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Thermal ignition in a reactive viscous plane-Poiseuille flow:
a bifurcation study
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Thermal ignition for a reactive viscous flow between two symmetrically heated walls is investigated. The
second order nonlinear boundary value problem governing the problem is obtained and solved analytically
using a special type of Hermite-Padé approximation technique. We obtained very accurately the critical
conditions for thermal ignition together with the two solution branches. It has been observed that an
increase in viscous heating due to viscous dissipation can cause a rapid decrease in the magnitude of
thermal ignition critical conditions.
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1. INTRODUCTION

In chemical and petrochemical industries as well as petroleum refineries, the study of thermal ex-
plosion in a combustible reacting gas is of great important in order to ensure safety of life and
properties. Hence, it is important to know the critical values of the basic physical quantities, such
as the ambient temperature, surface characteristics, the chemistry of the reacting combustible gas
and the physical storage geometry at which ignition occur. In a pioneering work, Frank-Kamenetskii
(1955) derived a steady state mathematical model for thermal explosion process of a combustible
material of constant density stored in between parallel heated walls using Arrhenius reaction rate
with high activation energy approximation. He observed that there is no spontaneous thermal ex-
plosion if the channel width is less than a critical value determined by both the properties of the
combustible reacting gas and the properties of exothermic chemical reaction. Thermal explosions
occur when the reactions produce heat too rapidly for a stable balance between heat production and
heat loss to be preserved. For detailed studies of thermal explosions, the reader might be referred
to Aris [1], Boddington-Gray-Wake [3], Zaturska [18], Shonhiwa and Zaturska [13], Zeldovich et al.
[19], Warnatz—-Maas-Dibble [17], Taira [16], etc.,

In the present paper, we confine attention to steady developed flow between symmetrically heated
walls. Our objective is to determine the critical conditions for thermal ignition as well bifurca-
tion that takes place in the flow field using perturbation technique coupled with a special type
of Hermite-Padé approximant. In the following sections, the problem is formulated, solved and
discussed quantitatively.

2. PROBLEM FORMULATION

Consider a steady developed flow between symmetrically heated walls i.e. plane Poiseuille flow. The
parabolic velocity profile in the streamwise direction is given w = U(1 — y? /a?), where U is the
mean velocity of the fluid. It is assumed that an exothermic chemical reaction occurs with Arrhenius



2 Oluvole D. Makinde

dependence of the reaction rate on the temperature and large activation energy. The heat balance
equation can be written as
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Fig. 1. Schematic diagram of the problem
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where T is the temperature of the reactive viscous fluid, y is the co-ordinate measured in the normal
direction, k is the fluid thermal conductivity, p is the fluid dynamic viscosity coefficient, Q is the
thermal effect of the reaction, o (Tp) is the pre-exponential factor in the Arrhenius reaction rate that
dependent on the wall reference temperature Ty, E is the activation energy and R is the universal
gas constant. Introducing the following dimensionless variables;
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where 3, X and € are the viscous heating parameter, the Frank-Kamenetskii parameter and the
activation energy parameter respectively.

3. SOLUTION METHOD

To solve Egs. (4)-(5), it is convenient to take a power series expansion in the Frank-Kamenetskii
parameter A, i.e.,

o0
u=$ upt (©)
1=0
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Substitute (6) into Egs. (4)—(5) and collecting the coefficients of like powers of A, with the
computer aid such as MAPLE (Char et al. [4]), we obtained and solved the equations governing the
first 22 coefficients of solution series (6). The solution for the temperature field is given as

u(n) = — (o ~ 1)(Br + B +6)

2

+ %(nz — 1) (Bn* + 159 + Bn* — 148 — 75) + O(M3). (7)

The rate of heat transfer across the wall is given as
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We obtained the first 22 coefficients of series representing the wall heat flux (H) in Eq. (8) as
shown in the Table 1 below

Table 1. Computation showing the coefficients of the wall heat flux (H) at very large activation
energy (¢ = 0.0)

i Ci (8=0) Ci (6=1) Ci (B=95) Ci (8=10)

0 | 0.00000000000 | 0.0000000000000 | 0.00000000000 | 0.000000000000
1 | 1.00000000000 | 1.3333333333333 | 2.66666666666 | 4.333333333333
2 | 0.33333333333 | 0.4000000000000 | 0.66666666666 | 1.000000000000
3 | 0.20000000000 | 0.2532627865961 | 0.51569664902 | 0.954850088183
4 | 0.14603174603 | 0.1965872810317 | 0.48503430725 | 1.068089112533
5 | 0.11816578483 | 0.1694696879010 | 0.50927341036 | 1.338092118484
6 | 0.10191438191 | 0.1558408133724 | 0.57147698061 | 1.794100946586
7 | 0.09181271403 | 0.1497495272531 | 0.67071894410 | 2.517326276415
8 | 0.08537598243 | 0.1485632254900 | 0.81314813588 | 3.649729163098
9 | 0.08132773378 | 0.1510033189886 | 1.01034038424 | 5.424236951455
10 | 0.07895434152 | 0.1564354509397 | 1.27976924770 | 8.219412315014
11 | 0.07783241005 | 0.1645728448385 | 1.64639586969 | 12.65091819853
12 | 0.07770055641 | 0.1753396095686 | 2.14527175466 | 19.72323433488
13 | 0.07839392514 | 0.1888040113777 | 2.82536468870 | 31.08138209782
14 | 0.07980851209 | 0.2051455904644 | 3.75502835532 | 49.42945951523
15 | 0.08188070824 | 0.2246402395754 | 5.02976019330 | 79.22823097161
16 | 0.08457509081 | 0.2476557815904 | 6.78318438313 | 127.8606445848
17 | 0.08787691574 | 0.2746543944672 | 9.20260340645 | 207.5836388981
18 | 0.09178741234 | 0.3062000922292 | 12.5510379386 | 338.8037793750
19 | 0.09632081711 | 0.3429704487541 | 17.1984970268 | 555.5858187505
20 | 0.10150253016 | 0.3857723098850 | 23.6663965504 | 914.9340265611
21 | 0.10736802463 | 0.4355615927447 | 32.6907285469 | 1512.458330982
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4. BIFURCATION STUDY

The main tool of this paper is a simple technique of series summation based on the generalization
of Padé approximants and may be described as follows. Let us suppose that the partial sum

N-1
Uv1(A) =) aiX=UN)+0\") as A—0, (9)

=0

is given. We are concerned with the bifurcation study by analytic continuation as well as the
dominant behaviour of the solution by using partial sum (9). We expect that the accuracy of the
critical parameters will ensure the accuracy of the solution, Makinde [11]. It is well known that the
dominant behaviour of a solution of a linear ordinary differential equation can often be written as
Guttmann [6],

KA — M) for a%0.1;2
UA) ~ as A=A (10)
KA:=AN)%In|A.— A for a#0,1,2,.:

where K is some constant and ) is the critical point with the exponent . However, we shall make
the simplest hypothesis in the context of nonlinear problems by assuming the U()) is the local
representation of an algebraic function of A. Therefore, we seek an expression of the form

Fy(\ Un-1) = Aon(\) + A4y )UD + 4d, (WUP + Ady (WU, (11)
such that
d+1 :
An(N) =1,  AnQA) =) bi¥ T, (12)
j=1
and
Fy X Ure@h T e om0 (13)

where d > 1, 7 =1, 2, 3. The condition (12) normalizes the F; and ensures that the order of series
AN increases as 7 and d increase in value. There are thus 3(2 + d) undetermined coefficients bij in
the expression (11). The requirement (13) reduces the problem to a system of N linear equations
for the unknown coefficients of Fy. The entries of the underlying matrix depend only on the N given
coefficients a;. Henceforth, we shall take

N =32 +d), (14)

so that the number of equations equals the number of unknowns. Equation (13) is a new special type
of Hermite-Padé approximants. Both the algebraic and differential approximants form of Eq. (13)
are considered. For instance, we let

U = U, U® — 2 Frid) = 758 (15)

and obtain a cubic Padé approximant. This gives an extension of the idea of quadratic Padé ap-
proximants by Shafer [12] and Sergeyev [14]. For the above cubic algebraic approximants, a simple
turning point occurs where

dFd()‘7 U)

Fy(\U)=0 and o

= 0. (16)
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Furthermore, Drazin and Tourigny [5], Sergeyev and Goodson [15], Makinde [10] had also sug-
gested a similar form of higher order algebraic approximants. Generally, this enables us to obtain
solution branches of the underlying problem in addition to the one represented by the original series.
In the same manner, we let

vW =y, Uv®=py U® =D, (17)

in Eq. (12), where D is the differential operator given by D = d/d\. This leads to a second or-
der differential approximants. It is an extension of the integral approximants idea by Hunter and
Baker [8] and enables us to obtain the dominant singularity in the flow field i.e. by equating the
coefficient A3y (A) in the Eq. (13) to zero. The critical exponent ay can easily be found by using
Newton’s polygon algorithm. However, it is well known that, in the case of algebraic equations,
the only singularities that are structurally stable are simple turning points. Hence, in practice, one
almost invariably obtains oy =1/2. If we assume a singularity of algebraic type as in Eq. (10), then
the exponent may be approximated by

_ Aon(Xen)
DAsn(Aen)

Using the above procedure, we performed series summation, improvement and bifurcation study
on the solution series obtained in Table 1. Our results show the dominant singularity in the problem
to be Ac(B,€) with the critical exponent o = 0.5 and maximum fluid temperature (umax i.e. at
y = 0) as shown in the Table 2 below

ay =1 (18)

Table 2. Computations showing the procedure rapid convergence for € = 0.0 and 8 = 0.0

d| N Umax A (B=0) e

1 | 9 | 1.18701002044 | 0.878451473 | 0.499919
2 |12 | 1.18684567133 | 0.878457670 | 0.499999
3 |15 | 1.18684216116 | 0.878457679 | 0.499999
4 |18 | 1.18684216863 | 0.878457679 | 0.500000
5 | 21 | 1.18684216863 | 0.878457679 | 0.500000

5. GRAPHICAL RESULTS AND DISCUSSION

Figure 2 shows the temperature distribution of the reactive viscous fluid. Generally, a parabolic
profile is observed with maximum temperature along the centerline of the channel. It is noteworthy
that an increase in the Frank-Kamenetskii parameter (\) due to continuous exothermic chemical
reaction will facilitate a gradual increase in the reactive fluid temperature. Similar effect is observed
with an increase in the viscous heating parameter due to energy dissipation as shown in Fig. 3.
The rapid convergence of our procedure in Sec. 4 is demonstrated in Table 2 with increasing num-
ber of terms of the solution series utilized. We obtained very accurately the magnitude of critical
conditions for thermal ignition A.(5,€) as shown in Table 3. It is interesting to note that A.— 0 as
B — oo at a given large activation energy (0 < e < 1).This implies that additional heating due to
viscous dissipation can facilitate early occurrence of thermal ignition by increasing the reactive fluid
temperature. Meanwhile, a decrease in fluid activation energy (¢ = 0.1) may increase the magnitude
of thermal criticality; hence causes delay in the occurrence of thermal ignition. For the case of a
stationary reactive fluid (i.e. 8 = 0), our result for critical conditions for thermal ignition represents
a great improvement on Frank-Kamenetskii (1955) who obtained A.(3=0) =0.88. Furthermore,
it is interesting to note that ). represents a simple turning point with critical exponent a, =0.5
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Table 3. Computations showing thermal criticality for various values of parameters (3, €)

€ B Umax A Q¢

0.1 ] 1.0 | 1.62681183925 | 0.93301095 0.5000000
0.1 | 5.0 | 1.95575679764 | 0.78151707 0.5000000
0.0 | 0.0 | 1.18684216863 | 0.87845767 0.5000000
0.0 | 1.0 | 1.25409582662 | 0.82295379 0.5000000
0.0 | 5.0 | 1.46185090079 | 0.67257689 0.5000000
0.0 | 10.0] 1.64665791280 | 0.56195708 0.5000000

(i.e a link between two solution branches). A sketch of bifurcation diagram for the heat flux at the
wall is shown in Fig. 4, the presence of two solution branches (i.e. types I and II) within the region
0 < A <A and above which no real solution of a given type is observed (i.e. A > A.). Finally, in this
paper, we have utilized a special type of Hermite-Padé approximant to investigate the bifurcation
and critical conditions for thermal explosions. The chief novelty of this procedure is its ability to
reveal the dominant singularities together with solution branches of the underlying nonlinear prob-
lem in addition to the branch represented locally by the original series. Generally, we have found
that this new method is very competitive and enhanced the analytic continuation of a given solution
series beyond its radius of convergence.
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Fig. 2. Temperature profile (=1, A = 0.1, 0.3, 0.5)
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Fig. 3. Temperature profile (A = 0.1, 3 =0, 1, 5, 10)
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Fig. 4. A sketch of bifurcation diagram for the problem
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