT

u dΓ +

∫

Ω

(δσTD)︸ ︷︷ ︸
=0

u dΩ+

∫

ΓD

δtT(u− u) dΓ
!
= 0, (161)

which yields the principle of virtual stresses or of complementary virtual work as a basis for stress
FEM

δ
∗
A=

∫

Ω

δσT
∗
C σ dΩ

︸ ︷︷ ︸
∗
a(σ,δσ)

−
∫

ΓD

δtTu dΓ

︸ ︷︷ ︸
∗
l(δσ)

!
= 0. (162)

This result is also obtained by the stationarity condition for the total complementary energy func-
tional

∗
F =

∗
U +

∗
Π ext =

1

2

∫

Ω

σT
∗
Cσ dΩ−

∫

ΓD

tT(σ)u dΓ
!
= min

σ
,

∗
Π int =

∗
U ,

∗
Π ext = −2

∗
W are potential energies, (163)

under the conditions: DTσ+ ρb = 0 in Ω, DTδσ = 0 in Ω, NTσ := t = t at ΓN . The stationarity
condition reads, subtracting and adding the term

∫
Ω δσ

T(Du) dΩ,

δ
∗
F = δ

∗
U + δ

∗
Π ext =

∫

Ω

δσT
∗
Cσ dΩ−

∫

ΓD

δtTu dΓ−
∫

Ω

δσT(Du) dΩ+

∫

Ω

δσT(Du) dΩ, (164)

and applying partial integration and the divergence theorem to the last term yields

δ
∗
F=

∫

Ω

(δσ)T (
∗
C σ︸︷︷︸
ǫphys

− Du︸︷︷︸
ǫgeom

)

︸ ︷︷ ︸
!
=0

dΩ+

∫

ΓD

δtT (u(σ)− u)︸ ︷︷ ︸
!
=0

dΓ−
∫

Ω

(δσTD)︸ ︷︷ ︸
!
=0

u dΩ
!
= 0, (165)

which is the principle of virtual stress, i.e. the weak form of kinematic compatibility.
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6.2.1. Derivation of the complementary FEM with pure stress discretization

The principle of complementary virtual work for a discretization of the whole domain Ω =
⋃

eΩe

into n elements Ωe with equilibrated stresses and C0-continuous tractions for 3D BVPs reads, [69],
see also [34, 40], as well as [52] and [62],

δ
∗
Ah=

⋃

e





∫

Ωe

δσT
h (x)

∗
C σh(x) dΩ−

∫

ΓDe

δtTh (x)u dΓ





!
= 0, xT =

{
x y z

}
in Ωe, (166)

with the equilibrium conditions for the discretized stresses

DTσh + ρb = 0 in Ωe, DT(δσh) = 0 in Ωe,

[[th]] = 0 at Γe, [[δth]] = 0 at Γe and δth = 0 at ΓN,e,
(167)

yielding the discretized principle of complementary work

δ
∗
Ah=

⋃

e





∫

Ωe

(δσh)
T(

∗
C σh −Du) dΩ+

∫

Γe

δtTh [[u]] dΓ +

∫

ΓD,e

δtTh (u− u) dΓ





!
= 0. (168)

The discrete stress ansatz and its equilibrium conditions read

σh(x) = Nσ(x)ŝ in Ωe; δσh(x) = Nσ(x)δŝ in Ωe, (169)

fulfilling

DTσh = 0 in Ωe and [[th]] = [[NTσh]] = 0 at Γe, (170)

δth = NTδσh at ΓDe; th = NTσh = t at ΓNe , (171)

and further the constitutive equation

ǫh,phys =
∗
Ce σh in Ωe;

∗
Ce=

∗
C
T

e = C−1
e , positive definite. (172)

The introduced matrices are definded as

σT
h (x) =

{
σ11,h(x) σ22,h(x) σ33,h(x) τ12,h(x) τ23,h(x) τ31,h(x)

}
, (173)

with the parameter ansatz

σh(x) = Nσ(x)ŝe in Ωe (174)

and the matrix of shape functions

Nσ(x) =




φT
σ11

(x)

φT
σ22

(x)
. . .

φT
τ31(x)


 , (175)

φσij
(x) is the vector of complete, linear independent polynomials for each stress component, ful-

filling the equilibrium conditions (170) and (171). The unknown nodal stresses of element e are

ŝTe =
{
ŝTe,σ11

ŝTe,σ22
ŝTe,σ33

ŝTe,τ12 ŝTe,τ23 ŝTe,τ31

}
. (176)
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The matrix of direction cosines at element interfaces with the unit normal vector nT ={
cos(n,e1) cos(n,e2) cos(n,e3)

}
is given in (79). The virtual interface and boundary tractions

are defined as

δtTh =
{
th,1 th,2 th,3

}
at Γe; t

T
=
{
t1 t1 t3

}
at ΓNe . (177)

Equation (166) then takes the form

⋃

e

{δŝTe
∫

Ωe

NT
σ

∗
C Nσ dΩ

︸ ︷︷ ︸
fe=fT

e ; det fe 6=0; fe pos. def.;

ŝe − δŝTe

∫

ΓDe

NTNσu dΓ

︸ ︷︷ ︸
ûDe

} !
= 0. (178)

The element flexibility matrix fe is regular because the shape functions Nσ are linearly indepen-
dent.
This formulation is favorable for pure inhomogeneous Dirichlet boundary conditions.
In case of Neumann boundaries the prescribed tractions t at ΓNe enter (178) with terms

∫

ΓNe

NTNσŝe dΓ = te at all ΓNe , (179)

which are directly eliminated on element level and added to the right-hand side.
Assembling of the elements to the system – i.e., realizing the static connectivities – can be

formally expressed by Boolean matrices be and introducing the global unknown nodal stress vector
Ŝ as

ŝe = beŜ ∀ Ωe. (180)

This yields the global discretized weak form for the kinematic equations
ǫh,phys,e = ǫh,geom,e ∀ Ωe

δŜ
T

︸︷︷︸
6=0

[ (
⋃

e

bTe f ebe)

︸ ︷︷ ︸
F=FT, detF 6=0

Ŝ −
⋃

e

bTe ûDe

︸ ︷︷ ︸
ÛD

] = 0, (181)

with the global flexibility matrix F and the global given displacement vector ÛD, and thus we get
the algebraic equation system and its solution for well-posed BVPs

F Ŝ = ÛD  Ŝ = F−1ÛD. (182)

Remark

It is important to observe that the element flexibility matrix f e has the full rank if the stress shape
functions are linearly independent.
However, the element stiffness matrix ke in the primal FEM, namely

ke =

∫

Ωe

(DNu)
T

︸ ︷︷ ︸
BT(x)

C B(x) dΩ; detke = 0, (183)

has a rank deficiency which is equal to the number of admitted rigid body motions of the finite
element. This is due to the fact that the linearly independent shape functions, Nu(x), are differ-
entiated with the operator matrix D(x).
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Only by implementing the Dirichlet boundary conditions into the assembling process – ensuring
that the total system does not have rigid body motions – the assembled reduced global stiffness
matrix becomes regular, formulated here with reduced Boolean kinematic connectivity matrices
aT
e,red, yielding

Kred =
⋃

e

aT
e,redkeae,red; Kred = KT

red; detKred 6= 0. (184)

The global algebraic equation system, which weakly fulfills all equilibrium conditions in all elements
Ωe, at element interfaces Γe and at Neumann boundaries ΓNe , reads

KredÛ = P̂  Û = K−1
redP̂ . (185)

6.2.2. The simplest triangular pure stress element

It is evident that the construction of pure finite stress elements is very restricted. The following
example shows a triangular plane stress element using complete, rotationally invariant polynomials
of 5th order. It is easy to see that polynomials with 3rd and 4th order are not possible.
For the three stresses σx, σy and σxy we get 3 · 21 = 63 parameters. These are reduced to 33

independent parameters according to the equilibrium conditions which have to be pre-fulfilled.
The number of stress parameters is

N = 3





je∑

j=1

[(j + 1) + 1]



 = 3

1

2
(je + 1)(je + 2) minus ∆N = 2

1

2
je(je + 1), je = 5.

From the reduced number of parameters

Nred = N −∆N =

je∑

j=1

(j + 3) =
1

2
(je + 1)(je + 6),

we get for je = 5 the reduced number of degrees of freedom Nred = 33 and choose the following
unknown stresses: 3 stress components at each of the 3 corner nodes, which needs 9 parameters in
total. Then 33 − 9 = 24 unknown parameters remain. They are used for the tractions (with two
parameters each) at 4 equidistant nodes of the 3 element sides, yielding 3 · 8 = 24 parameters,
Fig. 43.
For je = 4 or je = 3, again choosing the stresses in the corner nodes as unknown parameters,

one does not get a divisible equal number of parameters and nodes at element sides.

Fig. 43. Finite stress element for plane stress with 33 unknown parameters.
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6.3. The so-called hybrid stress method by Pian

It is obvious that the pure stress method is not applicable for more complicated structural sys-
tems, especially 3D problems. Therefore, Theodore Pian (1919–2009) had the idea in 1964, [70], to
weaken the equilibrium conditions for the tractions at element interfaces and to add these condi-
tions, multiplied with Lagrangian parameters, to the complementary energy functional, resulting in
a saddle point problem. We can anticipate the result: the Lagrangian parameters become the dis-
placements at element interfaces. One can reduce the element matrices to pseudo-stiffness matrices
and assemble them to the system matrix like in the primal displacement finite element method.
In generalization of the minimal stress functional, (163), the hybrid stationary stress functional

∗
Uhyb +

∗
Π= stat. with relaxed interface and boundary conditions for the discretized system reads

∗
Fhyb,h=

∗
Uhyb,h +

∗
Π h=

∗
Uh +

∫

⋃
e Γe

λT[[th]] dΓ−
∫

⋃
e ΓN,e

λTth dΓ +
∗
Π → stat., (186)

with
∗
Uh =

1

2

∫

⋃
e Ωe

σT
h (x)

∗
C σh(x) dΩ;

∗
Π h = −

∫

⋃
e ΓD,e

tTh (σh)u dΓ. (187)

The equilibrium conditions within the element domains are DTσh = 0 in Ωe; D
Tδσh = 0 in Ωe;

σh =
∗
Cǫphys,h, whereas the interface and boundary conditions for the tractions, i.e. [[th]] 6= 0 at Γe;

th − t 6= 0 at ΓN,e, which are fulfilled approximately by the discrete variational process.
Due to the Lagrangian extension only a stationary value can be achieved.
The necessary stationarity condition reads

δ
∗
Fhyb,h=

⋃

e





∫

Ωe

δσT
h

∗
C σT

h dΩ+

∫

Γe

δλT[[th(σh)]] dΓ +

∫

ΓN,e

δλTth dΓ

+

∫

Γe

λT[[δth]] dΓ−
∫

ΓN,e

δλTt dΓ−
∫

ΓD,e

δtTh (σh)u dΓ





= 0. (188)

Subtracting and adding

∫

⋃
e Ωe

δσT
h (Duh) dΩ and applying partial integration to the positive term

yields

∫

Γe

uT
h [[δth]] dΓ +

∫

Γe

λT[[δth]] dΓ, and thus the result for the Lagrangian parameters

λh = −uh at Γe. (189)

Then, the discrete stationarity condition finally reads

δ
∗
Fhyb,h=

⋃

e





∫

Ωe

δσT
h [

∗
C σh −Du(σh)] dΩ+

∫

Γe

[[δtTh ]][λ− uh] dΓ

+

∫

Γe

δuT
h [[th]] dΓ +

∫

ΓN,e

δuT[th − t] dΓ−
∫

ΓD,e

δtTh [uh − u] dΓ





= 0. (190)

All the terms in the square brackets are approximated to be weakly zero.
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From (188) to (190), the stationarity condition as the basis for hybrid stress FEM then results in

δ
∗
Fhyb,h=

⋃

e





∫

Ωe

δσT
h

∗
C σh dΩ−

∫

Γe

(δσT
hN )uh dΓ−

∫

Γe

δuT
hN

Tσh dΓ

+

∫

ΓN,e

δuT
h th dΓ−

∫

ΓD,e

δ(σT
hN )u dΓ





!
= 0. (191)

The trial and test functions for the stresses are

σh = Nσ(x)ŝe, with DTσh = 0 in Ωe;

δσh = Nσ(x)δŝe, with Dδσh = 0 in Ωe,
(192)

with

Nσ(x) =




φT
σ11

(x)

φT
σ22

(x)
. . .

φT
σ31

(x)


 , (193)

and the trial and test displacements (Lagrangian parameters) at element interfaces

− λ = uh = Nu(x)ûe; with [[uh]] = 0 at Γe;

δuh = Nu(x)δûe, with [[δuh]] = 0 at Γe,

with Nu(x) =



φT
u1
(x)

φT
u2
(x)

φT
u3
(x)


 .

(194)

The stationarity condition, Eq. (191), reads in discrete form

⋃

e





δŝTe




∫

Ωe

NT
σ (x)

∗
C Nσ(x) dΩ

︸ ︷︷ ︸
fe

ŝe −
∫

Γe

(NT
σ (x)N )Nu(x) dΓ

︸ ︷︷ ︸
le

ûe −
∫

ΓD,e

NNT
σ (x)u dΓ

︸ ︷︷ ︸
ûD,e

]

+δûT
e [−

∫

Γe

(DNu(x))
TNσ(x) dΓ

︸ ︷︷ ︸
lTe

ŝe −
∫

ΓN,e

NT
u (x)t dΓ

︸ ︷︷ ︸
t̂N,e








!
= 0, (195)

with the row-regular Lagrangian matrices le and l
T
e with integrals on element interfaces.

This yields in condensed form

⋃

e





{
δŝTe δûT

e

}

︸ ︷︷ ︸
6=0




[
f e −le

−lTe 0

]{
ŝTe
ûT
e

}
−
{
ûD,e

t̂N,e

}

︸ ︷︷ ︸
!
=0








!
= 0. (196)



60 E. Stein

The unknown nodal stresses can be eliminated on element level. The first equation yields ŝe =
f−1
e leûe + f−1

e ûD,e, and inserted in the second one results in

lTe f
−1
e le︸ ︷︷ ︸

∗
ke=

∗
k
T

e

ûe + lTe f
−1
e ûD,e + t̂N,e︸ ︷︷ ︸

t̂
∗

= 0. (197)

The elimination of ŝe is only possible by the regularity of the element flexibility matrix f e;
∗
ke can

be called a pseudo-element stiffness matrix.
The hybrid stress method has the benefit of kinematic assembling of the given system like in

primal FEM because the remaining unknown degrees of freedom are nodal displacements.

6.3.1. A hybrid rectangular plane stress element

Pian published his first hybrid stress element in 1964, [69, 70], Fig.44.

Fig. 44. Hybrid rectangular plane stress element by T.H.H. Pian with bilinear shape functions for stresses
and displacements.

The stress ansatz is

σx = β1 + β2y +β6x +β8y
2 + β10x

2 + . . .

σy = β3 + β4x +β7y +β9x
2 + β10y

2 + . . .

τxy = β5 −β6y − β7x −2β10xy + . . . ,

(198)

which fulfills the homogeneous equilibrium conditions DTσ = 0 in Ωe.
Using the first five parameters for a linear stress approximation with the nodal values

β̂e =
{
β1 β2 β3 β4 β5

}T
, (199)

the matrix of stress shape functions is

φσ =



1 y

y x

1


 . (200)
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With the ansatz (198)–(200) the boundary tractions are

tΓe(x, y) = t





−τAB(x)

−σy,AB(x)

σx,BC(y)

τBC(y)

τDC(x)

σy,DC(x)

−σx,AD(y)

−τAD(y)





=




0 0 0 0 1

0 0 −1 −x 0

1 y 0 0 0

0 0 0 0 1

0 0 0 0 1

0 0 1 x 0

1 −y 0 0 0

0 0 0 0 1




︸ ︷︷ ︸
NTNσ





β1

β2

β3

β4

β5





︸ ︷︷ ︸
βe

, (201)

in closed form tΓe = NTNσβe, and introducing the energy equivalent fictitious nodal forces
ŝe :=

{
ŝx1, ŝx,2 ŝx,3 ŝx,4 ŝy,5 ŝy,6 ŝy,7 ŝy,8

}
with ŝe = NTtΓe(x, y) as the input for the

Lagrangian matrix le.

The displacements at element interfaces are also approximated linearly as

ux,h(x, y = 0) = ûx,1

(
1− x

a

)
+ ûx,2

x

a

uy,h(x, y = 0) = ûy,1

(
1− x

a

)
+ ûy,2

x

a
. . . ,

(202)

and in total the boundary displacements are

uΓe(x, y) = Nu(x, y)ûe, (203)





ux,AB(x)

uy,AB(y)

ux,BC(y)

uy,BC(y)

ux,DC(x)

uy,DC(x)

ux,AD(y)

uy,AD(y)





︸ ︷︷ ︸
uΓe(x,y)

=




1− x

a

x

a
0 0 0 0 0 0

0 0 0 0 1− x

a

x

a
0 0

0 1− y

b

y

b
0 0 0 0 0

0 0 0 0 0 1− y

b

y

b
0

0 0
x

a
1− x

a
0 0 0 0

0 0 0 0 0 0
x

a
1− x

a

1− y

b
0 0

y

b
0 0 0 0

0 0 0 0 1− y

b
0 0

y

b




︸ ︷︷ ︸
Nu(x,y)





ûx,1

ûx,2

ûx,3

ûx,4

ûy,5

ûy,6

ûy,7

ûy,8





︸ ︷︷ ︸
ûe

, (204)

where Nu(x, y) is the matrix of unit displacement states of the element boundaries for unit dis-
placements of the four corner nodes.
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This leads us to the requested Lagrangian coupling matrix le, with integrals over the element
boundaries, according to (195), yielding

le =

∫

Γe

(NT
σ (x, y)N )Nu(x, y) ds (205)

=




−b/2 b/2 b/2 −b/2 0 0 0 0

−b2/6 b2/6 b2/3− b2/3 0 0 0 0

0 0 0 0 −a/2 −a/2 a/2 a/2

0 0 0 0 −a2/2 −a2/2 a2/3 a2/6

−a/2 −a/2 a/2 a/2 −b/2 b/2 b/2 −b/2




(206)

The element flexibility matrix fe =

∫

Ωe

NT
σC

−1Nσ dΩ is calculated according to Subsec. 6.2, (178),

and equivalently the right-hand side vectors, (195).

This element has the analytically expected convergence properties, i.e., linear for stresses and
displacements. However, the extension to general quadrilaterals is practically impossible, and also
the generalization to 3D problems was not realized effectively.

6.4. Dual mixed FEM for linear elastic problems

6.4.1. The Hellinger-Prange-Reissner two-field functional

The (one-field) displacement FEM has the significant drawback that the approximation of the stress
field usually has jumps on element interfaces, since it is obtained from derivatives of C0-continuous
displacements at element interfaces.

Moreover, low order displacement elements may provide robustness problems with non-existing
global interpolation constants, showing up as numerical instabilities, e.g., as locking phenomena in
case of nearly incompressible elastic materials or in case of Timoshenko beam theory and Reissner-
Mindlin plate theory with approximated constant transverse shear deformations along the thickness.
It can be shown that in general robustness problems require mixed stress and displacement approx-
imations resulting in saddle point problems with global infsup-conditions for achieving numerical
stability.

It has to be mentioned that many engineering atempts have been made for overcoming the global
infsup-conditions by reduced integration and by local counting and balancing of the nodal stress
and displacement quantities, also using various patch tests. But these techniques can not replace
the infsup-condition for the mixed functional in general.

As already shown in the previous Subsec. 6.3 for the dual and hybrid dual FEM, a mixed
FEM based on primal FEM, i.e., the principle of virtual work, is not advantageous for mixed
generalizations because the element stiffness matrices have reduced rank and thus can not be
inverted and eliminated on element level.

Thus, the dual mixed FEM can be understood as a generalization of the hybrid stress method
or as a method sui generis, to approximate both stresses and displacements in the element domains
via the Legendre transformation of the specific complementary energy, where the elements of the
Lagrangian coupling matrices are integrals over the finite element domains – i.e., not only on
element interfaces as for the hybrid stress method, [42, 71–73].
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The complementary volume-specific strain-energy functional
∗
u(σ), according to

∗
U(σ) =∫

Ω

∗
u(σ) dΩ is defined – again in matrix notation – as the Legendre transformation

∗
u(σ) := σTǫphys − u(ǫgeom) with ǫgeom := Du, (207)

for which the total differential

du(ǫgeom) = dσT ∂u

∂ǫgeom
= dσTCǫ (208)

exists. Then also
∗
u has the total differential

d
∗
u = dσTǫphys; ǫphys =

∂
∗
u

∂σ
, (209)

and recalling (207), the specific stress energy functional takes the form

∗
u(σ) =

1

2
σTC−1σ; C−1 =:

∗
C. (210)

The Hellinger-Reissner functional for the test stresses τ (x) and the test displacements v(x) is
defined for a continuous system with mixed boundary conditions as

FHR(τ ,v) :=

∫

Ω

[
τTǫ(v)− 1

2
τTC−1τ

]
dΩ+Πext(v);

Πext(v) = −
∫

Ω

vTρb dΩ−
∫

ΓN

vTt dΓ.

(211)

Different from the previous Subsec. 6.3.1 we chose the shorter notation τ ≡ δσ for the test
stresses (virtual stresses) and v ≡ δu for the test displacements (virtual displacements) in the
domain Ω. They have to fulfill the following conditions:

τ ∈ T ; τ (x) = τT(x) is square-integrable in Ω, τ = 0 at ΓN ; v ∈ V, v is C1-continous in Ω
and zero at Dirichlet boundaries, v = 0 at ΓD.
The stresses σ(x) and displacements u(x) are determined for the condition that the func-

tional (211) becomes stationary for the saddle-point problem

FHR(σ,u) = inf
τ∈T

sup
v∈V

FHR(τ ,v). (212)

The necessary condition is that the first variation becomes zero as

δFHR = δτFHR + δvFHR
!
= 0, δFHR := τT ∂FHR

∂τ

∣∣∣∣
τ=σ

+ vT ∂FHR

∂v

∣∣∣∣
v=u

!
= 0 (213)

yielding

δτFHR =

∫

Ω

τT[Du︸︷︷︸
ǫgeom

−C−1σ︸ ︷︷ ︸
ǫphys

] dΩ
!
= 0 ∀τ ∈ T , (214)1

δvFHR =

∫

ΓN

vT(NTσ︸ ︷︷ ︸
t

) dΓ−
∫

Ω

(vTDT)σ dΩ−
∫

Ω

vTρb dΩ−
∫

ΓN

vTt dΓ

= −
∫

Ω

vT[DTσ + ρb] dΩ +

∫

ΓN

vT[t − t] dΓ
!
= 0 ∀v ∈ V, (214)2
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where in (214)2 partial integration and the divergence theorem were applied to the first term∫

Ω

vT(DTσ) dΩ.

The square brackets in (214)1 and (214)2 are the weak conditions for the kinematic compatibility,

i.e., ǫphys = ǫgeom, but in difference to the dual functional
∗
F and the hybrid dual functional

∗
Fhyb, the

test stresses do not need to fulfill the equilibrium conditions in the domain; they are fulfiulled weakly
as can be seen from (214)2. The same holds for the equilibrium condition at Neumann boundary.
Thus, the directly approximated fulfillment of the equilibrium conditions by the Hellinger-Reissner
functional is obtained together with the fact that the kinematic conditions are also approximately
fulfilled only. As a 1D example, using linear shape functions for displacements and stresses, the
dual mixed FEM (Hellinger-Reissner) yields linear displacements and linear stresses but constant
geometrical and linear physical strains; and using linear displacements for the primal FEM we
get linear displacements and constant stresses, combined with constant geometrical and physical
strains.

6.4.2. Hellinger-Reissner dual mixed FEM for linear elastic boundary value problems

As in the previous subsections we proceed from the continuous problem to a discretized finite
element system. Then, from (211) we arrive at

FHR,h(τ h,vh)

=
⋃

e





∫

Ωe

τT
h (Dvh) dΩ− 1

2

∫

Ωe

τT
h

∗
Cτh dΩ−

∫

Ωe

vT
h ρb dΩ−

∫

ΓN,e

vT
h t dΓ





→ stat.
τh,vh

, (215)

with τ h ∈ Th ⊂ T , τ h(x) ∈ L2(Ωe) and vh ∈ Vh ⊂ V, vh ∈ H1(Ωe), [[vh]] = 0 at Γe, vh = 0 at ΓD,e.
The first variation results in, compare (214)1,

δτh
FHR =

⋃

e




∫

Ωe

τT
h (Duh) dΩ

︸ ︷︷ ︸
−be(τh,uh)

−
∫

Ωe

τT
h

∗
Cσh dΩ

︸ ︷︷ ︸
−ae(τh,σh)




!
= 0, (216)1

δvh
FHR =

⋃

e




∫

Ωe

vT
h (D

Tσ) dΩ

︸ ︷︷ ︸
−bTe (vh,σh)

−
∫

Ωe

vT
h ρb dΩ−

∫

ΓN,e

vT
h t dΓ

︸ ︷︷ ︸
Fe(vh)




!
= 0. (216)2

With the introduced bilinear forms ae(τ h,σh), be(τ h,uh) and b
T
e (vh,σh) as well as the linear

form Fe(vh) the two stationarity conditions read

⋃

e

{ae(τ h,σh) + be(τ h,uh)} = 0 ∀τh ∈ Th ⊂ T , (217)1

⋃

e

{bTe (vh,σh) + Fe(vh)} = 0 ∀vh ∈ Vh ⊂ V. (217)2
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Discrete test and trial functions are introduced as tensor products of Lagrangian or Legendre
polynomials with unknown nodal values, as

τ h(x) = Nσ(x)δŝe, σh(x) = Nσ(x)ŝe in Ωe, (218)1

vh(x) = Nu(x)δûe, uh(x) = Nu(x)ûe in Ωe, (218)2

with the shape functions

Nσ(x) =




φT
σ11(x)

φT
σ22(x)

. . .

φT
σ31(x)


 , (219)

and

Nu(x) =



φT
u1
(x)

φT
u2
(x)

φT
u3
(x)


 . (220)

We then get the system of algebraic equations, multiplying (216)1 with −1

⋃

e





{
δŝTe︸︷︷︸
6=0

δûT
e︸︷︷︸

6=0

}







∫

Ωe

NT
σ

∗
CNσ dΩ

︸ ︷︷ ︸
fe=fT

e ; det fe 6=0

−
∫

Ωe

NT
σDNu dΩ

︸ ︷︷ ︸
le

−
∫

Ωe

NT
uD

TNσ dΩ

︸ ︷︷ ︸
lTe

0




{
ŝe

ûe

}

−





0∫

Ωe

NT
u ρb dΩ+

∫

ΓN,e

NT
u t dΓ

︸ ︷︷ ︸
p̂e












= 0, (221)

in which the terms within the large round brackets have to become zero. Using the above notations
for the matrices and vectors we arrive at the global mixed FE system

⋃

e







f e le

lTe 0






ŝe

ûe



−





0

p̂e







 =




0

0



 , (222)

from where we eliminate the nodal stresses on element level according to ŝe = f−1
e leûe and result-

ing in

lTe f
−1
e le︸ ︷︷ ︸

∗
ke

ûe = p̂e. (223)

Then the assembling of the elements to the global system is purely kinematic, as in primal FEM,
using the Boolean matrices ae and the global reduced displacement vector Û as

ûe = aeÛ , (224)
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yielding

∑

e

(aT
e

∗
keae)

︸ ︷︷ ︸
∗
K=

∗
K

T
; det

∗
K 6=0;

Û =
∑

e

aep̂e

︸ ︷︷ ︸
P̂

, (225)

from which the unknown global nodal displacement vector Û is calculated by solving the linear
algebraic equation system as

Û =
∗
K

−1

P̂ . (226)

It has to be noted that in order to prove the existence and uniqueness of the solution (σ,u) ∈
T ⊂ V, apart from the ellipticity of the bilinear form a, the numerical stability condition of the
saddle-point problem has to be proven; this is the so-called BB-inf-supcondition (BB: Brezzi and
Babuška), [9, 19, 20], for the bilinear form be(τ h,uh), (216) and (217), i.e., the Lagrangian coupling
matrix for the dual mixed stress and displacement ansatz. This condition reads

inf
v∈V

sup
τ∈T

b(τ ,v)

‖τ‖T ‖v‖V
≥ β, (227)

with a positive constant β from Korn’s second inequality.
Note that alternatively, the Hellinger-Reissner functional (215) can be obtained from the pri-

mal energy functional by enforcing the non-fulfilled kinematic compatibility equation with the
Lagrangian multiplier λ, yielding

FHR,h(τ h,vh) =
⋃

e





1

2
ae(v,v)− F (v)−

∫

Ωe

λT[ǫgeom(v)− C−1τ ] dΩ



 , (228)

and

λ = τ (229)

by the first variation of this functional.

Remark

The Hellinger-Reissner-type mixed finite element formulation is of particular importance for rigor-
ous stability proofs of finite element discretizations, especially for low order trial and test functions.
This gives rise to locking phenomena and/or spurious strains in case of shear-elastic beam-, plate-
and shell-theories of Timoshenko and Reissner-Mindlin type with approximated constant transverse
shear strains over the thickness as well as spurious strains in case of nearly incompressible elastic
deformations. In the first case the differential equations of 4th order are reduced to 2nd order with
independent variables for displacements and rotations of the cross-section normals. Choosing both
with linear shape functions yields bending-locking and thus the wrong rank of the stiffness matrix.
Choosing numerical underintegration on element level results in the correct rank of the element
stiffness matrix, [92, 99], and this gives rise to many engineering attempts for constructing element
patch tests. Also the construction of enhanced assumed strain (EAS) methods by Simo and Rifai
(1990), [79], for low order shape functions has to be addressed, see also [16].
But from the mathematical point of view the mentioned nearly incompressible elastic defor-

mations and shear-elastic bending theories provide non-robust BVPs where a global interpolation
constant of the discretization error does not exist. It was shown, e.g. by Brezzi and Braess, that



Milestones of Direct Variational Calculus and its Analysis. . . 67

those non-robust problems need the fulfillment of global inf-sup-conditions because this prevents
non-regular global stiffness matrices by controlling softening of the energy due to relaxed require-
ments on the kinematic compatibility. It also should be mentioned that a proof of the applicability
of a choosen stress and displacement ansatz in the element domain by counting and comparing the
number of unknown parameters is not sufficient, also not on patches or on global level.
Important papers on the convergence and stability of mixed finite elements and special mixed

elements are [6, 7, 21] and [31].

6.4.3. Primal and mixed FEM for the Timoshenko beam

A primal finite element for the Timoshenko beam theory with approximated transverse shear de-
formations shows locking in case of linear shape functions for the lateral displacements and –
independently – for the rotations of the traces of cross-sections. This can be overcome by selective
reduced integration of the shear strain energy. But a mathematically sound, i.e., stable discretiza-
tion method for this non-robust problem requires a mixed formulation by which the locking problem
is overcome automatically.
Under the presumption of w ≪ h≪ l, the hypotheses of the Timoshenko theory are, Fig. 45:

(i)

w(x, y, z) ≈ w(x) = wbend + wshear, (230)

(ii)

u(x, z) = −φ(x)z for |φ(x)| ≪ 1, (231)

(iii)

κ(x) = φ′(x), κ the curvature, (232)

(iv)

γav(x) = w′(x)− φ(x), γav the constant transverse shear angle. (233)

Fig. 45. Approximated constant transverse shear deformations in the Timoshenko beam theory.
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Fig. 46. Equilibrium conditions for the bending moments and shear forces.

The equilibrium conditions of bending moments and transverse shear forces read, Fig. 46,

M ′
y(x) = Qz(x); Q

′
z(x) = −p(x), yiedling M ′′

y (x) = −p(x) (234)

The bending moment is defined for the linear stress distribution (Bernoulli-Euler hypothesis) as

My(x) =

∫

A

σy(x, z) dA z = −EIy φ′(x), (235)

and the elastic curvature is φ′(x) = −My(x)

EIy
. The transverse shear force results from

Qz(x) =

∫

A

τxz(x, z) dA
!
=

∫

As

τav(x) dAshear, (236)

yielding Qz(x) = GAs (w
′(x)− φ(x))︸ ︷︷ ︸

γav(x)

, where G is the elastic shear modulus and As is the reduced

cross-section shear area for constant (averaged) transverse shear stresses τav(x), resulting from
the postulated equality of the specific deformation energies for Bernoulli-Euler beam theory (with
parabolic transverse shear stresses along the thickness) and the Timoshenko approximation (with
constant transverse shear stresses in the cross-section).
The approximated cross section area As then results form the condition
∫

A

τxz(x, z)︸ ︷︷ ︸
Euler-Bern. th.

dA
!
=
Qz(x)

As︸ ︷︷ ︸
τav(x)

as

As =
I2y∫

A

(
Sy(z)

b

)2

dA

. (237)

For rectangular cross sections it follows As =
A

1.2
.

The differential equation of the Timoshenko beam theory is obtained from the equilibrium
condition Q′

z(x) = −p(x) and the constitutive equation for the shear force Q′
z(x) = GAs(w

′′(x) −
φ′(x)) as

w′′(x)− φ′(x) = − p(x)
GAs

. (238)
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Energy formulation

The bending energy reads

Ubend =
1

2

∫

l

−My(x)κy(x) dx︸ ︷︷ ︸
dφ(x)

=
1

2

∫

l

EIyφ
′2(x) dx, (239)

and the transverse shear energy correspondingly

Ushear =
1

2

∫

l

GAs(w
′(x)− φ(x))2 dx, (240)

in total

U = Ubend + Ushear. (241)

The loss of potential of line forces p(x) is

Πext = −
∫

l

p(x)w(x) dx. (242)

Primal finite element approach

1D-elements with linear shape functions for φh(x) and wh(x) are used as N1(ξ) = 1 − ξ, ξ =
x

h
,

and N2(ξ) = ξ for the left and right nodes 1 and 2. The crucial point – providing locking – is
the choice of equal test and trial functions for the lateral displacement wh and the rotation of the
cross-section traces φh as

wh(ξ) =

2∑

I=1

NI(ξ)wI ; φh(ξ) =

2∑

I=1

NI(ξ)φI , (243)

although φh has a one order higher derivative compared with wh.
The exact integration of the discretized deformation energy, Fig. 47, reads

Uh(wh, φh) =
1

2
EIy

(
φ2 − φ1

l

)2

l

︸ ︷︷ ︸
Uh,bend

+
1

2
GAs



(
w2 − w1

l
− φ2 + φ1

2

)2

+
1

3

(
φ2 − φ1

2

)2

:::::::::::


 l

︸ ︷︷ ︸
Uh,shear

. (244)

For thin beams it holds GAsl
2
s ≫ EIy, i.e. γh,av(x) ≪ φh(x) and Uh,shear ≪ Uh,bend. In the limit

case γh,av(x) = w′
h(x)− φh(x) = 0 we get, see last drawing in Fig. 47,

w2 − w1

l
− φ2 + φ1

2
= 0 and

further

γh,av|ξ= 1
2
= (w′ − φ)|ξ= 1

2
= 0 w′

h = φh. (245)

The normality rule at the midpoint of the beam element yields

φ2 − φ1
2

= 0 φ′h = 0, (246)

which means zero curvature. This is a spurious constraint with the consequence of shear locking
for exact integration of the deformation energy.
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Fig. 47. Linear finite element shape functions for the Timoshenko beam theory.

The shear energy has quadratic terms which would need two Gauss points for full integration.
For avoiding locking, a selective reduced one-point integration (in the middle) is chosen, which
results in the following element stiffness matrix ke with the correct rank for the displacement
vector ûT

e =
{
w1 φ1 w2 φ2

}

ke =




GAs

l

GAs

2
−GAs

l

GAs

2

GAs

2

GAsl

4
+
EIy
l

−GAs

2

GAsl

4. . . . .
− EIy

l

−GAs

l
−GAs

2

GAs

l
−GAs

2

GAs

2

GAsl

4. . . . .
− EIy

l
−GAs

2

GAsl

4
+
EIy
l




. (247)

The underlined terms are equal, such that they vanish within the elimination process. This can
be seen from the drawing at the bottom of Fig. 47.

For full (two-point) integration, the underlined expressions in (247) are
GAsl

3
and the dotted

line terms are
GAsl

6. . . . .
which cause a rank deficiency for large bending stiffness, resulting in nearly

zero lateral displacements.
A dual mixed FEM for the Timoshenko beam (i.e., with relaxed kinematic conditions) is based

on the functional for an element e

FHR,h,e[My,h, Qz,h;wh, φh] =

∫

le

[−My,hφ
′
h +Qz,h(w

′
h − φh)] dx

+
1

2

∫

le

My,hEIyMy,h dx +
1

2

∫

le

Qz,hGAsQz,h dx−
∫

le

pwh dx, (248)
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in which the kinematic conditions κh(φh) = −My,h

EIy
and γs,h(w

′
h, φh) = Qz,h/GAs are relaxed and

fulfilled approximately in the weak sense.
The linear trial and test functions read, with the left and right nodes 1 and 2 of the beam

element

wh,w = w1(1− ξ) + w2ξ; ξ = x/le,

φh,e = φ1(1− ξ) + φ2ξ,

My,h,e =M1(1− ξ) +M2ξ,

Qz,h,w = Q1(1− ξ) +Q2ξ.

(249)

Introducing this ansatz into the stationarity condition δFHR,h
!
= 0 and eliminating My,h,e and

Qz,h,e on element level yields the element stiffness matrix (247) with the correct rank, i.e., without
the dotted line terms.

6.4.4. A mixed plate element for Kirchhoff-Love plate bending by Herrmann

L.R. Herrmann published the following dual mixed element already in 1967, [44]. The related
discrete Hellinger-Reissner functional for an element Ωe reads in Cartesian coordinates x, y for the
plate middle surface

FHR,h,e =

∫

Ωe

{
mx,x my,ymxy,y +myx,x

}
h





w,x

w,y
1

2
(w,y + w,x)





h

dxdy

− 1

Et3

12(1− ν)2

1

2

∫

Ωe

{
mx my mxy

}
h



1 ν 0

ν 1 0

0 0 2(1 + ν)







mx

my

mxy





h

dxdy

−
∫

Ωe

pw dxdy, (250)

and the whole functional of a clamped plate with Dirichlet boundary conditions reads

FHR,h =
∑

e

FHR,h,e → stat., (251)

with the stationarity condition

δFHR,h
!
= 0. (252)

The mixed ansatz for a triangular plate element with the corner nodes 1, 2 and 3 is

wh = C1 + C2x+ C3y, (253)

which can be expressed by the nodal displacements w1, w2, w3, and

mx,h = C4; my,h = C5; mxy,h = C6. (254)

Again, as a benefit of the dual mixed method, the bending moments C4, C5, C6 can be eliminated on
element level such that the assembling of elements has only to be done for the nodal displacements.
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6.4.5. A three-field variational formulation based on the Hu-Washizu functional

As we have seen, however, the mixed approach presented does not yield a continuous stress field in
case of low-order shape functions. Furthermore, with the Hellinger-Reissner type mixed method we
still encounter difficulties in nearly incompressible elastic materials. To cope with these problems,
another pairing of test and solution spaces is required, namely H(div,Ω) and L2(Ω) instead of
L2(Ω) and V. Therefore, a three-field variational formulation was proposed by Hu and Washizu in
1955, [96].
Rather than two independent unknown fields σ ∈ T and u ∈ V, as used in the Hellinger-Reissner

functional, now an additional unknown strain field ǫ ∈ E , which leads to the Hu-Washizu functional

FHW : E × V × T → R, (255)

with E = T = [L2(Ω)]
3×3 in the simplest case, whereas furthermore V = [H1(Ω)]3×3. The field

equations follow from three variational conditions for the existence of a saddle-point problem,
namely DǫFHW (ǫ,u,σ)·η = 0, DuFHW (ǫ,u,σ)·v = 0 and DσFHW (ǫ,u,σ)·τ = 0, or alternatively
δǫFHW = 0, δuFHW = 0 and δσFHW = 0.
Thus, in the associated mixed variational problem, we seek a solution (ǫ,u,σ) ∈ E × V × T ,

satisfying in the weak continuous version,
the constitutive equations
∫

Ω
(C : ǫ− σ) : η dΩ = 0 ∀η ∈ E , (256)1

the equilibrium conditions
∫

Ω
σ : (gradsymv) dΩ =

∫

Ω
f · v dΩ+

∫

ΓN

t · v dΓ ∀v ∈ V (256)2

and the kinematic compatibility conditions
∫

Ω
[(gradsymu)− ǫ] : τ dΩ = 0 ∀τ ∈ T . (256)3

The solution of the mixed problem is a saddle-point

FHW (ǫ,u,σ) = sup
η∈E

sup
v∈V

inf
τ∈T

FHW (η,v, τ ). (257)

The introduction of finite element spaces and the calculation of the bilinear forms follow from
the methods outlined before in this subsection for the Hellinger-Reissner mixed method.
The discrete variational conditions of the Hu-Washizu mixed finite element method then result

in
⋃

e

{ae(ηh, ǫh) + be(σh,ηh) = 0 ∀ηh ∈ Eh}, (258)1

⋃

e

{ce(σh,vh) = Fe(vh) ∀vh ∈ Vh}, (258)2

⋃

e

{be(ǫh, τ h) + ce(τ h,uh) = 0 ∀τh ∈ Th}. (258)3

The associated inf-sup condition reads

inf
τ∈T

{
sup
η∈E

b(τ ,η)

‖τ‖T ‖η‖E
+ sup

v∈V

c(τ ,v)

‖τ‖T ‖v‖V

}
≥ β (259)

with a positive constant β.
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6.4.6. Finite element discretization

Next, shape functions for the displacement, stress and strain fields have to be chosen under the
important restriction that the global inf-sup condition is fulfilled. Similar to the global equation
system for the Hellinger-Reissner principle, (222), we arrive at the global algebraic equation system
for the Hu-Washizu functional

⋃

e







f e 0 lǫ,e

0 0 lu,e

lTǫ,e lTu,e 0







ŝe

ǫ̂e

ûe







 =





0

0

p̂e



 . (260)

Since the stress and strain shape functions are in L2 spaces, we can eliminate fe on element level,
get the fictitious element stiffness matrix k∗

e = lTu,ef
−1
e lu,e and finally arrive at the system

⋃

e

{[
k∗
e lu,e

lTu,e 0e

]{
σ̂e

ûe

}}
=

{
0e

p̂e

}
. (261)

Alternatively, the elimination of ǫ̂e is possible, depending on the ansatz functions.

Remark

A further reduction is not possible because k∗
e is non-regular in general. Stolarski and Belytschko,

[88], have shown that for certain choices of pairings, the finite element solution (σh,uh) of the
Hu-Washizu formulation equals the Hellinger-Reissner formulation with the same test spaces Th
and Vh.
Finally, we remark that other mixed functionals and associated finite element methods, which

are balanced on the element level and also provide global numerical stability and well-posedness,
have been developed in the 1980s and 1990s, especially the PEERS-element (plane elasticity with
reduced symmetry), Arnold, Brezzi, Douglas (1984), [6], and Stenberg (1984), [87], and especially
the class of BDM-elements by Brezzi, Douglas and Marini (1985), [22].
The Hu-Washizu-based FEM was used especially for special material properties in order to

circumvent numerical stability problems, but it has to be pointed out that special pairings of test
and solution spaces are required, fulfilling the global inf-sup condition.

7. FOUNDATION OF THE MATHEMATICAL THEORY OF PRIMAL FEM
AND ERROR ANALYSIS IN THE 20TH CENTURY

The mathematical foundation of the finite element method for elliptic partial differential equations
of 2nd order began in the 1960s and 1970s with the eminent researchers Bramble, Hilbert, Babuška,
Rheinboldt, Strang, Fix, Aubin, Nitsche, Brezzi, Ciarlet, Johnson, Oden and many others.
The simplicity of primal FEM against FDM – i.e. test and trial functions and their operating

only within element domains – is accompanied by the severe problem that for 2nd order PDEs the
C0-continuous test and trial functions at element interfaces provide jumps of derivatives, i.e. of
strains and stresses, and therefore require Sobolev spaces for the mathematical analysis.

7.1. Dirichlet’s principle of minimum of total potential energy

The following convergence theory and error analysis holds for linear elliptic partial differential
equations, usually of 2nd order and with self-adjoint operators. An important problem of this type
is linear static theory of elasticity of deformable bodies where the displacements u(x) ∈ Ω ⊂ R3

are C1 manifolds.
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The variational formulation of the 3D-Lamé’s theory of linear elasticity was established by
Lejeune Dirichlet (1806–1859) in 1835. For mixed boundary conditions, the symmetric variational
form with a test function v(x) ∈ H1(Ω) reads

a(v,v) =

∫

Ω

ǫ(v) : C : ǫ(v) dV, (262)

with the test space V = {v ∈ [H1(Ω)]3;v = 0 at ΓD}, ǫ(v) the linear symmetric strain tensor and
C the symmetric and positive definite 4th order elasticity tensor.
The linear forms for the given loads are

F (v) =

∫

Ω

f · v dV ; g(v) =

∫

ΓN

t · v dS, (263)

with the body force f(x) ∈ L2(Ω) and the conservative given boundary tractions t(v) ∈ L2(ΓN ).
The variational functional – the total potential energy of the system –

J(v) := 1/2a(v,v)︸ ︷︷ ︸
Πint

−[F (v) + g(v)]︸ ︷︷ ︸
Πext

→ min
v∈V

(264)

is constructed from the above bilinear and linear forms and yields a minimum for the analytical
solution u(x) ∈ H2(Ω) for well-posed problems in stable static equilibrium.
The necessary stationarity condition requires that the 1st variation of the Dirichlet’s functional

vanishes, as

δJ(v) = 0 ⇒ u, (265)

and the necessary condition for the minimal property is that the 2nd variation is larger than zero
in the solution point, as

δ2J(v) > 0 for v = u. (266)

Theorem

A unique minimal solution u(x) exists. It is proven by the Lagrangian embedding method as follows:
Assuming a neighboured solution ũ = u+ tv, t ∈ R, yields the minimal functional

J(u+ tv) = 1/2 a(u+ tv,u+ tv)− F (u+ tv)− g(u+ tv) (267)

= J(u) + t[a(u,v)− F (v)− g(v) + 1/2 t2a(v,v)] (268)

and for t = 1

J(u+ v) = J(u) + 1/2 a(v,v)∀ v ∈ V, (269)

J(u+ v) > J(u); J(u) = min
v∈V

J(v). (270)

The 2nd variation of J yields the quadratic form

δ2J(v) =

∫

Ω

δǫ(v) : C : δǫ(v) dΩ > 0 for C positive definite, (271)

which proves the minimal property of J .
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7.2. Test and trial spaces for variational calculus

7.2.1. Hilbert and Sobolev spaces

By the scalar (or inner) product

(u, v)0 := (u, v)L2(Ω) =

∫

Ω

u(x) v(x) dx (272)

the space L2(Ω) of quadratically integrable functions in Ω is completed to a Hilbert space (complete
vector space with an inner product) with the norm

‖u‖0 =
√

(u, u)0. (273)

This important function space was introduced by David Hilbert (1862–1943), [45].
In direct variational methods with C0-continuous displacement ansatz for primal FEM the cru-

cial problem of jumps of the derivatives of displacements at element interfaces arises because the
test and trial functions v(x) and u(x) have to be only C0-continuous at element interfaces and
Neumann boundaries. Therefore, the derivatives (the strains) and thus the stresses as well as their
projections with the normal vectors at element interfaces are not C0-continuous. By this the Hilbert
spaces are not sufficient for finite element analysis, and this was the reason that the mathemat-
ics of FEM was only developed from the 1970s on, based on Sobolev spaces Hm(Ω), discovered
by Sergei L. Sobolev (1908–1989) in his famous work from 1963, [80], in the Steklov Institute for
Mathematics, Moscow.
The Sobolev space Hm(Ω) is the set of all functions u(x) ∈ L2(Ω) which have weak derivatives

∂αu∀ |α| ≤ m.
In Hm(Ω) a scalar product

(u, v)m :=
∑

|α|≤m

(∂αu, ∂αv)0 (274)

is defined with the complete norm

‖u‖m :=
√

(u, u)m =

√ ∑

|α|≤m

‖∂αu‖2L2(Ω); ‖u‖m > 0 for u 6= 0 (275)

and the seminorm (the internal energy with allowed rigid body modes)

|u|m :=

√ ∑

|α|=m

‖∂αu‖2L2(Ω); |u|m ≥ 0 for u 6= 0. (276)

Inclusions of the Sobolev spaces are:

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .

q ∪ ∪
H0

0(Ω) ⊃ H1
0(Ω) ⊃ H2

0(Ω) ⊃ . . .

(277)

7.3. The Poincaré-Friedrichs’ inequality

For estimating the interpolation error of FE discretizations the Poincaré-Friedrichs’-inequaltity is
of great importance.
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Suppose that the domain Ω is contained in an n-dimensional cube. Then the theorem holds

‖v‖0 ≤ s |v|1 ∀ v ∈ H1
0(Ω) (278)

with s the edge length of the cube and

vΩ =
1

|Ω|

∫

Ω

v(x) dΩ (279)

the average value of v over Ω, with |Ω| standing for the Lebesgue measure of the domain Ω.
The proof only requires zero boundary conditions on ΓD; Γ = ΓD ∪ ΓN = ∂Ω; ΓD ∩ ΓN = ∅.
This theorem states that the L2 norm of the test function can be estimated from above by the

seminorm in H1
0, i.e., for test functions which are C

0 continuous at interfaces and zero at Dirichlet
boundaries.
These theorems were established by Henri Poincaré (1854-1912) and a little bit later in an

alternate form by Kurt Otto Friedrichs (1901–1982). They are important for proving upper bound
properties of finite element solutions for growing numbers of degrees of freedom (DOFs).

7.4. The Céa-lemma – optimality of the Galerkin method

The Céa-lemma states:
The Galerkin approximation of the variational V-elliptic form, Eqs. (262) and (263),

a(u,v) = F (v) + g(v), (280)

with v ∈ V, namely

a(uh,vh) = F (vh) + g(vh) with vh ∈ Vh ⊂ V, (281)

yielding

uh → u for N → ∞, (282)

is quasi-optimal, i.e., better than any other approximation.
The Céa-lemma reads

‖u− uh‖m ≤ C

α
inf

vh∈Vh

‖u− vh‖m , (283)

with M =
C

α
the ellipticity constant.

The simple proof for this important theorem starts with the subtraction of the variational forms
for the true and the approximated solution, i.e. from the error e := u− uh, yielding

a(u− uh︸ ︷︷ ︸
=:e

,v) = 0 ∀ v ∈ Vh; a(e,v) = R 6= 0 ∀ v ∈ V, (284)

with the message, that the residuum of the weak form of equilibrium is unequal zero for the
approximated solution. Postulating the coercivity of the internal energy, i.e. a(v,v) ⇒ ∞ for
v ⇒ ∞, and introducing another test space w := vh − uh ∈ Vh and with a(u− uh,v − vh) = 0 it
follows

α ‖u− uh‖2m ≤ a(u− uh,u− uh) = a(u− uh,u−vh) + a(u− uh,vh − v),

α ‖u− uh‖2m ≤ C ‖u− uh‖m ‖u− vh‖m .
(285)

This theorem was proven by Jean Céa (*1932) in 1964, [27].
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7.5. The Lax-Milgram theorem of the existence and uniqueness of stationary
(extremal) solutions

Under the presumptions of the coercivity of the internal energy, i.e. the bilinear form of the test
function v, a(v,v) ≥ α‖v‖2V , a(v,v) → ∞ as |v| → ∞, Fig. 48a, and furthermore of the existence
of a continuous linear functional F (v), F (v) ≤ C‖v‖V < ∞ with a linear growth of F (v) with
‖f‖, Fig. 48b, and postulating that the displacements are bounded by the load, i.e. equilibrium is
stable, the following Lax-Milgram theorem holds which was completely proven by Babuška.

a) b)

Fig. 48. a) coercivity of strain energy a(v,v), b) continuous linear functional F (v).

Theorem

For the bilinear form a(v,v) : H1 ×H1 → R and F (v) ∈ H0 → R, the variational problem

J(v) = min
v
J(v); J(v) := 1/2a(v,v)− F (v) = min

v
(286)

has one solution in V.
The proof uses the Poincaré-Friedrichs’-inequality and yields:

1. Existence:

a(v,v) ≥ 1/2α ‖v‖2 − ‖f‖ ‖v‖ (287)

α ‖∆v‖2 ≤ a(∆v,∆v), for ∆v := vn − vm, n > m (288)

and

2. Uniqueness: The solution u is unique, because each minimal sequence a(v,v) ≥ α ‖v‖2 is a
Cauchy sequence.

7.6. A priori error estimates in the energy norm

Theorem: Given a quasi-uniform triangulation T of Ω; then the FE approximation uh ∈ Vh with
linear shape functions yields the a priori error estimate

‖e‖1 = ‖u− uh‖1 ≤ Ch ‖u‖2 ≤ Ch ‖f‖0 (289)

|||e||| =
∫

Ω

ǫ(e) : C : ǫ(e) dΩ, the energy norm (290)

|||e||| = CO(hp) (291)

‖e‖L2
= CO(hp+1), (292)

With vh(x) ∈ [H1(Ω)]3, f(x) ∈ [L2(Ω)]
3 and sufficient regularity of the BCs, for Lamé-BVPs

the approximated displacements uh converge to u(x) ∈ [H2(Ω)]3.
This was proven by Aubin, [8], and Nitsche, [66].
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8. RESIDUAL (ENERGY-BASED) EXPLICIT (RELATIVE) A POSTERIORI ERROR
ESTIMATOR FOR MIXED BVPS OF THE LAMÉ’S EQUATIONS,
BABUŠKA, MILLER (1987)

The weak form for primal FEM of mixed BVPs reads

a(uh,vh) = F (vh) + g(vh) ∀ vh ∈ Vh. (293)

Introducing the discretization error e := u− uh, the residuum of the weak form is

a(e,v) = a(e,v − wh︸︷︷︸
Ihv

) := R(v −wh) ∀ v ∈ V, ∀ wh ∈ Vh (294)

and yields the inequality

a(e,v) ≤
ne∑

e=1

Re(uh) · v dV +

nr∑

r=1

J r(uh) · v dA , (295)

with the residua of equilibrium Re in Ωe and the jumps of tractions Jr at Γr.

8.1. Residual (energy-based) explicit a posteriori error estimator with strict upper
and lower bounds

The a priori upper bound estimate in the energy norm reads

|||e||| ≤ C O(hp), (296)

where the global interpolation constant C is the product of a proper interpolation and a stability
constant, depending on the differential operator and the BVP. It is unknown for explicit residual
a posteriori error estimators and can become large, depending on the ellipticity property and the
well-posedness of the BVP. For example, it may be large for strong elastic anisotropy.
In double-logarithmic coordinates this estimator yields a straight line with the slope tanα(p) =

p

1
, i.e. for p = 1 the stresses converge linearily, Fig. 49.

Fig. 49. Linear and quadratic convergence of the stresses for p = 1 and p = 2.

With the lower interpolation estimate according to the Poincaré-Friedrichs’-inequality

‖u− Iu‖H1(Ω) ≤ |||u− Iu||| (297)

the energy norm of the exact error e = u− uh ∈ V is bounded from above and from below by the
important result of Babuška, Rheinboldt (1978), [11],

Cl|||Πhe||| ≤ |||e||| ≤ Cu|||Πhe||| , (298)

where Πhe is the computable projection of e ∈ V onto the ansatz space Vh.
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The effectivity index quantifies the quality of the estimated error with respect to the real error
as, Babuška (1980), Fig. 50,

θ =
η

|||e||| ; η =

(
n∑

i=1

e2i

)1/2

. (299)

Fig. 50. Ivo M. Babuška (*1926), who contributed seminal theoretical results on a priori and a posteriori
error estimation of FEM.

In case of explicit residual error estimators the calculation of θ does not make sense because
the global constant C is unknown, and the choice C = 1 usually yields too large effectivity indices,
which – for upper bound esimators – should not be larger than about 2 for efficient adaptivity.
The Babuška-Miller explicit residual a posteriori error estimator, [10], controls the approximated

equilibrium conditions in each element, at element interfaces and at Neumann boundaries.

8.2. Residual implicit a posteriori error estimates

These constant-free estimators, developed since the 1980s, are calculated on element patches or on
single elements (via improved (averaged) tractions at element interfaces), and they need the solution
of local equation systems. Upper and lower bounds can be guaranteed using Cauchy-Schwartz
inequality; other versions with different norms yield good effectivity indices with non-guaranteed
bounds.
Numerous implicit estimators have been developed, and they are subjects of current research.

Their representation in this article would require too much space and – even though the author
is strongly active in this field since the 1970s – this relevant topic is not treated here. But some
important articles and books are cited, namely by Bank and Weiser, [13], Braess, [18], Verfürth, [95],
Ainsworth and Oden, [1], Stein and Rüter, [84], as well as Ladevèze and Pelle, [54]. In the article by
Stein, Rüter and Ohnimus, [85], Neumann-type implicit goal-oriented error estimators via improved
interface tractions are presented for both verification and validation according to experimental
results.

9. GRADIENT SMOOTHING “ZZ” EXPLICIT AND IMPLICIT A POSTERIORI ERROR
ESTIMATORS

Different from the explicit residual error estimator by Babuška and Miller (1987), [10] and [11],
O.C. Zienkiewicz and J.Z. Zhu, [100], published an a posteriori error estimator based on gradient-
smoothing of stresses and recalculation of improved stresses for which the shape functions are
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chosen equal to those for the primal displacement ansatz functions which are C0-continuous at
element interfaces, Fig. 51.

Fig. 51. Olgierd C. Zienkiewicz (1921–2009), one of the most important developers of computational
mechanics in its first period since the 1960s.

9.1. Explicit (relative) “ZZ” smoothing estimator

For the primal FEM with the (e.g. linear) discretized displacements uh(x) = N(x)ûe in Ωe, Ω =
∪eΩe, and discretized strains ǫh(uh) = DNûe = Bûe yields the discretized stresses σh(uh(x)) =
CB(x)ûe, according to the symmetric and positive definite elasticity tensor C.
The idea of gradient smoothing is to introduce so-called recovered stresses

σ∗
h(x) := N (x) σ̂∗

e ∀ Ωe (300)

with same shape functions N (x) (e.g. linear) as for the displacement ansatz uh(x) and with C
0-

continuity at element interfaces, Fig. 52. Of course, it has to be proven that the recovered stresses
σ∗
h are more accurate than the discretized stresses σh. Then the least squares conditions for all
elements read

Nel⋃

e=1

∫

Ωe

[σ∗
h(x)− σh(uh(x))︸ ︷︷ ︸

e∗σ(Ωe)

]2 dΩe → min
σ̂∗

k

→֒ σ̂∗
k, (301)

with the a posteriori gradient smoothing stress error

e∗σ(x) := σ∗
h(x)− σh(uh(x)) in Ωe ∈ Ω, (302)

yielding a system of linear equations for the nodal values σ̂∗
k of nodes k.

The calculation of nodal values σ̂∗
k for the whole system follows by solving the whole symmetric

system of linear equations (the stationarity condition) or by considering approximately only the
diagonal equation matrix or by nodal averaging for adjacent elements at each node k.
The global error estimator in the complementary energy norm then reads

|||e∗σ|||Ω =




Nel∑

e=1



∫

Ωe

e∗σ : C−1 : e∗σ dΩ





1/2

. (303)
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Fig. 52. 1D linear C0-continuous displacement ansatz (top), and discretized stresses σh(uh) as well as
recovered C0-continuous stresses σ∗

h(uh) (bottom).

There were numerous debates amongst mathematicians and mechanicians in the 1980s and 1990s
whether this estimator was really mathematically sound, yielding upper and lower bounds for well-
posed BVPs with sufficient regularity properties, or in other words, whether and how the recovered
stresses are more accurate than the discretized ones. On the other hand-numerous comparative
convergence studies showed the superiority or at least equal convergence behaviour with respect to
application of explicit residual error estimators. Then an upper bound was proven by Rodŕiguez
(1994), [77], as

‖σ(u)− σ∗(uh)‖L2(Ω ≤ C‖σ(u)− σ(uh)‖L2(Ω), (304)

where C is a global interpolation constant. Upper and lower bounds were proven by Carstensen
and Funken (2001), [28], as

1

1 + C
‖σ∗(uh)− σ(uh)‖L2(Ω)︸ ︷︷ ︸

e∗(σ∗)

≤ ‖σ(u)− σ(uh)‖L2(Ω)︸ ︷︷ ︸
e(σ(uh))

≤ 1

1− C
‖σ∗(uh)− σ(uh)︸ ︷︷ ︸

e∗(σ∗)

‖L2(Ω). (305)

9.2. Implicit (absolute) “ZZ” SPR smoothing estimator

Zienkiewicz and Zhu published in 1992 an important improvement of their explicit estimator by
the so-called SPR (superconvergent patch recovery) which is performed with postprocessing on
element patches Ω̄P around the considered element nodes (instead of nodal averaging of stress
components), [101], Fig. 53.

SPR is based on the fact that – in case of sufficient regularity – the discretized stresses σ(uh)|Ωe

are more accurate at Gauss points (GPs) of elements Ωe than at element interfaces ∂Ωe and nodal
points of the elements. Chosing these GPs as optimal sampling points ξn(Ω̄P ) superconvergence
can be achieved for the improved nodal stress components σ̂∗I (Xk)|Ω̄P

.

The vector of the searched nodal stress components at patch node k is presented by bilinear
monomials for 2D problems, e.g. using Q1-quadrilateral elements, as

σ̂∗I (Xk)|Ω̄P
:= ΠT (Xk)âI ; Π = [1 x y xy]T for Ωe ⊂ R2. (306)
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Fig. 53. SPR for element patch Ω̄P surrounding node k.

The unknown coefficients âI are determinded by the conditions
∑

nGP |Ω̄P

[σI(uh(ξn))−ΠT (ξn)âI ] = 0, (307)

with the row-regular rectangular matrix Π. In case of choosing more sampling points than coeffi-
cients of the vector âI,k the least squares method

∑

nGP |Ω̄P

Π(ξn)Π
T (ξn)âI =

∑

nGP |Ω̄P

Π(ξn)σI(uh(ξn)) (308)

yields âI from a small symmetric, positive definite system of linear algebraic equations for each
patch. Boundary nodes Xn(∂Ω̄) need a special treatment.
Superconvergence could be shown for many applications by applying quasi-optimal mesh refine-

ments for the calculated a posteriori error estimators.

Important remark

From the state of the art of the available general purpose finite element programs there is a big ad-
vantage of the ZZ estimators compared against residual estimators. The reason is that the smooth-
ing estimator |||e∗ZZ ||| only needs data from the considered elements themselves but not from the
neighbouring elements – whereas the residual estimator |||eRes||| requires the jumps of the tractions
to neighbouring elements in the residuum of equilibrium. However, so far the needed access to el-
ement neighbourhoods is not available in all industrial finite element programs, and therefore, the
ZZ estimators are predominant in practice. They are available in most program systems, combined
with either local mesh refinements, e.g., for triangular and tetrahedral elements, or for global mesh
refinements according to the distribution of scaled error indicators of the system, e.g., in Abaqus.

9.3. Techniques and rules for adaptive finite element discretizations

9.3.1. Triangular meshes for 2D problems

Figure 54 shows refinements of triangular elements.
One can easily proof that the condition number of the stiffness matrices of refined element patches

depend on the ratio of side lengths and the angles between adjacent element sides. Therefore, bounds
for these quantities have to be applied for local mesh refinements, [17, 75].
For global remeshing of triangular elements according to the distribution of scaled error indica-

tors we especially refer to Delaunay-type triangulation algorithms, [17].
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a) b)

c) d)

Fig. 54. a) standard refinements of triangles without irregular nodes; b) resolving of elements for next refined
step in order to avoid small angles; c) halving of longest side (Rivara); d) no resolving of elements.

9.3.2. Quadrilateral meshes for 2D problems

Figure 55 shows refinements of quadrilateral elements, e.g. Q1-elements.

Two techniques are indicated: first, avoiding irregular nodes; irregular elements are introduced
and resolved in the next refinement step, Fig. 55a,b, and secondly, the so-called hanging node
technique where irregular nodes of regular elements are eliminated by proper interpolation of the
shape functions, Fig. 55c,d.

a) b)

c) d)

Fig. 55. Local refinement techniques for quadrilateral elements: a) and b) transition elements for avoiding
irregular nodes, irregular elements are resolved in the next refinement step; c) and d) preserving regular
elements by eliminating irregular nodes via hanging node technique.

It is obvious that the hanging node technique yields much better locality of the refinements and
thus is recommendable.

In case of hexahedral elements for 3D problems also hanging node techniques on element surfaces
should be applied for locality and simple algorithms, as well as regarding the fact that refinements
with regular nodes yield some degenerated elements with hyperbolic surfaces. A local refinement
based on preserving regular elements creates 84 new elements, [65].
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10. COLLECTION OF A POSTERIORI ERROR ESTIMATES
FOR PRIMAL FEM OF LAMÉ’S PDES

Table 1 shows a systematic classification of a posteriori error estimates for primal FEM. Next
to residual and gradient smoothing estimators hierarchical estimators by Bank and Smith and
gradient free estimators by Huerta, Diez et al. are included. The other arrangement shows explicit
and implicit estimators.

Table 1. Survey of a posteriori error estimates for primal FEM.

residual (Babuška,
Rheinboldt, Miller,
Bank, Weiser,
Ladevèze, Oden,
Stein)

hierarchical
(Bank, Smith)

gradient free
(Huerta, Diez, et.al.)

gradient smoothing
(Zienkiewicz, Zhu;
Carstensen, Funken)

explicit
(relative)
dep. from
interpolation
and stability
constants

• upper and lower
bounds
• estimation of residua
of equilib. in all Ωe

and at all Γe and at
ΓN,e

• lower and upper
bound approx.
• approx. in a hier-
archically expanded
subspace

• with equilibrated
test stresses on ele-
ment level
• no data required at
Γe

• upper bound prop-
erty
• element-wise C0-
cont. stress approxi-
mation
• data only from Ωe,
not from Γe

implicit
(absolute),
with enhan-
ced test
space on el.
or patch
level

• equilib. of interface
tractions, solv. local
Neumann problems
• const.-free error
bounds

• lower bound prop-
erty
• enhanced test space
required

• SPR with higher
converg. property in
Gauss integr.-points
compared to nodal
points
• using higher polyno-
mials for stresses on
patches

11. FURTHER IMPORTANT MILESTONES OF FEM

So far mainly primal finite element methods were presented here, but beginning with the 1920s
with papers by Hellinger, Reissner, Prager and Washizu generalized variational principles were
applied especially for parameter-dependent (i.e., non-robust) problems, leading to mixed finite
element methods by adding relaxed field and/or interface conditions, multiplied with Lagrangian
parameters, to the related variational principle. These methods yield saddle-point problems and
need to fulfill global inf-sup stability conditions for the nodal values of displacements and stresses
and have wide fields of applications.
Further generalizations of primal FEM for elastic static problems concern elastic dynamic, elasto-

plastic and time-dependent visco-elastic and visco-plastic deformations.
Since the 1990s multiscale FEMs for multiphysical problems were developed, and concerning

fracture mechanics, the so-called XFEM, was first published by Belytschko and Black (1999), [14].
Herein, the FE mesh is chosen theoretically independent from progressing cracks, and meshless FE
discretizations are applied for complex problems. Furthermore, particle methods, [32], which are
equivalent to element-free Galerkin methods are developed very fast and get theoretical founda-
tion, [46].
On the other hand, isogeometric analysis, especially by Hughes et al., [47], was developed in

the last decade very fast for applications with high continuity requirements for structural surfaces
using NURBS and T-splines. These elements are discretizing the undeformed and the deformed
bodies and surfaces and thus require C1-continuity at element interfaces.
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Contact problems are an important class of problems with a long tradition. Today, the micro-
properties of contact zones, are crucial for modeling and computation, using multi-physical and
multi-scale concepts, [98].
Table 2 gives a survey of these new discretization methods.

Table 2. Further important milestones of generalized FEMs.

Parameter-dependent BVPs
with locking or spurious modes
(numerical instabilities) for
elastic problems, since the
1980s

• global inf sup condition has to be fulfilled
• mixed FEs required in principle
• engineering methods: reduced integr. enhanced assumed strains

FEM for kinematically nonlin-
ear elastic problems, e.g. struc-
tural instabilities of beams,
plates and shells

• geometrical stiffness matrix
• incremental methods, Lagrangian, Eulerian, ALE
• consistent numerical tangent matrix
• step length control

FEM for inelastic and time-
dependent visco-elastic-plastic
deformations

• predictor-corrector methods with projections to actual yield surface;
continuous and discontinuous time discretization

FEM for elasto-dynamic prob-
lems

• linear dynamics in time or in phase space
• FEs in time and space, numerical integration in time, problem: sta-
bility, conservation of energy and momentum

FE2 for multiscale FEM homogenization from micro and meso to macro-scale via Hill’s equation
and projection methods

XFEM, esp. for fracture me-
chanics

singular functions from analytical solution at crack tip as enrichment
functions

Particle Methods • equivalent to element-free Galerkin method; problems: stability ana-
lysis

• use of meshless discretizations
Isogeometric analysis FEM with real geometry, integration of computer aided design and finite

element analysis, using NURBS, T-splines, ...

12. DEVELOPMENT OF EQUATION SOLVERS IN CONJUNCTION
WITH HARD- AND SOFTWARE PROGRESS

Not only consistent discretization methods and their achievable accuracy but moreover the adequate
mathematical modeling with engineering requirements for accuracy and physical depth as well as
– very important – the dimension of the resulting linear or non-linear algebraic equation systems
are highly dependent on the power and performance of the available computers.
The numerical solution of boundary value problems with classical finite element methods (pri-

mal variational methods) for linear elliptic problems leads to – usually large-dimensional – linear
algebraic equation systems with symmetric and positive definite global stiffness matrices. Thus,
the computational capacity depends on the computer power and the solution methods. The break
even point of efficiency for direct solvers (by Gauss-elimination) and iterative solvers has moved to
larger and larger equation systems, according to the fast development of CPUs and storage media.
In 1965, Moore’s law was published, [64], assessing in the period from 1958 to 1965 that the

number of transistors that can be placed on an integrated circuit doubles approximately every two
years. The processing speed, the memory capacity and some more properties of electronic computers
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are strongly connected to this law. Moore’s law of predicting an exponential growth has proved to
be true until today.
Viewing the today’s situation, linear equation systems with about 106 DOFs can be solved on

an average-price laptop using direct elimination methods within less than an hour.

Direct solvers for linear algebraic equation systems

The first choice for solving linear equation systems with symmetric and positive definite system
matrices A is Gauss’s stepwise elimination by A = LDLT factorization into lower and upper tri-
angular and diagonal matrices, usually using row-pivoting, and following recursive back-calculation
of the unknown vector, here the global nodal displacement vector.
Better efficiency is achieved by complete or incomplete Gauss-Cholesky decompositions accord-

ing to A = L̂L̂
T
with L̂ := LD1/2.

Sparse solution algorithms were developed for weakly occupied diagonally-oriented system ma-
trices, providing considerable savings in storage demands and CPU time, especially for 3D finite
element discretizations, see e.g., Duff and Reid, [36].
The program system LINPACK offers various solvers for linear algebraic systems including

unsymmetric and sparse system matrices.
An often used algorithm concerns overdetermined linear equation systems Ax = b with rectan-

gular matrices A(m,n), m > n, with m rows and n columns, A is column-regular. These matrices
appear, e.g., in least squares algorithms and overdetermined collocation methods. Then the Gauss
transformation Â = ATA yields a symmetric, positive definite matrix which can be eliminated.

Iterative solvers for linear and non-linear algebraic equation systems

Large linear and non-linear algebraic equation systems need iterative solvers, according to the
relevant break-even point. According to the i-th iteration step for the residuum ri = b−Axi, i =
0, 1, 2, . . . , n. The number of iterations until tolerance of the L2-norm of the residual vector r should
be not larger than about 100.
Since the 1950s, Newton’s method and quasi-Newton methods (for sparse systems) as well as

Jacobi and Gauss-Seidel methods with the decomposition A = D −L−U are applied.
Very large systems are predominantly solved with conjugate gradient (CG) methods, see e.g.,

Hackbusch, [41].
The gradient (steepest descent) method with line search for minimization of a quadratic function

f(x) = 1/2xTAx − bTx needs the negative gradient di = −∇f(xi). With the line search xi+1 =
xi + αidi, a sequence f(x0) > f(x1) > · · · > f(xi) can be constructed where equality holds if
the gradient vanishes. For a quadratic function f(x) one gets di = b − Axi with the line search

αi =
diTdi

diTAdi
.

The gradient method for solving Ax = b uses the distance measure ‖x‖A :=
√
xTAX . If x∗ is a

solution of the equation system, then the function f(x) = f(x∗)+
1

2
‖x−x∗‖2A yields the sequence

‖xi−x∗‖A ≤
(
κ− 1

κ+ 1

)i

‖x0−xi‖A, where κ is the spectral condition number, see, e.g. Braess, [18].
The conjugate gradient method, developed by Hesteness and Stiefel in 1952, becomes more

effective by preconditioning due to Reid in 1971. The idea is to construct conjugate directions di

and di+1 in iterative steps fulfilling the generalized orthogonality condition di+1TAdi = 0. Then,

the wanted solution x∗ = A−1b has the expansion x∗ =

n−1∑

i=0

αidi, with the line search αi =
diTb

diTAdi
.



Milestones of Direct Variational Calculus and its Analysis. . . 87

Furthermore, Multi-Grid Methods (MGM) and Domain-Decomposition Methods
(DDM) play an important role for solving large systems since the 1980s and, moreover, par-
allel computing with distributed processor techniques (with more than 100, 000 processor units)
are used for solving the big coupled system simulating multiphysics coupled with chemistry and
other disciplines, e.g., for the prediction of the earth climate and expectable earthquakes on our
planet, today requiring 1000-times solutions of non-linear equation systems of the dimension 108.

13. DEVELOPMENT OF GENERAL PURPOSE FINITE ELEMENT PROGRAM SYSTEMS

Early finite element programs for static and dynamic analysis with primal FEM (with some ex-
ceptions) were developed in the 1960s and 1970s mostly using FØRTRAN program language and
some were written in ALGOL. Those are, see [25]:

1. AMSA 9 and AMSA 20, FIAT, Divisione Aviazioni – SCV, Turin, Italy

2. ASAS, Atkins Research and Development, Woodcote Grove, England

3. ASKA, Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen, Universität
Stuttgart, Germany and IKOSS – Software Service Stuttgart

4. BERSAFE, Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley,
Gloucestershire, England

5. EASE (FIDES), FIDES Rechenzentrum, Dr. D. Pfaffinger, Zürich, Switzerland

6. MARC 2, Marcal, Div. of Eng., Brown University, Providence, RI, USA and Control Data
GmbH, Stuttgart, Germany

7. NASTRAN, NASTRAN Systems, Langley Research Center, Hampton, VA, USA

8. PRAKSI-RIB, Rechen-Institut fuer EDV im Bauwesen, Stuttgart, Germany

9. SAP, Prof. E. L. Wilson, Dept. of Civil Eng., University of California at Berkeley, CA, USA

10. SESAM 69, A/S Computas, Økernvein 145, Oslo 5, Norway

Internationally available and competitive general purpose finite element program systems for
linear and non-linear thermomechanical (and today also for multi-physical) mathematical models
were developed since the 1980s. They are mostly written in FØRTRAN 77 and FØRTRAN 90;
those are, e.g., NASTRAN, ANSYS, Abaqus and ADINA.
Different from these commercial program systems, the general FE program FEAP by Prof.

R.L. Taylor, University of California at Berkeley, has a command language and is written in
FØRTRAN 77. The complete source code is available for the users mostly working in academia.

Remark

It has to be emphasized that various object-oriented finite element programs with distributed
vector and matrix data structures have been developed especially at university institutes since
the 1990s, usually with the C++ program language. Within this concept, strict separation of
topology, geometry, mathematical modeling, numerical methods, equation solvers, data evaluation
and visualization was realized, e.g., in Niekamp and Stein, [65]. This provides a lot of fundamental
benefits, but is not realized so far in the above mentioned commercial program systems. This has
crucial disadvantages for the users; some examples are:
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(i) optimization problems are hard to realize because the geometrical data should be based on
topological and parametric representations, and

(ii) mesh adaptivity with residual a posteriori error estimators requires the access to neighboured
elements in order to calculate the difference of interface tractions, but none of the mentioned
program systems admits this. Only access to element data within element domains is provided.

Therefore, it is due time that the relevant companies – why not joint ventures with capable
industries – develop new object-oriented program systems for the next technological generation with
virtual product development and multi-coupled problems. These new developments are necessary
to keep compuational methods economical and payable.
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[30] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math.
Soc., 49: 1–23, 1943.

[31] M. Crouzeix, P.A. Raviart. Conforming and non-conforming finite element methods for solving the stationary
Stokes equations. RAIRO Anal. Numér., R3: 33–76, 1973.

[32] P.A. Cundall, O.D.L. Strack. Discrete numerical model for granular assemblies. Geotechnique, 29: 47–65, 1979.

[33] P. de Fermat. Analysis ad refractiones. Oeuvres, I. 1661.

[34] B.F. de Veubeke, editor. Matrix methods of structural analysis. Pergamon Press, Oxford, 1964.
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[84] E. Stein, M. Rüter. Finite element methods for elasticity with error-controlled discretization and model adap-
tivity. In E. Stein, R. de Borst, T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 2:
Solids and Structures, pages 5–58. John Wiley & Sons, Chichester, 2004.
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