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The paper presents an analytical model to investigate the nonlinear dynamic behavior of rotor bearing
system due to cage run-out. Due to run-out of the cage, the rolling elements no longer stay equally spaced.
The mathematical model takes into account the sources of nonlinearity such as Hertzian contact force and
cage run-out, resulting transition from no contact-to-contact state between rolling elements and races. The
contact between the rolling elements and races is treated as nonlinear springs. The nonlinear stiffness is
obtained by application of Hertzian contact deformation theory. The implicit type numerical integration
technique Newmark-3 with Newton Raphson method is used to solve the nonlinear differential equations
iteratively. The results are presented in the form of Fast Fourier Transformations (FFT) and contact
force-time responses. It is implied from the obtained FFT that due to the cage run-out, the ball passage
frequency is modulated with the cage frequency.
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NOTATIONS

¢ equivalent viscous damping factor, Ns/m,
feq equivalent frequency of damping force, gL,
Fy; local Hertzian contact force, N,
F,, force due to unbalance rotor, N,
k constant for Hertzian contact elastic deformation, N/m3/2,
Np number of balls,
r inner race radius, mm,
R outer race radius, mm,
r¢; displacement at i ball, pm,
t time, sec,
Veage translational velocity of the cage center, mm/s,
Vinner translational velocity of the inner race, mm/s,
Vouter translational velocity of the outer race, mm/s,
W radial load, N,
z,y axial displacements, pum,
I' cage run-out, pm,
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wpp ball Passage speed, rad/s,
Weage angular speed of the cage, rad/s,
winner angular speed of the inner race, rad/s,
wrotor  angular speed of the rotor, rad/s,
wouter angular speed of the outer race, rad/s,

wwp Wwave Passage speed, rad/s,

¢; angular location of i*® rolling element, rad,

BPF Ball Passage Frequency,
FFT Fast Fourier Transformations.

1. INTRODUCTION

Rolling element bearings are a non-negligible source of vibration in many types of rotating ma-
chine. The behavior of nonlinear systems often demonstrates unexpected behavior patterns that are
extremely sensitive to initial conditions. Many advanced bearing applications now require under-
standing of dynamic effects and classical quasi-static analysis techniques of Jones (1], Harris [19],
Palmgren [2] and others are inadequate for dynamic analysis. Cage failures due to high pocket wear
or destructive collision forces between the cage and rolling element or race lands, cage induced audio
noise, structural vibration and excessive torque or torque noise, which are the examples of bearing
performance characteristics that are significantly affected by cage dynamics. Rolling element to cage
interactions can induce excessive vibrations then ball to race skidding and degraded performance.
This can cause premature failure in the system. When ball bearings are operated at high speed, they
generate vibrations and noise. The principle forces, which drive these vibrations, are time varying
nonlinear contact forces, which exist between the various components of the rotor bearing system:
balls, races and rotor.

Since today, ball bearings are used in the design of increasingly sophisticated arrangements,
involving high speed, high temperature, heavy or unusual loading and requiring continuous oper-
ations, automation etc., a clear understanding of vibrations associated with them is needed. It is
generally accepted that it is impossible to produce a perfect surface or contour even with the best
machine tools and this applies also in ball bearing manufacturing. In the rotor bearing assembly
supported by perfect ball bearings, the vibrations at the natural frequency and the varying compli-
ance frequency dominate the vibration spectrum. The vibrations at this later frequency are called
varying compliance vibrations.

Walters [6] developed an analytical model for ball bearing and cage dynamics with ball raceway
slip that was later modified by Gupta [14, 15]. However, the solution of time varying Hertzian
contact stress for each ball, along with integration of each cage impact with the balls or raceways
and integration of the ball traction/slip forces at each contact point on the inside and outside
raceways, results in the long computer run times and can be so costly as to make parametric design
studies impractical. In addition, the Walters/Gupta model equations are written in fixed inertial
coordinate system which leads to complex equations of motion, excessively long computer times
and computational errors due to computer numerical truncation. Kennel and Bupara [10] developed
a simplified method for analyzing ball and cage dynamics and assumed that the ball cage is only
to move in the plane of its major diameter. Meeks et al. [3, 4] have shown that the ball cage
motions are far too complex to be modeled with this extreme simplification of cage motion. Meeks
[5] developed an analytical model to study and optimize the bearing and cage design parameters.
Gad et al. [7] showed that resonance occurs when the ball passage frequency (BPF) coincides with a
natural frequency of the system and they also pointed out that for certain speeds, BPF can exhibit
its sub and super harmonic vibrations for shaft ball bearing system. Rahnejat and Gohar [9] showed
that even in the presence of an elasto-hydrodynamic lubricating film between balls and the races, a
peak at the BPF appears in the spectrum. Aktiirk et al. [12] performed a theoretical investigations
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of effect of varying the preload on the vibration characteristics of a shaft bearing system and also
suggested that by taking the correct number of balls and amount of preload in a bearing untoward
effect of the BPF can be reduced.

Harsha et al. [16] developed an analytical model to predict nonlinear dynamic response in a rotor
bearing system due to surface waviness. The conclusion of this work shows that for the outer race
waviness, the severe vibrations occur when the number of balls and waves are equal. In case of
the inner race waviness, the peak amplitude of vibration can be at qwyp £ pwcage. For the waviness
order iNp, peak amplitude of vibration and super-harmonic appear at the wave passage speed (wyp).
Harsha et al. [17] analyzed the nonlinear behaviors of ball bearing due to number of balls and preload
effect. Nonlinear dynamic response is found to be associated with the ball passage frequency. The
amplitude of the vibration is considerably reduced if the number of balls and preload are correctly
selected. Harsha et al. [18] analyzed the nonlinear behaviors of the high-speed horizontal balanced
rotor supported by ball bearings. The conclusion of this work shows that most severe vibrations
occur when the ball passage frequency (BPF) and its harmonics coincide with the natural frequency.

In this paper, a theoretical investigation was conducted to observe the effect of cage run-out on the
vibration characteristics of ball bearing system. The system is considered with the assumption that
there is no friction between the rolling elements and races. In terms of the feature that the nonlinear
bearing forces act on the system, the implicit type numerical integration technique Newmark-£ [11]
with Newton Raphson method is used to solve the nonlinear differential equations iteratively. The
results obtained from a large number of numerical integrations are mainly presented in form of Fast
Fourier Transformation (FFT) and contact force-time response.

2. MODELING OF THE SYSTEM

To analyze the structural vibrations in rolling element bearings a model is developed in which the
outer race of the bearing is fixed in a rigid support and the inner race is fixed rigidly with the
shaft. A constant radial vertical force acts on the bearing. Elastic deformation between race and
ball gives a nonlinear force-deformation relation, which is obtained by using the Hertzian theory.
Other sources of stiffness variation are the cage run-out, the finite number of balls whose position
change periodically and waviness at the inner and outer race, all of them cause periodic changes in
stiffness of the bearing assembly. The governing differential equations are obtained by taking into
account these sources of stiffness variation.

A schematic diagram of a rolling element bearing is shown in Fig. 1. In the mathematical model,
the rolling element bearings are considered as a mass-spring system and the contact acts as a
nonlinear contact spring. The Hertzian forces arise only when there is contact deformation, the
springs are required to act only in compression. In other words, the respective spring force appears
when the instantaneous spring length is shorter than its unstressed length, otherwise the separation
between ball and race takes place and the resulting force is set to zero. The assumptions made in
development of the mathematical model are as follows:

1. The outer race is fixed rigidly to the support and the inner race is fixed rigidly to the shaft.

2. The rolling element, the inner and outer races and the cage have motions in the plane of the
bearing only. This eliminates any motion in the axial direction.

3. The bearings are assumed to operate under isothermal condition.

4. Deformations occur according to the Hertzian theory of elasticity. Hence, only small elastic
motions of the rolling elements and the rings are considered.

5. The cage ensures the constant angular separation () between rolling elements, hence there is
no interaction between rolling elements. Therefore,

2
B=1 1)
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Fig. 1. A schematic diagram of a rolling element bearing

There is no slipping of balls as they roll on the surface of races. Since there is perfect rolling
of the balls on the surface of races and the two points of ball touching the races have different
linear velocities, the center of the ball has a resultant translational velocity. The translational
velocity of the center is,

Vinner 4 Vouter

V;:age = —-2—_—’ (2)
where,

Vouter = Wouter X &, (3)

Vinner = Winner X T. (4)

Here the outer race is assumed to be stationary, Voyter = 0. Therefore

Vinner Winner X T

Vcage = 2 = 9 . (5)

Now the angular velocity of the cage (wcage) about the center of inner race is,

& - Veage _ Winner xXr (6)
it GG s

Since inner race is rigidly fixed to the rotor, hence winner = Wrotor- Therefore

T
Weage = W rotor <m> . (7)

The ball passage frequency is:

Whp = Wcage X Np. ' (8)
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6. The damping of a ball bearing is very small. The damping occurs because of friction and small
amount of lubrication. The estimation of damping in ball bearing is very difficult because of
the dominant extraneous damping which swamps the damping of the bearing. Kramer [8] has
provided an estimation of the bearing damping. The element race vibratory system is reduced
to a linear spring mass damper system for which weq, the frequency at which the amplitude of
the damping force equals the spring force when a harmonic motion is given to the system, is
evaluated. From literature, Kramer [8], we have,

;. =‘i;$ = (0 to 4)\105 s, (9)
c=(0.25 to 2.5)107% (Ns/um), (10)

where k is the linearized stiffness of the ball bearing.

2.1. Cage run-out

Due to the run-out of the cage, the rolling elements no longer stay equally spaced, as shown
in Fig. 2.

Fig. 2. Non-uniform ball spacing due to cage run-out

The resulting variations of the circumferential angle for a small run-out I" is:

5 = T% G (11)

where R, denotes the pitch radius.
Due to the non-uniform spacing, the varying compliance frequency is modulated with the cage
frequency. The angular excitation frequencies due to the cage run-out are given by

W = GWpp - bwcage = aN, bWcage > = bwcagm (12)

where a and b are the constants.

2.2. Calculation of the restoring force

The local Hertzian contact force and deflection relationship for the bearing may be written as:

Fp, =k(rg)*%. (13)
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Performing the elastic analysis of Hertzian contact between the inner race, the outer race and
the ball, the value of kcan be obtained.

The radial displacement (r6;) at the i*! ball is given as:

ro; = x cos b; + ysinb;. (14)
Considering the cage run-out, the contact deformation becomes,

ro, = x cosb; + ysinb; — (I'). (15)
Substituting rg,in the Eq. (13), we get

Fy, = k[(x cosb; + ysinb;) — F]i_/2 A (16)

If the expression inside the bracket is greater than zero, then the ball at the angular location
0iis loaded giving rise to a restoring force Fp,. If the expression in the bracket is negative or zero,
then the ball is not in the load zone, and the restoring force Fp, is set to zero. The total restoring
force is the sum of restoring force from each of the rolling elements. Thus the total restoring force
components in the X and Y directions are,

Ny
Fy = Zk [(z cosb; + ysinb;) — 1"]?*_/2 cos b, (17a)

i=1

Np
Fy=Y"k[(zcosb; +ysin;) — I3/ sin;. (17b)

i=1

2.3. Equations of motion

The system governing equations accounting for inertia, restoring and damping force and constant
vertical force acting on the inner race are,

Ny
mi + ¢t + Z k [(z cosb; + ysin 6;) — 1"]3_/2 cos; = W + F, cos (wt) , (18a)

=1

Ny
my + cy + Z k[(z cosb; + ysinb;) — I“]jo’,_/2 sin@; = F, sin (wt) . (18b)

i=1

Here, m is the mass of the rotor supported by bearings. The system Eq. (18) is two coupled non-
linear ordinary second order differential equations having parametric effect, the 1.5 nonlinearity and
the summation term. The ‘+’ sign as subscript in these equations signifies that if the expression
inside the bracket is greater than zero, then the rolling element at angular location 6; is loaded
giving rise to restoring force and if the expression inside bracket is negative or zero, then the rolling
element is not in the load zone, and restoring force is set to zero. The damping in this system is
represented by an equivalent viscous damping c. The value of damping coefficient has been estimated
using Eq. (10). The unbalance force F, is taken for balanced rotor as zero.



Nonlinear dynamic dnalysis of high speed rolling element... 37

2.4. Contact stiffness

The Hertz equations for elastic deformation involving point contact between solid bodies are given
by Eschmann [13] as

2K | (1_%)22”

o 359

Q2. (19)

Here, A, K and p are Hertz coefficients which depend on the surface properties. E, 1/M and Y p
are the elastic modulus in N/mm?, Poisson ratio and the sum of curvature of the contacting bodies,
respectively. The contact force @ is:

E y
e oy (20)

NG

Hence the nonlinear stiffness associated with point contact is:

Q:

s 2K
M?2 L. 5— E p
Here, > p is the sum of curvatures. This sum obtained as from Harris [19] is following:
1 1 1 1
p=prrthpn Hairh Pl S S EEEahesea e (22)

T TI2 TII1 TII2

Two bodies of revolution having different radii of curvature in a pair of principle planes passing
through the contact between the bodies may contact each other at a single point under the condition
of no applied load. Such a condition is called point contact. Figure 3 demonstrates this condition.
The parameters 711, 712, 111, T112, PI1, PI2, PII1, PIT2 are dependent upon calculations referring to
the inner and outer races. If the inner race is considered,

rnn =DJ2, rre = D/2, TI[1=T, TI[2=T and

(23)
prn=2/D, pra=2/D, pin=1/r, puz=-1/r.

Plane 2

Plane 2

Fig. 3. Geometry of contacting bodies
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If the outer race is considered, the parameters are:

rn=D/2, rp=D/2, rin=R, rire=R and
(24)
pnn=2/D, pr2=2/D, pin=-1/R, pu2=-1/R.
With the use of Table 1, the parameters are:
For inner race pr; = pro = 0.41999, prr1 = 0.21346, prro = 0.0533674 (mm)"1
(25)

For outer race pr; = pra =0.41999, prr1 = 0.141532, prro = 0.0353832 (mrn)”1

Table 1. Dimensional contact parameters from Ref. [19]:

F (p) o*

0 1
0.1075 0.997
0.3204 | 0.9761
0.4795 0.9429
0.5916 0.9077
0.6716 0.8733
0.7332 0.8394
0.7948 | 0.7961
0.83595 | 0.7602
0.87366 | 0.7169
0.90999 | 0.6636
0.93657 | 0.6112
0.95738 | 0.5551
0.97290 | 0.4960
0.983797 | 0.4352
0.990902 | 0.3745
0.995112 | 0.3176
0.997300 | 0.2705
0.9981847 | 0.2427
0.9989156 | 0.2106
0.9994785 | 0.17167
0.9998527 | 0.11995
1 0

The value of (2K/Ap) is needed to find the stiffness at point contact from Eq. (21). To find out
this value from the table, cost is calculated as:

. _ Pnn—pr2 + pIr1
mner : (Z p)inner

= Pas 0 +:PII1 = PII2
outer (E p)outer

(cosT) —eus 0.16089,

(cosT) = 0.10435.
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From the table given in Eschmann [13],

2K
> = 0.995 (For both the inner and outer races.)

Hence, for both the inner and outer races the contact stiffness is the same.
Here we consider steel ball and steel raceway contacts, the elastic modulus and Poisson’s ratio
are as:

E=20x10" % and
mm (27)

1/M =0.3

Hence the Eq. (21) becomes

2 x 10° :
x 10 \/ 37, N (28)

T 1-(03)2\/ (1.5 % 0.995)3 x 1.16089 mm3/?
and thus:
' N
k = 19845 X 10 1/7'91. m (29)

3. COMPUTATIONAL SOLUTION OF THE EQUATIONS AND RESULTS

The equations of motion (18) are solved using the modified Newmark-8 method to obtain the
radial displacement and velocity of the rolling elements. In order to eliminate the effect of the
natural frequency an artificial damping was introduced into the system. With this damping, transient
vibrations are eliminated. Thus, peak steady state amplitude of vibration can be measured. The
longer the time to reach steady state vibrations, the longer CPU time needed and hence the more
expensive the computation. A value of ¢ = 200 Ns/m was chosen. To observe the nonlinear behavior
of the system, parameters of the ball bearing are selected and are shown in Table 2.

Table 2. Geometrical properties of ball bearing

Ball Diameter (D) 4.762 mm
Inner Race Diameter (Dipper = rx2) 18.738 mm
Outer Race Diameter (Doyter = RX2) | 28.262 mm
Radial Load (W) 24N
Mass of rotor (m) 0.6 kg
Damping Factor (c) 200 Ns/m
Separation angle between elements (5) 45°
Cage run-out (I") 0.001 pm
Angular velocity of inner race 5000 rpm

3.1. Initial conditions

The initial conditions and step size are very important for successful and economic computational
solution. Particularly for nonlinear systems, different initial conditions mean a totally different
system and hence different solutions. The larger the time step At, the faster the computation. On
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the other hand, the time step should be small enough to achieve an adequate accuracy. Also, very
small time steps can increase the truncation errors. Therefore an optimization should be made
between them. The time step for the investigation is assumed as At = 107° sec. At time ¢ = 0 the
following assumptions are made:

i. The shaft is held at the center of the bearing and all balls are assumed to have equal axial
preload.

ii. The shaft is then given initial displacements and velocities. For fast convergence the initial
displacements are set to the following values: g = 10~% m and yo = 10~% m. The initial velocities
are assumed to be zero: £ =0 and y = 0.

ili. When t > At the initial conditions have already passed and the normal procedure commences.

3.2. Cage run-out

The time history of the nonlinear responses has been examined for periodic behavior. This is done
by examining the time series output, once per cycle, for sufficiently long segments of time step so
that multiple periodic and aperiodic behaviors could be discerned from the post transient solutions.
From force-time response, the system behavior can be observed. For a periodic response, a single
point appears since the peak values of n cycles are same. For a sub-harmonic response, a few
discrete points appear. For a chaotic response, a band of points appear since the peak force varies
from one excitation to another and very large variations in peak contact force observed. Due to the
cage run-out, the rolling elements no longer stay equally spaced. Due to the non-uniform spacing,
the ball passage frequency is modulated with the cage frequency. The resulting variation of the
circumferential angle for a small run-out I” is assumed as 0.001 pm. The results of computations are
presented in form of FFT and contact force time response.

Figure 4 shows the vibrations for the bearing with a cage run-out at different number of balls.
When the number of balls is 4, the peak amplitude of vibration appears in the vibration spectrum
at the frequency wp, + weage = 140Hz as shown in Fig. 4 (a). Other major peaks of vibration
amplitude appear at an integral multiple of the ball passage with cage frequency 2wyp + 2wcage =
280 Hz, 3wpp + 3wcage = 420Hz. In the force-time response few discrete points appear at the
peak, which shows the 2-T periodic motion of the rolling element bearings. For 5 balls, the peak
amplitude of vibration appears in the spectrum at the ball passage frequency wy, = 170 Hz as shown
in Fig. 4 (b). Other major peaks at super harmonics of vibration appear at an integral multiple of
the ball passage frequency 2wpp = 340 Hz, 3wy, = 510 Hz, 2wy, + 3wcage = 442 Hz. In the force-time
response, few discrete points appear at the peak, which shows the 3-T periodic motion of the rolling
element bearings. When the number of balls is 6, the peak amplitude of vibration appears in the
spectrum at the ball passage frequency wyp, = 204 Hz as shown in Fig. 4(c).

Other major peaks at super harmonics of vibration appear at an integral multiple of the ball pas-
sage frequency 2wy, = 408 Hz, 3wy, = 612 Hz, 2wpp + 2wcage = 476 Hz. In the force-time response,
few discrete points appear at the peak, which shows the 3-T' periodic motion of the rolling element
bearings with less amplitude. For 7 balls, the peak amplitude appears at the ball passage frequency
wpp = 238 Hzas shown in Fig. 4 (d).

Other major peaks at super harmonics of vibration appear at an integral multiple of the ball
passage frequency 2wy, = 476 Hz, 3wy, = 714 Hz, 2wpp +weage = 510 Hz. In the force-time response,
few discrete points appear at the peak, which shows the 4-T periodic motion of the rolling element
bearings. For 8 balls, the peak amplitude appears at wpp, = 272Hz as shown in Fig. 4 (e). Other
major peaks at super harmonics of vibration appear at 2wy, = 544 Hz. In the force-time response,
few discrete points appear at the peak, which shows the 4-T periodic motion of the rolling element
bearings with less amplitude. Similarly, for 9 to 17 balls, the peak amplitude of vibration appears
in the spectrum at an integer multiple of the number of balls (N;) and the cage speed (wcage) and
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the n — T" periodic motion appear in the force-time response, which is shown in Figs. 4 (f) to (k),
respectively. Other major peaks in these vibration spectra and the force-time responses with their
amplitudes are shown in Table 3. From all the results shown in Table 3, it is concluded that cage
run-out in the bearing due to the non-uniform ball angular spacing the ball passage frequency is
modulated with the cage frequency.

Table 3. Frequencies of the possible vibrations for different number of balls in a bearing due to cage run-out

Number Peak amplitude at Harmonics in Vibration Contact Force (N)
of Balls Spectrum
4 Whp + Weage (10 pm) 2wpp+ 2 Weage, 3 Whpt 3 Weage 5.8 (2-T)
5 wpp (4.2 pm) 2 wpp, 3 Whp, 2 Wpp+ 3 Weage 5 (3-T)
6 wpp (2 pm) 2 wpp, 3 Whp, 2 WppTt 2 Weage 3.5 (3-T)
7 whp (0.8 pm) 2 Wpp, 3 Wpp, 2 Wpp + Weage 2.5 (4-7)
8 Whp (0.6 pm) 2 Whp 2 (4—T)
9 wep (0.4 pm) wop-+ T Woage 5 (5-T)
10 Whp(0.18 pm) 2wpp, wWpp+ 6 Weage 2 (5-T)
12 wpp (0.14 pm) 2whp, Wppt 5 Weage 7 (6-T)
14 Whp (0.1 pm) 2whp, Whp+ 4 Weage 5 (7-T)
16 Whp + 3 Weage (0.09 pm) Whps 2Whp 4 (8-7)
17 Whp + 2 Weage (0.09 pm) Whp 3 (9-T)

4. CONCLUSION

In the presented investigation, an analytical model of rolling element bearings has been developed
to observe the nonlinear vibration response due to the cage run-out. A single off-sized ball within
a bearing produces vibrations at the cage speed. This is true for linear and nonlinear ball to race
deflection coefficient. The highest radial vibrations due to cage run-out are at a speed equal to the
number of balls times the cage speed. The peak amplitude of vibration and the value of contact force
are reduced as number of balls increases, as shown in Table 3. Hence from this analysis the prediction
about the major peaks at frequencies and n-T' periodic behavior of rolling element bearings can be
made for cage run-out. The highest radial vibrations due to cage run-out are at w = awpp £ bweage -
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