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The self-adaptive population Rao algorithms (SAP-Rao) are employed in this study to
produce the optimal designs for steel grillage structures. The size variables in the op-
timization problem consist of the cross-sectional area of the discrete W-shapes of these
beams. The LRFD-AISC design code was used to optimize the constrained size of this kind
of structure. The solved problem’s primary goal is to determine the grillage structure’s
minimum weight. As constraints, it is decided to use the maximum stress ratio and the
maximum displacement at the inner point of the steel grillage structure. The finite element
method (FEM) was employed to compute the moment and shear force of each member, as
well as the joint displacement. A computer program for the study and design of grillage
structures, as well as the optimization technique for SAP-Rao, was created in MATLAB.
The outcomes of this study are compared to earlier efforts on grillage structures. The
findings demonstrate that the optimal design of grillage structures can be successfully
accomplished using the SAP-Rao method described in this paper.
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1. Introduction

In practice, engineers have always been interested in structurally optimal
design. They have placed their emphasis on the geometry of structures and con-
struction costs. Engineers have the responsibility of designing structures that
are both highly reliable and cost-effective. Numerous algorithms, both tradi-
tional and cutting-edge, have been investigated to accomplish these goals. Over
time, numerous metaheuristic approaches have been introduced and employed
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for structural optimization problems. Some of the most well-known optimiza-
tion algorithms include genetic algorithm (GA), tabu search (TS), teaching-
learning-based optimization (TLBO), harmony search (HS), and artificial bee
colony (ABC). Genetic algorithms are rooted in Darwin’s theory of evolution [18].
These algorithms start with a randomly generated initial population represent-
ing a set of possible solutions related to the problem at hand. In each generation
of the optimization process, biological operators are used to create the next
population with the hope that it will be better than its predecessor.

HS was first proposed in the dissertation by Geem [13], and then presented in
a journal paper by the Geem et al. [12]. It draws inspiration from a phenomenon
found in music, namely the process of searching for better harmony. The ABC
algorithm [19] simulates the intelligent foraging behavior of a honey bee swarm,
defining three types of bees: employed bees, unemployed bees, and scout bees.
Employed bees search for food around the food source and store the nectar. In
a similar manner, musical performances strive to achieve the best state deter-
mined by aesthetic estimation, while optimization algorithms aim to achieve the
best state determined through objective function evaluation.

The TS algorithm [4] explores the search space by a sequence of moves. To
escape the local optimum, the certain moves are recorded in a memory called
the forbidden (tabu) search. This algorithm contains several elements: a tabu
list, neighborhood, aspiration criterion, termination criterion, and cost function.
TLBO [26] consists of two phases: teacher phase and learner phase. In the first
phase, the best solution with the minimum objective function is defined as the
teacher. By using the mean solution and a teaching factor, the new solutions are
generated in the vicinity of the teacher. If a new solution is better than the old
one, the new solution replaces the old one. In the learner phase, the solutions
obtained from the learner phase are called students.

Grillage systems are widely used in structures to cover large areas. These
structures are generally optimized for the minimum weight of the total struc-
tures by selecting a discrete set from the available steel profiles. The displacement
of the middle point and the stress ratio of all grillage members are taken as con-
straint in the optimization problem. A grillage structure is a planar structural
system composed of longitudinal and transverse beams, loaded perpendicular to
the plane. The major considerations for a grillage design are the number of beams
in both directions and the cross-sectional diameters of these beams. However, the
majority of earlier investigations on grillage optimization solely focused on exam-
ining the dimensions of the beams’ cross sections (Saka [29], Saka and Erdal [31],
Erdal et al. [11], Kaveh and Talatahari [20], Kaveh et al. [21], Dede [6, 7]).

A few analyses have been conducted on layout optimization for grillage struc-
tures. Saka et al. [30] developed a grillage system with the best possible spacing
configuration. An optimum design method based on the HS algorithm was stud-
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ied by Erdal and Saka [10]. The size and configuration of grillages were simultane-
ously optimized using JayaX, a binary variation of the Jaya algorithm developed
by Aydin [3]. Lewiński and Telega [22] generalized the Michell theory of plane
pseudo-continua to antiplane problems in which the loading is perpendicular to
plane of the structure.

The Jaya algorithm, a popular and effective metaheuristic optimization tech-
nique, was introduced by Rao [25]. In Grzywiński et al. [14], braced dome
structures were designed by using the Jaya method in the best possible way
with regard to natural frequency limitations. Atmaca et al. [2] employed the
Jaya method to optimize the size of the cables in a cable-stayed bridge. Grzy-
wiński [16] used the Jaya method to demonstrate shape and size optimization of
trusses with dynamic constraints. Another study was conducted by Pokusiński
and Kamiński [23], where the authors explored lattice dome reliability using
perturbation-based approaches vs. a semi-analytical method. Bołbotowski et al. [5]
presented a novel numerical procedure that takes advantage of the adaptive so-
lution scheme previously developed for truss layout optimization problems, en-
abling the solution of very large-scale problems.

This paper’s major objective is to present an optimization procedure that
will reduce the overall weight of grillage structures. Displacements, moments,
and shear force limitations are considered during the optimization process ac-
cording to the American Institute of Steel Construction load and resistance fac-
tor design (AISC-LRFD) specification [1]. The optimization procedure for sizing
grillage design employs a set of recently developed metaheuristic optimization
algorithms known as Rao algorithms. Rao [27] created these simple, metaphor-
free optimization methods to determine solutions for constrained and uncon-
strained optimization problems. These algorithms are built using the best and
worst solutions, discovered during optimization phases along with random inter-
actions between possible solutions.

Rao algorithms were used to optimize braced barrel vault by Dede et al. [8]
and Grzywiński et al. [15]. Dede et al. [9] used Rao algorithms for the optimiza-
tion of small, medium and large braced domes, while Grzywiński [17] employed
Rao algorithms for optimizing spatial truss towers.

2. Self-adaptative population Rao algorithms

Rao developed several successful optimization algorithms such as TLBO (Rao
et al. [24]), Jaya (Rao [25]) and Rao-1, Rao-2 and Rao-3 (Rao [27]). In the
work by Rao and Keesari [28] a new self-adaptive-population Rao algorithm was
presented. In their study, the authors propose a new algorithm named Rao-4.
Similar to the previous three Rao algorithms, Rao-4 is characterized by its lack
of algorithm-specific parameters and metaphorical explanations:
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Snew
n,m,i = Sn,m,i + r1,n,i (Sn,best,i − Sn,worst,i), (1)

Snew
n,m,i = Sn,m,i + r1,n,i (Sn,best,i − Sn,worst,i)

+ r2,n,i (|Sn,m,i or Sm,l,i| − |Sn,l,i or Sn,m,i|), (2)

Snew
n,m,i = Sn,m,i + r1,n,i (Sn,best,i − Sn,worst,i)

+ r2,n,i (|Sn,m,i or Sn,l,i| − (Sn,l,i or Sn,m,i)), (3)

Snew
n,m,i = Sn,m,i + r1,n,i (Sn,best,i − Sn,worst,i)

+ 0.5 {r2,n,i (Sn,worst,i − Sn,m,i) + r3,n,i (Sn,best,i orSn,m,i)}
− r4,n,i (Sn,worst,i − Sn,m,i), (4)

where n, m and i represent the n-th variable during the i-th iteration, m-th
solution, and the iteration number, respectively. Snew

n,m,i is the new solution that
can be generated using Rao algorithms, and Sn,best,i and Sn,worst,i are the best
and worst solutions in the current population.

The variables r1,n,i, r2,n,i, r3,n,i, and r4,n,i are random numbers generated
in the range [0, 1]. These equations are used to create a new solution with the
expectation that the new solution will be better than the previous one.

The interaction between the current solution m-th and a randomly selected
l-th solution from the current population is shown by the third term on the right
side of Eqs. (2) and (3). The S values of the current m-th and l-th randomly se-
lected solutions define these two terms. If the S value of the current solution is
superior to that of the randomly selected solution, the third term in Eq. (2) be-
comes r2,n,i (|Sn,m,i| − |Sn,l,i|) and in Eq. (3), it becomes r2,n,i (|Sn,m,i| − (Sn,l,i)).
Similarly, if the randomly selected solution has a superior S value to the cur-
rent solution, the third term in Eq. (2) becomes r2,n,i (|Sn,l,i| − |Sn,m,i|) and in
Eq. (3), it becomes r2,n,i (|Sn,l,i| − (Sn,m,i)).

Based on interactions between the current solution and the best, worst, and
randomly selected solutions, the Rao algorithms reconfigure the population in
the search space. The Rao-1 method only allows the best and worst solutions
in the population to interact with the current solution. In the Rao-2, Rao-3,
and Rao-4 algorithms, the current solution will interact with the best and worst
solutions as well as a randomly chosen solution from the population.

In SAP-Rao algorithms, the following adjustments are applied to the funda-
mental Rao algorithms:

1. With respect to the quality of the solutions, the proposed SAP-Rao algo-
rithms divide the overall population into four sub-populations. Instead of
concentrating on a single area, this approach disperses the solutions across
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the search field. As a result, it is anticipated that the proposed algorithms
will produce the best results.

2. Based on the quality of fitness values, SAP-Rao algorithms adaptively
adjust the size of sub-populations during the search process. This implies
that there will be an increase or reduction in the size of sub-populations.
With the use of this function, the search process may be aided in finding the
best option while also broadening its scope. In order to maintain diversity
and improve the exploration process, duplicate solutions are furthermore
replaced with newly created solutions.

Readers can refer to the website [32] for additional information regarding
Rao algorithms.

3. Finite element analysis of grillage structures

Grillages are widely employed in a variety of structures, including bridge
decks, ship hulls, airplane wings, building floors, slabs over water tanks, and
particularly in column-free roofs for large spaces. These structures are typically
planar and consist of many parallel beams oriented in two directions. The fact
that grillages are loaded perpendicular to their planes is another characteristic
feature of them. Figure 1 shows a typical steel grillage structure made using steel
W-sections. The beams are oriented here both longitudinally and transversely.

Fig. 1. A typical steel grillage structure.

The structure is analyzed with the matrix displacement technique. Three
degrees of freedom are taken at each point. Figure 2 depicts the end forces and
end deformations for a grillage component in the local coordinate system.

Figure 2 shows the shear force as Qz, the torsional and bending moments as
Mx and My, respectively, the linear displacement as delta δz, and the angular
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Fig. 2. A grillage member: a) degrees of freedom, b) connect fix-fix, c) connect pic-fix.

displacements as theta x and theta y. The relationship between end forces (f)
and end deformations (u) for a grillage member (k) based on the element stiffness
matrix is given as:

{f} = [K] {u}, (5)

where the vectors and matrix are given:

{f} =
{
Mxi Myi Qzi Mxj Myj Qzj

}T
, (6)

[K] =
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, (7)

{u} =
{
θxi θyi δzi θxj θyj δzj

}T
, (8)

where G is the shear modulus, J is the torsional constant, L is the length of
grillage member, E is the modulus of elasticity, and I is the moment of inertia.
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4. Grillage structure optimization

The overall structural weight is one of the most critical aspects in structural
design. There are cross-sectional areas defined in the AISC-LRFD [1] standards
that are used to minimize the weight of the structure and fulfill the behavioral
and performance limits outlined in AISC-LRFD. The grillage structures’ objec-
tive function to achieve this goal is as follows:

minimize W =

ng∑
k=1

Ak

nk∑
i=1

ρ · Li, (9)

where W is the objective function, ρ is the density of materials, A is the cross-
section area of the each member, nk is the number of member belonging to
group k (k = 1/ng) in grillage structures, and ng is the number of groups. The
optimization also considers

δi ≤ δu, cδ,i =

∣∣∣∣ δiδu
∣∣∣∣− 1 ≤ 0, i = 1, 2, ..., np, (10)

Mu,j ≤ (ϕMn,j), cm,j =

∣∣∣∣ Mu,j

ϕMn,j

∣∣∣∣− 1 ≤ 0, j = 1, 2, ..., nm, (11)

Vu,j ≤ (ϕVn,j), cv,j =

∣∣∣∣ Vu,jϕVn,j

∣∣∣∣− 1 ≤ 0, j = 1, 2, ..., nm, (12)

where δi and δu are the computed and permitted displacement, respectively, np is
the total number of points with restricted displacements, Mu,j and Vu,j are the
factored service load moment and the factored service load shear for member j,
with resistant factor ϕ equal to 0.9, and nm being the total number of members
in the grillage, respectively.

It is necessary to modify the objective function to include limitations. A pen-
alty function that calculates the value of constraint violation is established with
this objective in mind. The objective function is converted to a constrained
function using this function.

The penalty function is defined as:

C =

np∑
i=1

cδ,i +

nm∑
j=1

cm,j +

nm∑
j=1

cv,j . (13)

By including the penalty function, the objective function becomes a penalized
objective function (PF):

PF = W [1 + P · C], (14)
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where P is a constant in the positive range, which acts as a variable in each
problem. The user can choose this constant, while considering the limitations.
In this study, P is set to 10. The total number of violated constraints must
be zero at the end of the optimization procedure. Consequently, the penalized
objective function might then be set to match the overall weight of the structure.
In other words, the algorithm seeks the optimal solution while complying with
the limitations.

4.1. The nominal flexural strength

The nominal flexural strength is computed according to AISC-LRFD [1] as
follows:

Mn =


Mp = FyZ ≤ 1.5FyS for λ ≤ λp,

Mp − (Mp −Mr)

(
λ− λp
λr − λp

)
for λp < λ ≤ λr,

Mcr = FcrS for λ > λr,

(15)

whereMp is plastic moment, Fy is the specified minimum yield strength, Z is the
plastic section modulus, S is the section modulus, Mcr is the buckling moment,
and Mr is the limiting buckling moment, namely:

Mr =

{
FLSx for FLB,

ReFyfSx for WLB,
(16)

where FL is the min[(Fyf − Fr) or Fyw], FLB is flange local buckling, WLB is
web local buckling, Fr is the compressive residual stress in the flange (10 ksi or
69 N/mm2) for rolled shapes, Fyf is the yield strength of the flange, Fyw is the
yield strength of the web, and Re is the hybrid girder factor (1.0 for non-hybrid
girders). The critical stress Fcr is defined as:

Fcr =
0.69E

λ2
, (17)

where λ is a slenderness parameter computed as follows:

λ =

{
bf/(2tf ) for flange,

h/tw for web,
(18)

where bf and tf are the width and thickness of the flange, respectively, tw is the
thickness of the web, and h is the clear distance between flanges less the fillet
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or corner radius. The values of bf/(2tf ) and h/tw can be determined from the
tables for W-shapes:

λp =


0.38

√
E

Fy
for compressive flange,

3.76

√
E

Fy
for web,

(19)

λr =


0.83

√
E

Fy
for compressive flange,

5.70

√
E

Fy
for web,

(20)

where λp is the largest value of λ for whichMn = Mp, and λr is the largest value
of λ for which buckling is inelastic.

As the nominal moment strength for the section under consideration, the mi-
nimum value ofMn calculated for the flange or web in accordance with the values
of λ is chosen.

4.2. The nominal shear strength

The nominal shear strength is computed as:

Vn=



0.6FywAw for
h

tw
≤ 2.45

√
E

Fyw
,

0.6FywAw

(
2.45

√
E

Fyw

)/
h

tw
for 2.45

√
E

Fyw
<

h

tw
≤ 3.07

√
E

Fyw
,

Aw (4.52E)

/(
h

tw

)2

for 3.07

√
E

Fyw
<

h

tw
< 260,

(21)

where Aw is the cross-sectional area of the web.

5. Numerical examples

Two grillage structures from the literature are taken into consideration to
illustrate the effect of the presented algorithm. The material has the following
characteristics: shear modulus of 81 kN/mm2, yield stress of 250 MPa, and elas-
ticity modulus of 205 kN/mm2. A family of 272 W-sections is used to optimize
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these examples as a discrete set of available steel profiles. The allowable displace-
ment for middle joints is 25 mm for all examples. The grillage area is uniformly
loaded with a pressure of 15 kN/m2.

5.1. The 144 square meters grillage with pin supports

The grillage structures under consideration have dimensions of 12 m in both
the transverse and longitudinal directions (Lx, Ly). Figure 3 depicts the overall
model of such a grillage. It is estimated that all unsupported points add up
to a total external load of 2160 kN. The example is conducted in two separate
calculations: one with two design groups (Fig. 3), and another with four groups
(Fig. 4). The size of initial populations is 20, and the maximum number of cycles
is 100.

Fig. 3. Schematic of a model with two groups variables:
case 1 (left), case 2 (middle), case 3 (right) grillage structure.

Fig. 4. Schematic of a model with four groups variables:
case 1 (left), case 2 (middle), case 3 (right) grillage structure.

The results presented in Table 1 can be compared for the same number of
beams, which are 4× 4 and 5× 5. For case 2, the weight is 10 297 kg, which is
the same as Dede [6]. For case 3, the weight is 11 365 kg, which is better than
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Erdal and Saka [10] at 14 384 kg, but worse than Kaveh and Talatahari [20] at
11 358 kg. The advantage of the current solution is the adoption of a different
number of beams, namely 3× 4, for which the results are better than before at
8649 kg.

The results in Table 2 can only be compared for the same number of beams,
that is, for 5× 5. For case 3, the weight is 9189 kg, which is better than the result
of Kaveh and Talatahari [20] at 9251 kg, but unfortunately worse than Dede [6]
at 9153 kg. The advantage of the current solution is the adoption of a different
number of beams, i.e., 4× 4 and 3× 4, for which the results are better than the
previous ones at 8306 kg and 7790 kg, respectively.

5.2. The 225 square meters grillage with fix supports

The grillage structures under study have dimensions of 15 m in both the lon-
gitudinal and transverse directions (Lx, Ly). The total force that all unsupported
points share is 3375 kN. The example is calculated with four groups variables
(Fig. 5). The initial population size is 20, and the maximum cycle number is 100.

Fig. 5. Schematic of a model with four groups variables:
case 1 (left), case 2 (middle), case 3 (right) grillage structure (note: all supports are fixed).

The results in Table 3 can only be compared for the same number of beams,
that is, for 4× 4 and 3× 4. For case 2, the weight is 9969 kg, which is better
than the results of Kaveh et al. [21] at 10 508 kg. For case 1, it is 9279 kg, which
is worse than the results of Aydin [3] at 9216 kg.

In this study, the proposed algorithm was executed on a personal computer
with an Intel(R) Core(TM) i7-4510 CPU @2.60 GHz 8.00 GB RAM. The CPU
time for algorithms and the number of function evaluations (NFE) are presented
in Table 4.
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6. Conclusions

In order to optimize grillages, discrete sizes of W-shapes were used as design
variables for beams, while strength and displacement limitations were used as
constraints. The design outcomes were compared with the outcomes reported
in the literature. This comparison unequivocally demonstrates that the pro-
posed method, known as SAP-Rao, can be successfully employed in the design
of grillage structures. An innovative and effective method, named SAP-Rao,
was implemented in MATLAB to improve grillage structures. Like the other
population-based optimization algorithms, the SAP-Rao algorithms use an ini-
tial population.
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