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The Craig–Bampton (CB) method is a well-known substructuring technique that reduces
the size of a finite element model (FEM) using a set of vibration modes. For large FEA
models, the reduction process could be computationally expensive since it requires algebra
operations on FEM mode shapes and FEM system sparse matrices. In this paper, we
investigate the potential of usage of GPU parallel processing to speed up solving the
system of linear equations that results from the CB reduction process made for a model
of cyclic structures. A Python based high-level approach, employing the CuPy, GinkGo
and STRUMPACK libraries on the GPU, is compared with an optimized Fortran code.
In side-to-side comparisons, employing the same inputs, the Python-GPU code is run on
a single GPU device and the Fortran code is run on a multi-core compute node. The CB
reduction process was split into several parts, each dealing with different kind of algebraic
formulation of the problem. Performance comparisons were focused on the sparse system
linear solver, since it turned out to be the most time-consuming part. The results suggest
that the current GPU-based linear sparse solvers do not surpass the state-of-the-art CPU-
based MKL PARDISO solver (at least up to 1M DOFs).
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1. Introduction

The calculation of a reduced order model (ROM) for a structural system,
represented by a discrete finite element model, can be pursued in a variety of
ways [1]. The selection of the proper reduced order model is primarily influenced
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by the FEM analysis type (static, dynamic, contact non-linearities, etc.). This
work focuses on a particular reduced model – the CB method [2–4], which is one
of the most popular component mode synthesis (CMS) techniques. While the
CB method is typical and robust technique used in the industry, the most time-
consuming part of this process is solving the resulting system of linear equations.
The potential of speeding up this particular part of the process by the usage of
high-performance computing (HPC) GPU hardware is explored. The utilization
of existing high-level algebraic toolboxes, developed for the GPU hardware, is
considered in this study. To this end, the Python-based library CuPy [5] is used
as a formalism of focus for the quickest entry into writing algebraic code executed
on the GPU.

As the ROM method in the study remains fixed, the main attention is paid
on comparing various implementations of the GPU algebraic libraries and ex-
ploiting their efficiency for the ROM building process. The requirements of CB
ROM application, used by the authors, substantially limited this study to sev-
eral GPU-based algebraic toolboxes. The first limitation was the possibility of
using the sparse representation of structural matrices. The aim of the work was
to speed up the building process of high-fidelity FEM models, which can only
be represented by sparse matrices due to RAM memory limitations. Another
important limitation was the use of complex-valued algebra, e.g., a complex
linear solver. The performance of GPU-based toolboxes was compared against
a reference CPU implementation (Fortran code with the Intel MKL library).

At the beginning of the paper the CB and cyclic symmetry reductions are ex-
plained. Then, the FEMmodel and its various computational grid sizes are provi-
ded. In the next section, the tested algebra toolboxes are listed. Finally, perfor-
mance metrics for both GPU and CPU implementation are provided, and the
results are discussed in Sec. 5.

2. Structural reduced order modeling

Turbomachinery components such as bladed disks or blisks are subjected to
time-varying loads, which are the primary contributors to High Cycle Fatigue
failures (HCF). To study HCF, structural stress must be obtained from displace-
ment response. For linear analysis of forced response, the displacements of the
excited structure are obtained from the equation of motion (Eq. (1))

Mẍ(t) + Cẋ(t) + Kx(t) = F(t). (1)

In Eq. (1),M,K,C are respectively the mass, stiffness and damping matrices.
These matrices are obtained from finite element analyses of a discretized model.
F is the time-varying excitation force applied to the model degrees-of-freedom
(DOFs) of the FEM model. In the design of turbomachinery components there is
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a strict requirement to construct high-fidelity FEM models to ensure the accu-
racy of the analysis. This results in a high number of DOFs, and, in consequence,
very large dimensions of structural system matricesM,K, andC. To handle such
large matrices, sparse matrix representation has to be used (e.g. compressed row
format). Otherwise, it could not be possible to provide computation resources
(RAM memory) to solve a given model.

Using high-fidelity FEM models is not practical for advanced analysis, such
as non-linear contact, because they require much more resources than standard
linear analyses. In such situations, a reduced model is applied to lower the num-
ber of DOFs, while preserving the dynamic properties of the structure. In the
next section, the two-level reduction of the FEM model will be explained – first,
the cyclic reduction and then the CB reduction.

2.1. Cyclic reduction

Turbomachinery components such as bladed disks or blisks exhibit a cyclic
symmetry property. This means that they consist of identical substructures (sec-
tors), which are rotated by a fixed angle forming a full wheel geometry. The cyclic
symmetry is characterized by the sector angle 2π/N , where N is the number of
sectors. The full wheel model analyzed in this study is shown in Fig. 1, including
the extracted single cyclic sector.

Fig. 1. Full wheel model and a corresponding cyclic sector.

In order to reduce the FEM model of a full wheel into a cyclic symmetry
model, both the FEM structure and the subjected loads have to be cyclic. If this
condition is fulfilled there is a specific relation of the common surfaces shared
by cyclic sectors. These surfaces, for a single sector, are called high and low
edges. In Fig. 1, a cyclic sector is shown with marked corresponding nodes on
low and high edges. For such node pairs, there is a specific phase-lag relation
of displacements x

xH = xLe−iα, (2)
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where xH and xL denote the displacement vectors of high-edge nodes and low-
edge nodes, respectively; α is called the interblade phase angle, and is dependant
on the external excitation pattern (engine order excitation: EO). The interblade
phase angle for a full wheel with N blades can be derived from:

α = 2π
EO

N
. (3)

The displacements of the entire cyclic sector can be split as:

x =

 xH
xI
xL

, (4)

where xI denotes the displacement vector of internal nodes. Based on Eqs. (2)
and (4), a cyclic transformation matrix can be derived as follows: xH

xI
xL

 =

 0 Ie−iα

I 0
0 I

[ xI
xL

]
. (5)

Therefore, the cyclic transformation matrix becomes:

T =

 0 Ie−iα

I 0
0 I

. (6)

For high-fidelity FEM models the T matrix is represented as a sparse matrix,
given that the majority of entries are zero. The cyclic transformation introduced
in Eq. (1), together with left-multiplying the equations by TH yields:

THMTẍcyc + THCT ẋcyc + THKTxcyc = THF. (7)

Thus, the cyclic matrices become:

Mcyc = THMT, (8)

Kcyc = THKT, (9)

Ccyc = THCT, (10)

and the DOFs are reduced to:

xcyc =

[
xI
xL

]
. (11)

The final form of the cyclic equation of motion becomes:

Mcyc ẍcyc + Ccyc ẋcyc + Kcyc xcyc = Fcyc. (12)
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2.2. The Craig–Bampton reduction technique

Model order reduction techniques are generally divided into three groups:
modal reduction techniques, static reduction techniques and hybrid reduction
techniques. The choice of the proper technique is mainly dependent on the spe-
cific application. However, the main goal of all reduction methods is the same,
and it is to reduce the number of DOFs in the system. In model order reduction,
the equation of motion is transformed into a new subspace, where the dimen-
sion n is much smaller than that of the original space N , i.e., n � N . The
displacements of the reduced model are assumed to be a proper superposition of
basis mode shapes. These basis mode shapes form the model reduction transfor-
mation matrix T, and the weighting factors of basis coordinates are the reduced
model displacements x̃. The full model displacements are related to reduced or-
der displacements by the following relation:

x = Tx̃. (13)

The CB reduction technique, also called the fixed boundary method, is the
most popular hybrid reduction technique. The CB basis consists of static modes
and dynamic modes, where static reduction DOFs are fixed. The CB method
requires to split all DOFs into boundary DOFs b and internal DOFs i. With such
a DOFs distinction, the equation of motion is:[

Mbb Mbi

Mib Mii

][
üb
üi

]
+

[
Kbb Kbi

Kib Kii

][
xb
xi

]
=

[
fb
0

]
. (14)

The physical displacements are transformed into CB displacement using the
following transformation:[

xb
xi

]
=

[
I 0

ΨCM,i Φi

][
xb
ηηi

]
= TCB

[
xb
ηηi

]
, (15)

where ΨCM,i is denoted as constraint modes (static modes) and Φi is the fixed-
interface vibration modes (dynamic modes).

Each constraint mode is computed by applying a unit displacement on a single
boundary DOF and fixing all remaining DOFs to 0:[

Kbb Kbi

Kib Kii

][
Ibb
Ψib

]
=

[
Rbb

0ib

]
, (16)

where Rbb are reaction forces. From Eq. (16) the constraint modes can be cal-
culated as:

KibIbb + KiiΨib = 0, (17)
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which can be transformed into a system of linear equations:

KiiΨib = −Kib. (18)

The dynamic modes – fixed-interface vibration modes – are calculated from
the generalized eigenvalue problem, where the boundary DOFs are constrained
(xb = 0):

(Kii −ω2
i,jMii)Φi,j = 0. (19)

The result is a set of eigenmodes which are constrained at all boundary DOFs.
After computing both constraint modes and fixed-interface vibration modes, the
equation of motion (Eq. (1)) can be reduced using TCB similarly to Eq. (12):

MCB
¨̃xCB + CCB

˙̃xCB + KCB x̃CB = F̃CB. (20)

Here the CB reduced model matrices become:

MCB = TH
CBMTCB, (21)

KCB = TH
CBKTCB, (22)

CCB = TH
CBCTCB. (23)

From the given formulation of the CB reduction technique, it can be seen
that the reduction process consists of three steps: constraint modes calculation,
fixed-interface modes calculation and finally system matrix reduction. It has to
be noted that if the solved system is cyclic then all matrices are complex-valued.

2.3. Modal assurance criterion as ROM verification

The accuracy of full model representation by the CB reduction technique
greatly depends on the number of modes that form the CB subspace. In order
to provide a quick assessment of the accuracy of the reduced model, the most
handy criterion is the Modal Assurance Criterion (MAC) [11]. The MAC provides
a metric for mode similarity. It is based on cosine similarity, with the difference
that MAC values span from 0 to 1, where 1 indicates that modes are parallel and
0 means they are orthogonal. In reduced order verification MAC can be used to
compare the natural modes of the full model against the neutral modes of the
reduced model.

The modes of the full model (FM) are computed by solving the eigenvalue
problem with system metrices:

(KFM,j −ω2
FM,jMFM,j)ΦFM,j = 0. (24)
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On the other hand, the reduced order model’s mode shapes are computed as:

(KCB,j −ω2
CB,jMCB,j)ΦCB,j = 0. (25)

Since the CB modes are defined in the reduced subspace, they have fewer DOFs
than the full model modes. In order to define CB modes in the full model space,
the CB modal reconstruction has to be used (Eq. (13))

ΦCB−FM,j = TCB ΦCB,j . (26)

With the reconstructed CB modes, the MAC metric can be applied to each
combination of the pair of full model vs. reduced mode:

MAC(CB−FM,i),(FM,j) =
|ΦH

CB−FM,iΦFM,j |2

(ΦH
CB−FM,iΦCB−FM,i)(Φ

H
FM,jΦFM,j)

. (27)

In the ROM verification process, MAC is used to observe if the full modes that
are important for a given analysis are well represented in the reduced subspace,
i.e., MAC values are close to 1.

3. Methodology

In Sec. 2, the complete process of model order reduction was presented. It can
be inferred that there are several algebraic operations, which can be computa-
tionally expensive:

• cyclic reduction of system matrices (Eqs. (8)–(10)): sparse matrix multi-
plication, where the cyclic transformation matrix is complex-valued, and
the system matrices are real-valued,

• constraint modes calculation (Eq. (18)): system of complex-valued linear
equations,

• fixed-interface vibration modes (Eq. (19)): generalized eigenvalue problem
of complex-valued matrices,

• CB reduction of system matrices (Eqs. (21)–(23)): complex-valued matrix
multiplication, where the CB transformation matrix is complete, and sys-
tem matrices are sparse,

• ROM check (Eq. (27)): multiple dot product of complex-valued vectors.
Since each algebraic operation is different, an initial ROM computation of

a reference FEM model on the CPU code is conducted to obtain the percentage
time breakdown of each item. In the further study, attention was paid only on
the most time consuming part of model reduction.



58 P. Gorecki et al.

3.1. Finite element model

The analyzed FEM is presented in Fig. 1. From the 12-sector wheel, a single
cyclic sector was extracted. The cyclic sector is meshed with equally spaced brick
elements. The model is rather academic, however for the current study the model
is sufficient, since only computational performance is within the authors’ interest.
Table 1 includes four finite element models analyzed in the current work. The
FEA models differ only by grid spacing, and in consequence, impact the number
of DOFs. Also, each model has a different number of calculated constraint modes.
This is due to the fact that on a coarse grid, fewer force/contact nodes can be
fitted. So, the number of constraint modes has to be adjusted for each case.
The authors decided to correlate the number of constraint modes with the grid
spacing of each model.

Table 1. Sizes of FEA models used in the study, with the number of constraint modes.

FEA nodes FEA DOFs CMs
1 16 321 50 058 42
2 50 058 145 152 114
3 127 909 374 292 150
4 324 625 957 264 390

3.2. Computational hardware

Table 2 shows details of the CPU and GPU architectures, which were used
in the current work. In order to ensure as much objectivity in the performance
comparison as possible, it was decided to compare the architectures based on
the cost of the computational unit. At the time of writing this paper, the ratio
of the cost of CPU to GPU architecture from Table 2 was about 4 : 3. Therefore,
it was decided that for all CPU computations, the number of cores would be
limited from 32 to 24, to equalize the cost of both architectures.

Table 2. Computational hardware.

Processing unit Hardware specification

CPU hardware AMD EPYC™ 7543, L3 memory 256MB, Clockspeed 2.8 GHz, 32 Cores,
64 Threads, 2 Sockets

GPU hardware NVIDIA A40, 10752 Cores, Memory size 48 GB

3.3. CPU implementation

A highly optimized Fortran 2008 code was used as a reference CPU imple-
mentation. The code takes advantage of compiler optimizations, such as vector-
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ization. For sparse algebra computation the Intel MKL library is utilized [16],
which has procedures optimized for both shared-memory (OpenMP) parallelism
and distributed memory parallelism (Intel MPI).

At first, the reference run of the CPU implementation was conducted.
FEA model no. 4 from Table 1 was run using 24 OpenMP threads and 2 MPI
tasks. This run was performed to obtain the time breakdown of all algebra oper-
ations listed in Sec. 3. Here, it has to be noted that the fixed-interface vibration
modes computation was carried out outside CPU code, i.e., using ANSYS soft-
ware, due to challenges in implementing a custom complex-valued generalized
eigenvalue problem for sparse matrices. Thus, fixed-interface vibration modes
computation is excluded from the performance comparison studies.

Figure 2 shows the percentage time split of each computation. It can be
observed that the vast majority of the computational time is taken by constraint
mode computation. All remaining algebra operations takes only 5% of the total
time.

Fig. 2. CPU wall time breakdown for 957,264 DOFs FEA model (CPU solver).

Motivated by the runtime breakdown depicted in Fig. 2, the solution of the
linear problem, constraint mode computation, becomes the quantitative focus in
the further study of this paper. Other algebraic operations are omitted for now
since the main goal of the study is to accelerate the overall time of the reduced
order model building process.

3.4. GPU implementation

As mentioned in the previous section, the main attention is paid on the
solution of the system of linear equations. Table 3 summarizes the linear solvers
found in the literature that meet the requirements of the current work. The
following libraries were used in this work:
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• CuPy is an open-source library written in Python, intended for GPU ac-
celeration of solving systems of linear equations with sparse matrices. Due
to its support of NVIDIA CUDA platform, it allows to use NumPy and
SciPy functionalities on GPU machines [5].

• Strumpack is a library written in C++, intended for delivering solvers
and routines for solving linear systems of equations with sparse and dense
matrices. It supports NVIDIA GPU machines with CUDA for sparse direct
solvers [6, 7].

• Ginkgo is a library written in C++, intended for high performance linear
algebra computing with special focus on the sparse linear systems. It sup-
ports GPU Machines through kernels implemented in CUDA, HIP and
DPC++ [8–10].

The table also contains CPU solvers used in Subsec. 3.3. All the listed solvers
can handle complex-valued sparse matrices.

Table 3. Compared linear solvers.

Technology Processing unit Type
Ginkgo parallel GPU iterative

Ginkgo sequential GPU iterative
CuPy gmres GPU iterative
CuPy cg GPU iterative
CuPy cgs GPU iterative

STRUMPACK 1 GPU direct
STRUMPACK 2 GPU direct

Intel MKL (1 core) CPU direct
Intel MKL (24 cores, 2 sockets)
equivalent cost to NVIDIA A40

CPU direct

The GPU implementation of model order reduction comprises Python code
predominantly using the CuPy [5] library for the computational stages described
in Sec. 2. Only in the case of the linear solve step other computational libraries,
such as STRUMPACK [6] and Ginkgo [8], are used (see Table 3).

The implemented code reads from ANSYS FEA: sparse system matrices M
and K, normal modes (Eq. (24)), and fixed-interface modes (Eq. (19)). Also,
high-edge and low-edge node numbers are read for cyclic constraints applica-
tion. After the input stage, the data is kept on the GPU card memory, and only
transferred to CPU memory if required by a specific library. Within the listed
solvers in Table 3 there are both direct and iterative solvers. Each solver re-
quires separate effort to integrate it with the GPU-based model order reduction
Python code.



Accelerating computation of a reduced order model. . . 61

The conjugate gradient solver (CuPy cg) was diagonally preconditioned to re-
duce the number of iterations to converge, according to Listing 1. The remaining
variants of the CuPy solver callbacks look virtually the same as Listing 1. Pre-
conditioning is needed to keep the number of iterations relatively small. However,
based on conducted tests, the use of seemingly more sophisticated precondition-
ers than the current diagonal deflation does not pay off computationally.

Listing 1. Python CuPy code impementing diagonally preconditioned conjugate gra-
dient solution scheme.

from cupyx . s c ipy . spa r s e . l i n a l g import cg , LinearOperator
from cupyx . s c ipy . spa r s e import dia_matrix
from tqdm import tqdm

def gpu_sam_solve_cg (K_sam, rhs , K_eps=1E−10):

# Jacobi p r e cond i t i one r
dia = K_sam. d iagona l ( )
inv = 1.0/ dia
inv [ d ia == K_eps ] = 0 .0
inv = dia_matrix ( ( inv , [ 0 ] ) , shape = K_sam. shape )
def matvec (v ) :
return inv . dot ( v )
M = LinearOperator ( inv . shape , matvec )

# Solve f o r SAMs
sam_modes = rhs . copy ( )
for j in tqdm( range ( rhs . shape [ 1 ] ) , desc = ’GPU␣cg ’ ) :

x , i n f o = cg (K_sam, rhs [ : , j ] , M = M)
sam_modes [ : , j ] = x

return sam_modes

The CuPy library does support CPU-computed and GPU-applied sparse
ILU-type preconditioning, which in the case of the current study was not proven
to be effective. Hence, in all cases where the iterative solvers were compared
(Cupy and Ginkgo), the same Jacobi-type diagonal deflation is used to precon-
dition the iterations.

The Ginkgo solver is linked with the core model order reduction Python
code via a custom C++ based Python module. The same technique is applied to
provide the interface for the STRUMPACK solver. While the employed Ginkgo
(conjugate gradient) solver is purely iterative and after all data is passed to it,
the calculation is solely GPU-based, the STRUMPACK solver itself is a direct
solver pre-computing the sparse symbolic elimination tree on the CPU and then
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traverses it, factorizing in parallel on the GPU unit. Hence, the STRUMPACK
solver includes relatively complex data movement between the CPU and GPU
sides of memory and computation.

In Table 3, the used libraries provide the following algorithms for solving
system of linear equations:

• CG (Conjugate Gradient) method is an iterative algorithm for the solution
of systems of linear equations if the system matrix is positive-definite. It is
used for large sparse systems, because the algorithm needs only a formula
for multiplying a sparse matrix by a given vector [12, 14, 17].

• CGS (Conjugate Gradient Squared) method is an improved CG algorithm
with the same computational cost but better convergence [12, 13, 15].

• GMRES (Generalized Minimal RESidual) method is an iterative method
for the solution of a system of linear equations with a nonsymmetric ma-
trix. Using the Arnoldi iteration, this algorithm approximates the solution
vector by a vector in the Krylov subspace with minimal residual [18, 19].

4. Results

4.1. Computational time

Figure 3 summarizes the computational runtimes of the linear solve stage
for all tested solver types and all input problem sizes. It can be observed that
among the CuPy-based solvers, the baseline conjugate gradient approach (cg) is
the most effective one, while its squared version (cgs) and the gmres are slower.
The Ginkgo versions of the conjugate gradient solver are consistently outperform-

Fig. 3. Linear solver with multiple right-hand sides: computational time.
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ing CuPy’s cg by a small percentage, even though the invocation of the Ginkgo
module involves the transfer of input and output algebra between the CPU and
GPU memory. This points to the presumably more optimized nature of the im-
plementation of this aspect of Ginkgo over CuPy’s equivalent. STRUMPACK, on
the other hand, consistently outperforms both iterative approaches. This is in-
teresting and encouraging. Direct solvers, due to their greater numerical stability
and simplicity of the application, are preferably used. Finally, the CPU imple-
mentation, employing Intel’s MKL sparse solver (PARADISO), outperforms all
of the GPU approaches given 24 CPU cores. This is perhaps “as expected”, since
this particular solver has been highly optimized over several decades. Nonethe-
less, the current study shows that the GPU solvers provide practical runtimes,
in some cases comparable with CPU solver.

4.2. RAM memory consumption

RAM memory consumption is crucial for high-fidelity FEA models, since it
can easily become a limitation on the size of FEA model that can be solved
on a given hardware. Even though GPU solvers are mainly based on GPU
processing power and memory, they would still use CPU memory resources.
The CPU and the GPU RAM memory consumption results are summarized
in Figs. 4 and 5, respectively. An interesting observation, based on these fig-
ures, is that STRUMPACK does not seem to take up significantly more memory
that the iterative solvers. In the course of running the tests, it was noticed that
STRUMPACK is able to adapt dynamically to the available GPU memory size
and if the memory threshold is about to be reached during the numerical factor-
ization stage on the GPU, a recursive subdivision strategy is applied. The large

Fig. 4. Linear solver with multiple right-hand sides: consumed RAM memory on CPU.
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Fig. 5. Linear solver with multiple right-hand sides: consumed RAM memory on GPU.

memory consumption on the CPU for smaller models seems to be an artifact
possibly due to the applied method of querying the operating system for the
amount of memory used by a process. However, the authors were not able to
clarify this.

5. Conclusions

In the analyzed CB reduction approach, the most time-consuming aspect
was revealed to be the solution of the system of linear equations with multiple
right-hand sides, i.e., constraint mode computation. Because of that, the effort
to accelerate computation of reduced order model of a structural system using
GPU programming was focused only on accelerating the solution of the system
of linear equation. Several algebraic software libraries were selected to study
their performance. From the results it can be concluded that currently there is
no GPU solver as efficient as the CPU-based MKL PARDISO solver (at least
up to 1M DOFs). It was also shown that Python CuPy and NumPy libraries
require a substantial memory overhead for linear solvers (seemed to be a portion
of the total memory). In future studies, the authors plan to focus on testing much
larger models up to about 1B DOFs, with distributed multi-GPU architecture
and low-level coding.

This was observed for the given case, e.g., a simplified blisk model. This
finite element structural model was cyclic reduced what gave considered system
of linear equation. While it cannot be stated that this observation is valid for
other types of analysis, the investigation should be repeated and new conclusions
should be drawn. However, the presented type of models is a very important
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part of CAE analysis in turbomachinery dynamics, and making is a wide and
important area of interests for engineers and researchers.
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