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The paper presents application of the Refined Least Squares method to the initial value problems that
are instable in the Lyapunov sense. There is shown that the method is not sensitive to this kind of
instability. The method is especially useful in search of particular integral of the considered problem.
The method has an additional tool to evaluate quality of approximation. The approach is based on
minimization of the functional, which square root can is generalized norm L2 and can be used to estimate
global error of approximation. The expected value of the functional is equal to zero. The approximation
is satisfactory if both results converge and functional reaches value close to zero. The consideration is
illustrated with examples. There are shown initial-value problems which have physical sense and are
applicable in mechanics. Whereas numerical approach may fail for these tasks, Refined Least Squares
approach returns reliable approximation. The last example presents application of the special feature of
the method, which allows neglecting influence of general integral on the solution. The method may be
used in sensitivity analysis, search of the problem parameters, verification of numerical methods and an
antonymous method in computational physics and mechanics.

1. INTRODUCTION

Some problems of mathematical physics and computational mechanics are described with differential
equations that are unstable in the Lyapunov sense. It means that small change in the initial or
boundary condition results in large change of the computation path. This small change can be
caused by round-off error or too big recursion step. The numerical procedures do not have reliable
tools to estimate if the result of computation is wrong or not.

The Refined Least Squares method has been implemented within the computer algebra system
Mathematica [8]. The method has been primarily used to approximate boundary value problems.
There was shown in [3] and [4] that it is also applicable to the initial or initial-boundary value tasks.

The paper presents tree examples showing that the Refined Least Squares approach is not sen-
sitive on the Lyapunov instability. Moreover it has an additional tool to estimate a quality of an
approximation is provided. This tool is a square root of the minimized functional as it can be
regarded a generalized Lo-norm.

Opposite to numerical stepwise approach, it considers problem globally in the whole domain, not
step by step. Better approximation is obtained if more approximating functions are considered.

There is shown that the least squares procedure finds first of all a particular integral of the
problem. Meantime it tries to satisfy boundary conditions.

There was found that the method has a special feature which allows for a peculiar approach to the
boundary conditions. I was found, [5] and [6] that some boundary conditions may be not considered.
In this case the method finds a particular integral of the problem or generalized particular integral,
called also base solution. This phenomenon, discovered for shells boundary-value problems has been
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discussed and explained in [7]. There was found that boundary conditions connected with the lowest
derivative of the function in the differential equation must be considered obligatory to obtain non
singular system of algebraic equations. Other boundary conditions may be neglected. It is especially
useful in search of main trend of the function or generalized particular integral.

The fourth example is devoted to illustrate this feature and its application of the differential
equation with non-constant coefficients.

2. METHOD DESCRIPTION

The method was described a bit more extensively in [7]. It was designed originally to solve boundary-
value problems. Therefore only main elements are presented here with an emphasis on application
to initial-value problems.

2.1. Functional

Let us consider a system of n differential equations e; == 0 (“==" denotes “equal t0”) of n functions
Yk (t), describing an initial-value (or boundary-value) problem defined in the domain (period of time)
t € (to, t1). Let by == 0 be one of m initial (or boundary) condition defined in any moment in the
considered period (point of the domain).

For the considered problem we can built the following functional.

n t1 m
=Z/ (i €) +Z Bibr)? >0, (1)
i=1 10 k=1

where a; and [ are weighting coefficients or weighting functions (“:=" denotes definition). Weights
play important role in the method. From the formal point of view they provide consistency of
physical units in the functional F', definition (1). Next they enable us to moderate convergence path.
This problem was remarked in [7] and will be a subject of further research. The most important
feature of the method is that under certain conditions some initial or boundary conditions can be
neglected by setting appropriate weight to be equal to zero.

2.2. Approximation

We can assume the approximation as a linear combination of p independent functions u; (t):

p

Yk (8) =) ithor) i (2). (2)

1=0

The functions wu; () in definition (2) do not have to satisfy boundary or initial conditions. These
conditions are considered within the functional F', definition (1). This is the most important differ-
ence to the classical least squares approach. It makes not only the implementation of the method
more straightforward but also has some further important consequences.

According to this assumption, the weighted equations oy e, can be rewritten in the following
form:

n(p+1)—1

aper(t) ==Grp(t)+ > cKul(t). (3)

1=0
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Similarly we can do for weighted boundary conditions:

n(p+1)-1
Brby==Hp+ Y  ciL(t) (4)

1=0

Coefficients Ky (t), Lix (t) standing by decision variables ¢; and free elements Gy (t), Hk, can be
easily extracted from the Eq. (3) and boundary conditions (4), description and implementation is
presented in [7].

Another problem is choice of approximating functions wu; (z). The best numerical stability and
computational speed is obtained with monic Chebyshev polynomials [1], which are weighted Cheby-
shev polynomials of the first type T}, (t) computed according to the following definition:

—t
A (2tto - 7511 " 1)
Ug (t) = 9i—1 . (5)

The definition (5) makes that the domain is normalized to the interval (-1, 1).

2.3. System of algebraic equations

The approximation consists in minimization the functional F', definition (1) with the Ritz method.
Unknown coefficients ¢; are computed from the system of algebraic equations generated with a
minimization condition:

oF

— ==0. 6

dc; (6)
For linear problem the system of algebraic equations (6) takes the form:

A,’j Cj e Bi, (7)

where elements of the positive definite symmetrical matrix A;; are computed from:

fm / (Z K (t ) dt + Z Lix, Ljy, (8)

k=1

where coefficients Ky (t), Lix (t) are defined in definitions (3) and (4), respectively.
Coefficients of the free vector B; are computed from:

= / (ZKW )dt+ZszHk, )

k=1

where coefficients Gy (t), Hy are defined in definitions (3) and (4), respectively.

2.4. Additional tool of verification

The functional F, definition (1) is equal to zero if the approximation is an exact solution. Otherwise
it is a positive number. It is a generalization of the norm Lo and can be used to estimate global
error of approximation.

3. EXAMPLES

The application of the method is illustrated with three examples.
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3.1. Example 1

The first example comes from the chapter of the book by Wagon, [2] on pitfalls of numerical analysis.
The left hand side of the considered equation e == 0 is:

e:=1y (t)+ 2y (t) — cos (). (10)
The exact solution of the equation (10) is:

y(t) :=C et - § cos (t) + ésin (t). (11)

Let us consider an initial boundary problem defined with equation (10) in the interval ¢t € (0,3 )
2
with an initial condition b == 0,b:=y (0)+3' The initial problem is unstable in the Lyapunov sense

since the general integral of the equation is yo (z) := C e?!. Therefore the numerical procedures, also
those built in both Mathematica and Matlab fails in this case. The exact solution in the considered
case is equal to the particular integral:

2 {
yp (1) = —5 ¢os (t) + 7 sin (t), (12)
whereas procedure of numerical solution returns approximation that diagram is presented in Fig. 1
and it is wrong due to instability in the Lyapunov sense. Despite advanced numerical algorithms
built in the considered computer algebra system the result is returned with no warning. Warnings
are usually produced by the system if it has problems with convergence or stability.

y(t)
400~ i
300
200
100
- * t
= 4 o 2n s 3n
2 2 2

Fig. 1. Numerical approximation

Refined least squares procedure returns approximation which is stable. Approximation with
polynomial degree equal to 5, see Fig. 2, is close to exact solution in the most of the domain.

Approximation with higher degrees of polynomials is even better; see Figs. 3 and 4.

The quality of overall approximation can be evaluated by analysis of the square root of the
functional (1) V/F. Its diagram with respect to the polynomial degree is presented in Fig. 5. Its
value close to zero informs us about satisfactory convergence.

This example shows that the convergence decides about the approximation quality. The func-
tional F', definition (1) reaches considerably small values much earlier.
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Fig. 3. Least squares approximation, polynomial degree equal to 10
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Fig. 4. Least squares approximation, polynomial degree equal to 15
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Fig. 5. Convergence of the functional (1) root V'F with regard to the polynomial degree

It should be added that the approximation in the considered case would be not only quicker but an
exact solution would be obtained if we predict the approximating functions as: y; := sin(¢) and y; :=
cos(t). Nevertheless utilization of trigonometric functions is connected with loss of computational
speed of the implemented algorithm. Therefore for the sake of generality and efficiency trigonometric
functions are less practical than monic Chebyshev polynomials.

3.2. Example 2

Let us consider an inverse problem consisting in “lookback” approximation of the problem described
by Eq. (13) in the interval t € (0, 30):

2 _ e
v'O +2@ +y0 - S8 (13

The exact solution of the Eq. (13) is:
y(t) = (CL+Cat) e +y(t), (14)
where its particular integral is equal to:

6960 — 4776t + 1296¢> — 68t3 +
B 50625 :

Yp (1) : (15)

The general integral has a multiplier e ¢, which makes that the initial-value problem is stable if we
a considering a “direct” problem, when we set initial conditions in the beginning of the considered
period and unstable if we consider a “lookback” problem when conditions are set in the end of
considered period of time.

3.2.1. Case 1
Let us consider the following initial (final) conditions of the problem described with equation (13):
b1 := ¥y (30) — ¥ (30) == 0, (16)

by ==y (30) — ¥, (30) == 0. (17)



Refined least squares approach... 71

The exact solution in this case is equal to the particular integral (15). If we apply numerical
procedure built-in Mathematica the approximation quickly goes to the wrong results, see Fig. 6.

According to the information provided by Wolfram Research, Inc. on their WWW page:
http://documents.wolfram.com/v5/TheMathematicaBook/MathematicaReferenceGuide/Some-Notes
Onlnternallmplementation/A.9.4.htm| the numerical procedures of differential equations solving
cover most known methods from the literature and their code is about 1400 pages long. The routine
automatically chooses the most suitable algorithm. Despite of it in this case it fails without any
warning, too.
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Fig. 6. “Convergence” of numerical approximation

Result of numerical approach is completely wrong, Fig. 7.

Fig. 7. Result of numerical approximation

Refined Least Squares algorithm finds the exact solution very fast. Note that the approximation
with constant function finds a value which is close to the average of the function, see Fig. 8.

Approximation with polynomial of a polynomial degree equal to 2 is almost satisfactory, Fig. 9.

Polynomial with degree equal to 4 returns exact value since particular integral is a polynomial
of that degree, Fig. 10.
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Fig. 8. Least squares approximation, polynomial degree equal to 0
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Fig. 9. Least squares approximation, polynomial degree equal to 2
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Fig. 10. Least squares approximation, polynomial degree equal to 4
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Additional information about convergence is provided by a value of the functional root /F,
definition (1). It reaches value equal to zero for polynomial degree equal to 4, Fig. 11.
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Fig. 11. Convergence of the functional (1) root v/F with regard to the polynomial degree

3.2.2. Case 2
Let us consider the following initial (final) conditions of the Eq. (13):
by ==y (30) == 0, (18)

by := 3 (30) == 0. (19)

The exact solution in this case is far from the particular integral. It makes that Mathematica
built-in numerical procedure returns an actual approximation, see Fig. 12. Opposite to the previous
case and example 1 a pitfall do not occur since general integral dominates over particular one in the
considered equation. Therefore it is not easy to find particular integral with numerical procedure,
despite setting such initial conditions that should minimize influence of general integral, since even
small round-off error would turn convergence path.
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Fig. 12. Result of numerical approximation
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The Refined Least Squares procedure finds particular integral, first. Figures 13, 14, 15 show
beginning of the approximation. The approximate solution (Approx) is compared to the particular
equation (P.I.) As we can observe in Fig. 15 for p == 4 the approximation converges almost exactly
to the particular integral.
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Fig. 14. Least squares approximation, polynomial degree equal to 2

Then the approximation starts to “tear out” from the particular integral, Fig. 16.

The approximation waves on both sides of the particular integral, Figs. 17, 18 and 19.

Afterwards it “tries” to satisfy initial conditions, Fig. 19.

Finally it satisfies equation and initial conditions, see Fig. 20. Some numerical instability visible
on the drawing is resulted by round-off error for small numbers.

The decision about finishing approximation can be set up by the analysis of the functional root
V'F, definition (1), Fig. 21. We can observe a false convergence phenomenon in the interval of
polynomial degree between 4 and 27. The value is far from zero and this informs us that we must
continue approximation by consideration additional terms in the approximating polynomial.

This example shows that the convergence of the approximation is not the unique criterion of
the approximation quality. Both convergence and functional root V'F, definition (1) close to zero
informs about the satisfactory quality of the result.
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Fig. 15. Least squares approximation, polynomial degree equal to 4

¥ p=12
1
e

s // AN
4
L ‘\, /
2 1\ /
A — i
! \y = = Approx

5 10 15 .
1

Fig. 16. Least squares approximation, polynomial degree equal to 12
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Fig. 18. Least squares approximation, polynomial degree equal to 28
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Fig. 19. Least squares approximation, polynomial degree equal to 37
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Fig. 20. Least squares approximation, polynomial degree equal to 45




Refined least squares approach... i

VF

&

p
5 100 ~15 20 "25. 30 " .35. 40 _"45

Fig. 21. Convergence of the functional (1) root v/F with regard to the polynomial degree

3.2.3. Example 3

Let us consider the linear differential equation e == 0 with not constant coefficients:
e:=a(t) ¥ (t)+2y (t) +b(t) y(t) — 100, (20)
where:
t
t):=—+4 21
and

2 (¢ — 100)

in the interval ¢ € (0, 250) and initial conditions: y (0) == 0 and 3’ (0) == 0. Equation of that type
may have a physical sense.

The initial-value problem described with this differential equation and boundary conditions is
stable in the Lyapunov sense but the domain is relatively long, with comparison of the period of the
free vibrations, which can be estimated as T' & 1.2. Value of T has been estimated analyzing the
diagram of the approximated solution in the interval ¢ € (0, 10) (not shown in the paper). Therefore
the solution is highly oscillating in the beginning of the domain but quickly decay to the particular
integral. Thus, the numerical procedure requires 6830 steps to obtain satisfactory approximation,
see Fig. 22. The particular integral is relatively smooth and dominates on the most of the domain.

The least squares approach may be applied to obtain particular integral of equation (20). If
we neglect both boundary conditions (by multiplying them by zero weights in the functional F,
definition (1)) we can approximate particular integral. The negligence of both boundary conditions
is possible since the lowest degree of the derivative in the differential equation is equal to zero.

Due to non constant coefficients in the differential equation it is impossible to find its closed
solution.

Diagrams presented in Figs. 23, 24, 25, and 26 show the convergence of the approximation with
enlargement of polynomial degree. Comparing diagrams on Figs. 25 and 26 we find that they do
not differ a lot.

Figure 28 shows the convergence of the square root of the functional v/F, definition (1). It
confirms that the obtained approximation with polynomial degree equal to 25 is satisfactory since
respective to it value of the functional is close to zero (with comparison to the value of the approx-
imation with the polynomials of lower degrees).

(22)
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Fig. 22. Result of numerical approximation

y® p=5

I\
TN
LN
; b

L
N
\'_'.!5—.. t
50 100 150 200 250

Fig. 23. Least squares approximation, polynomial degree equal to 5
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Fig. 25. Least squares approximation, polynomial degree equal to 15
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Fig. 26. Least squares approximation, polynomial degree equal to 20
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Fig. 27. Least squares approximation, polynomial degree equal to 25



80 R. Walentynski

120

1000+
800+

600+
400

200

p
5 10 15 20 25 30

Fig. 28. Convergence of the functional (1) root vF with regard to the polynomial degree

4. OTHER APPLICATIONS

The last example shows that the method may have wider applications in problems of computational
physics and mechanics.

The possibility of the straightforward evaluation of the particular integral for the initial-value
problems may be used to search such initial conditions for the problem to avoid influences of
general integral on the solution. It may be applied in evaluation and calibration of parameters
of the problem and sensitivity analysis, for example. It may be also used in designing scientific
experiments of mechanics and other branches of physics or engineering processes.

Moreover the method may be used as a tool of verification of the results of other methods.

The method is analytical and its results are functions. They can be used directly for further
computational and engineering purposes. For example there is no problem to find a derivative or
integrating the function. There is no need to do any interpolation.

5. CONCLUSIONS

Presented examples proves that the refined least squares approach is not sensitive to instability in
the Lyapunov sense. The presented approach to the method, where boundary or initial conditions
are approximated together with equations and weighting functions by boundary conditions are
relatively small numbers, finds first particular integral. It do neither start from initial conditions
nor find points step by step but approximates the considered problem globally in the whole domain.
Due to that it may be especially useful in search for the particular integral of the problem.

Originally the method was tested and successfully applied to find a generalized particular integral
for ill-conditioned problems of the theory of shells [7]. Presented examples in this contribution shows
that it may be used not only to approximate initial value problems but also avoid problems with
another kind of instability.

The method can have wide potential applications. It could be used not only to verify results
of numerical and asymptotic approaches, but also may become an alternative to them. This thesis
should be supported by further research, of course.

The method is analytical indeed, but it becomes computer one thanks to computer algebra
systems and could be applied for approximation of ill-conditioned tasks of mechanics.

The method has an additional tool for verification of the approximation quality. It is a value
of the functional (1) root v/F which is a generalization of Lo-norm. Completed with analysis of
convergence it produces answer about reliability of an approximation.
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