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In this paper possibilities of optimization of two torsional mechanical systems with one and two differential
pneumatic clutches with self-regulation are shown. The systems are excited by harmonic components of
the periodic moment caused by an engine. The advantage of the differential pneumatic clutch lies in the
fact that its torsional stiffness can be controlled by the pressure of a gas medium in it. Optimization of
such systems enables not only minimization of vibrations and dynamic effects but also avoiding resonance
regimes in relatively wide frequency intervals (speeds of rotation of the system). As objective function the
mean total amplitude of relative vibration is used. The constraints on the amplitudes of dynamic moments
and also anti-resonance constraints are considered.
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1. INTRODUCTION

The papers [1] and [2] showed possibilities of using pneumatic clutches with self-regulation in tor-
sionally vibrating mechanical systems (with various engines, compressors, pumps, screw propellers
etc.). These clutches enable to avoid dangerous resonance regimes. In comparison with classical
elastic clutches they enable to change the clutch stiffness according to the speed of rotation of the
system (or its loading moment).

In this paper we will concentrate on possibilities how to avoid resonance regimes in torsional
mechanical systems with two degrees of freedom. The optimization method will be illustrated by
a system with one and two differential pneumatic clutches with self-regulation. Such a clutch enable
to keep the angular displacement between its both parts constant thanks to the change of the
pressure of a gas medium in it which causes the change of the clutch stiffness. Only steady-state
regimes described by linear mathematical models will be considered here. Experimental results
(see e.g. [1]) showed negligible nonlinear effects in the pneumatic clutches considered here.

2. DYNAMIC MODELS

In Figs. 1 and 2 dynamic models of torsional systems with three discs are shown, where is: I; — mass
moment of inertia of an engine about its axis of rotation, [y — mass moment of inertia, [3 — mass
moment of inertia of the driven part of the system, kg — torsional stiffness of the pneumatic clutch,
k — torsional stiffness of the shaft or another clutch (see Fig. 2), M; — the i-th harmonic compo-
nent of the periodic exciting moment (caused by the engine), M — the constant loading moment,
w — angular frequency, ¢ 1,2, ¢ 3 — angular displacements of the discs I, I and I3.
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Fig. 2. Dynamic model (with two clutches)

Damping will not be considered here, because we assume that optimization will allow the system
to avoid all resonances, where damping would not be negligible in damping vibration amplitudes.
3. MATHEMATICAL MODELS

The equations of rotational motion of the systems shown in Fig. 1 are
Lipr —ks(p2— 1) =M + ZMi sin (iwt),
i
D¢y + ks (92 — 1) —k (93— 2) =0, 1)

I3p3 + k (03 — p2) = —M.

It is obvious that this system of equations has only two nonzero natural frequencies
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If we introduce two relative coordinates ¢ = 3 — 7 and 9 = @3 — @9 and do not take into con-
sideration the constant loading moment M (whose particular solution corresponds to the constarit
angular displacement of the system), then the equations of motion (1) can be written in the form
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where the first twelve harmonic components of the periodic exciting moment are taken into account.
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Particular solution to these equations (corresponding to the forced vibration) can be determined
by superposition

6
o = Y & sin(iwt), (5a)
1=0.5
6
P =Y sin(iwt), (5b)
1=0.5

where the amplitudes of vibration ®@; and ¥; are
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and
ks ks .2 2 k k 2 9 k ks
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The total amplitude of the dynamic torsional moment in the clutch is
6
Ms=ks Y |& (8)
i=0.5

and the total amplitude of the torsional dynamic moment in the shaft (between the discs Iz and I3,
Fig. 1), or in the second clutch (see Fig. 2) is

6
M=k % (9)

1=0.5

4. FORMULATIONS OF THE OPTIMIZATION PROBLEMS

Next two optimization problems (A and B) will be solved. In the problem A (Fig. 1) we will
consider only one design variable ¢* — relative angular displacement of both parts of the pneumatic
clutch (depending on the pressure in it) which will be constant in the whole frequency interval.
The torsional stiffness of the shaft between the discs I and I3 will be constant (specified). In the
problem B two pneumatic clutches will be used (Fig. 2). So, we will have two design variables in
this problem: ¢7 and 3.

The frequency interval from w4 to wp, corresponding to the lowest and highest revolutions of
the system, will be devided into N —1 subintervals of the constant length. In this way we get N
discrete frequencies w; (w1 = wy, wa, w3, 4, Wy = wp).

The objective function is determined in such a way, that it expresses the mean total amplitude
of the relative vibration between the discs I7 and I

1 N 6
f@=NZ<Z|¢il), (10)
= _
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where is (see equation (6a))
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For the problem B the following equations hold
ksi  ksj 2 2\ (ki ki 290\ _ kiks;
= [ 22 [ L 22 ) aendn i 14
D (I2+11 iw; 13+Ig i w; Z (14a)

where the stiffnesses of the first and second clutch are

aw2

kegy = (pj , (14b)
1
2
aws;
kj = —ZL. (14c)
P2

In Egs. (13), (14a,b,c) equality of the loading moment quadratically dependent on w
M = aw? (15)

(a is a constant) and the moments in the clutches

problem A: Mg = kgp*, (16a)
problem B: Ms1 =ksp], Mg =k ps. (16b)
was used.

4.1. Constraints on the dynamic moment amplitude

Meaning of this constraint is apparent. If the dynamic moment amplitudes in the shaft between the
discs I and I3 (problem A), or in the clutch between the same discs (problem B), are too high,
then serious damage of the system can occur. This constraint will be considered in the form

Mdyn,j < MD? .7 = 172a "'an (17)

where Mp is the maximum dynamic moment amplitude. The dynamic moment amplitude Mgy, ; is

6
Mayng =k 3 1%l j=1,2,..,M, (18)
£1=0.5

and M (M < N) is the number of discrete frequencies (from wy to wpg) for which conditions (17)
are applied. It can be expected that M can be much less than N.
The stiffness k; in (18) is determined by equation (14c) and ¥; is (see Eq. (6b))

_ —Miks;

Wi 20
L7 ¥

(19)

where kg; is determined by Eq. (14b) and D; by Eq. (12) for problem A, or by Eq. (14a) for
problem B.
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4.2. Anti-resonance constraints

We want the first natural frequency of the system §2; (w) in the whole frequency interval (Fig. 3) to lie
below the straight line corresponding to 7 = 0.5 and 25(w) between the straight lines corresponding
to¢ =1 and 7 = 1.5. To ensure these demands the following inequalities must be fullfiled

1 <0.4wj, Fo= 120000 M, (20a)

2 <l4w;, j=1,2,..,M, (20Db)
and

29 > 1.1wj, F=1,2,... M. (20c)

If the dependence of the clutch stiffness ks on the frequency w is suitable then the line of the
dependence 2 = {2 (w)will not intersect any straight line (passing through the origin of the coordi-
nate system O(w, §2)) corresponding to the harmonic components M; (i= 0.5, 1, 1.5, ..., 6) in the
frequency interval from wy to wpg.

A i=6 i=1.5 i=1

Q [rad/s]

Fig. 3. Campbell diagram

These anti-resonance constraints will be applied for the same frequencies w; as the constraints
on the dynamic moment amplitudes, equation (17). Inequalities (20a,b,c) involves safety intervals
which prevent both natural frequencies 2;(w) and 23(w) to lie too close to the straight lines
corresponding to ¢ = 0.5, 1 and 1.5, because for these cases resonances caused by corresponding
harmonic components M; could occur.

Both natural frequencies (2;(w) and {22(w) are determined by Eq. (2), however the first two
coefficients in Eq. (3) must be repeatidly computed for each w;. For problem A we have

- _hhLl e+ L)L | (Li+ D) I3 2
bl] i ij k ) b2J _ ij 3t k ) = 1,2a"'7Ma (21)
and for problem B
LI I3 (Lo+1) I, (I1+1) I3 :
b= e + ol Pt 22
= e ks 2 ks; k; 4 (22)
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5. NUMERICAL SOLUTION

The following variables will be specified for both optimization problems: w4 = 37 rad/s (lower bound
of the frequency interval), wp = 75 rad/s (upper bound of the frequency interval), I; = 26.6 kgm?,
I, = 8.1 kgm?, I3 = 92.5 kgm?, a = 0.26 Nms? (see Eq. (13) and (14b,c)), Mp = 640 Nm,
k = 12000 Nm/rad (torsional stiffness of the shaft in problem A).

The harmonic components of the periodic exciting moment are: i = 0.5: Mps = 48.5 Nm,
¢t =1: M1 =15.5 Nm, ¢ = 1.5: M5 = 33.6 Nm, M3 = 12.0 Nm, M5 = 24.1 Nm, M3 = 2066.9 Nm,
M35 = 16.5 Nm, My = 5.9 Nm, Mys = 10.2 Nm, M5 = 6.2 Nm, M55 = 11.5 Nm, Mg = 931.9 Nm.
These moments correspond to an unbalanced vibration of individual engine cylinders.

5.1. Problem A

The Optimization Toolbox of Matlab [3] and also program GOOD developed at the TU Delft (The
Netherlands) [4,5,6] were used to solve this optimization problem. Applications of the program
GOOD (in the past based on the Monte Carlo method and at present on genetic algorithms) can
be found e.g. in [7] and [8]. We got the following results: the optimum value of the relative angular
displacement of both parts of the clutch is: g, = 0.0474 rad. This value is kept constant in the
whole frequency interval from wy4 to wp. The value of the objective function (the mean amplitude
of the relative vibration between the discs I; and Iy) is: fop = 0.0075 rad. All constraints on the
dynamic moment amplitudes and also the anti-resonance constraints were fulfilled.

Figure 4 shows dependence of both natural frequencies 21 and {25 on w. In Fig. 6 dependence of
the total amplitude of relative vibration between the discs I; and I on w is presented (curve A).
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Fig. 4. Natural angular frequencies {21 and (2, (case A)

5.2. Problem B

This problem is characterized by using two pneumatic clutches. Now we have two design variables:
1 and @35. They both will be optimized. Again Optimization Toolbox of Matlab and also program
GOOD were used and the final results of optimization process are: ¢l opt = 0.0347 rad and 3
= 0.1396 rad. The value of the objective function is: f,, = 0.0054 rad. As expected, by application
of the second clutch reduction of the mean total relative vibration amplitude between the discs I
and I was reached (by 28 %).
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In Fig. 5 dependence of both natural frequencies {2y and {22 on w is graphically shown. It is
remarkable that in this case both natural frequencies §2; (w) and §25(w) are approximately linear and
passing through the origin of the Campbell diagram together with the straight lines corresponding
tos= 0.5, 1 and 1.5 (compare with the results of problem A, where this dependence is not linear
and (21(w), 22(w) are not passing through the origin of the Campbell diagram). It means that
application of the second clutch enables easier optimization of the system (and better results).
However, we should note that these results are valid only for the loading moment quadratically
dependent on w.
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Fig. 5. Natural angular frequencies £2; and (2, (case B)

Application of the second clutch positively affected also the constraints on the dynamic moments
amplitudes. In problem B (with two clutches) they are smaller than in problem A (with one clutch).
Besides, these moments are practically constant in the whole frequency interval.
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Fig. 6. Amplitudes of relative vibration (cases A and B)

In Fig. 6 dependence of the total amplitude of relative vibration between the discs I; and I
on w is again shown (curve B). This figure shows that application of the second clutch positively
affects the amplitudes of relative vibration between the discs I; and I for lower frequencies.
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6. CONCLUSION

In this paper optimization and comparison of two torsionally vibrating mechanical systems (with
one or two clutches) was presented. It was shown that differential pneumatic clutches with self-
regulation enable not only minimization of vibration in such systems, but they also enable to avoid
resonance regimes in relatively wide frequency intervals. All this is possible thanks to the fact that
stiffness of the pneumatic clutch can be controlled by the pressure of a gas medium in it. Comparison
of the results showed advantages of using two pneumatic clutches in three-mass torsionally vibrating
mechanical systems.
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