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In this paper, the identification of thermophysical parameters using the hyperbolic two-
temperature model is made. We investigate the influence of ultra-fast laser pulses on
the heating of a thin metal film using this model. Two differential equations coupled
with the electron-phonon coupling factor G are used. One of these equations concerns
electron temperatures and the other addresses lattice temperatures. Appropriate initial
and boundary conditions are imposed for this model. The finite difference method with
a staggered grid is used to solve this direct problem. Temperatures for even nodes and
heat fluxes for odd nodes are calculated. The results of the direct problem and results of
the experiment are compared. In the optimization process, an artificial immune system is
used.
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1. Introduction

The optimization of mechanical structures is very difficult and requires a lot
of time to solve a given problem [5]. It involves solving multiple direct prob-
lems that can be very complex and then calculating fitness function value and
sometimes its gradient. During the optimization process, using one of effective
optimization methods, for example, an artificial immune system (AIS), is of
great importance. The application of this method in conjunction with the finite
element method (FEM), the finite difference method (FDM) or the boundary ele-
ment method (BEM) enables the optimization of mechanical structures. The
biological immune systems were the inspiration to create the AIS [28]. Three dif-
ferent mechanisms of immune system can be employed: positive and negative
and mechanism of clonal selection used in this paper. The AIS optimization al-
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gorithm has been used extensively to optimize a variety of mechanical structures,
including shell structures and solid shell structures. The optimization concerned
changes in shape, topology and material properties [29]. Other examples of us-
ing this approach include optimizing: elastic vibrating systems [31], magneto-
electric composites [34] thermomechanical structures [36], and porous structure
parameters [35]. Additionally, it has also been employed in the identification pro-
cesses, such as determining parameters of composites structures [30], addressing
acoustics problem [32], and identifying material constants for piezoelectric ma-
terials [33].

Based on many numerical examples, we can conclude that AIS provides
a good probability of finding the global optimum and helps avoiding local solu-
tions. The primary purpose of immune algorithms is to improve efficiency and
effectiveness during the identification and optimization process. The modifica-
tion (hybridization) of the classical AIS can be used to improve the optimization
process [11]. There are two types of modification to consider. First type of mod-
ification concerns the use of hypermutation gradient, while the other is based
on the Kriging method [19]. The goal of these two new optimization algorithms
is to reduce the time required and ensure a better convergence to the global
optimum. The advantage of the second type of modification is its applicability
to uncertainty problem [33].

The efficiency and effectiveness of the optimization process using an immune
algorithm depend on the proper configuration of its parameters. During each op-
timization or identification process, the parameters of this algorithm are tested,
and the optimal values determined through these tests are used. Setting wrong
values for these parameters can lead to reduced efficiency and effectiveness in
the optimization process. Additionally, the local solutions can be found when
using the wrong parameter values, limiting the ability to find the global optimal
solution.

In the past, the AIS algorithms [6] were employed in many different prob-
lems. For example, the AIS approach was used in a multi-objective optimization
[7, 15], neural network learning [9, 22, 23], and query expansion problem [8].
Furthermore, the AIS have also many interesting applications not related to me-
chanics, for example, reconstructing phylogenetic trees [15] or diagnosing heart
diseases based on ECG analysis [3]. Other interesting examples include control-
ling and identifying a fuel-ethanol fermentation process and optimal selection of
Wiener equalizers [2]. In several articles, we can also find modifications of the
classic AIS: Bayesian AIS (BAIS) [10, 12]. Other examples include optimization
in transportation systems [20, 22] and another method of hybridization [18].

In this paper, the identification of thermophysical parameters of thin metal
film subjected to laser pulses is conducted. The hyperbolic two-temperature
model is employed for this purpose. This two-temperature model is described in
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two differential equations coupled with the electron-phonon coupling factor G.
One equation concerns electron temperatures and the other addresses lattice
temperatures [14, 38]. Appropriate initial and boundary conditions were imposed
for this model. The FDM with a staggered grid was employed to solve this direct
problem [21, 24]. Temperatures for even nodes and heat fluxes for odd nodes
were calculated. The results of the direct problem were next compared with
experimental data.

In summary, various versions of AIS have been employed during many iden-
tification or optimization problems for a wide range of engineering problems.

It is important to note that the problem described in this article has not
yet been solved using the AIS approach. In this article, the following issues are
described. In Sec. 2, microscale heat transfer for the two-temperature model is
presented. The direct problem is formulated in Sec. 3. In Sec. 4, the principle of
AIS operation is described and explained. In Sec. 5, the optimization problem
and numerical example are presented. Concluding remarks are given in Sec. 6.

2. Heat transfer in microscale – two-temperature model

In the paper, a thin metal film is considered. The thickness of this film is L.
Because the laser spot size is larger than the thickness of the film [1, 14], the
problem is treated as a one-dimensional (1D). At the left boundary, where x = 0,
the film is irradiated by an ultrashort laser pulse (Fig. 1). The equations below
describe the temporal and spatial distribution of lattice and electron tempera-
tures in the thin irradiated film [26]

Ce(Te)
∂Te(x, t)

∂t
= −∂qe(x, t)

∂x
−G[Te(x, t)− Tl(x, t)] +Q(x, t) (1)

and

Cl
∂Tl(x, t)

∂t
= −∂ql(x, t)

∂x
+G[Te(x, t)− Tl(x, t)], (2)

where Ce(Te) is the volumetric specific heat of electrons, Cl is the volumetric
specific heat of lattice, G is the electron-phonon coupling factor that represents

Laser 

x 

Fig. 1. Laser heating of the thin metal film.
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the energy exchange between electrons and lattice, qe(x, t) and ql(x, t) are the
heat fluxes, and Q(x, t) is the source connected with the laser pulse.

In micro heat transfer, the classical Fourier law is replaced by the following
formulas:

qe(x, t) + τe
∂qe(x, t)

∂t
= −λe(Te, Tl)

∂Te(x, t)

∂x
(3)

and

ql(x, t) + τl
∂ql(x, t)

∂t
= −λl

∂Tl(x, t)

∂x
, (4)

where λe(Te, Tl) is the thermal conductivity of the electrons, λl is the thermal
conductivity of the lattice, τe is the time required to change energy state of
electrons called relaxation time of free electrons, and τl is the relaxation time in
phonon collisions. The heat source Q(x, t) is given as [14, 25]:

Q(x, t) =

√
β

π

1−R
tpδ

I0 exp

[
−x
δ
− β (t− 2tp)

2

t2p

]
, (5)

where tp is the characteristic time of laser pulse, I0 is the laser intensity, δ is
the optical penetration depth, R is the reflectivity of the irradiated surface, and
β = 4 ln 2.

The laser heating takes the ultrashort period of time so the heat losses from
boundary surfaces of thin metal film can be neglected [14, 17], and this means

qe(0, t) = qe(L, t) = ql(0, t) = ql(L, t) = 0, (6)

where L is the thickness of the thin film. The initial conditions are as follows:

t = 0 : Te(x, 0) = Tl(x, 0) = Tp. (7)

The formulas for the thermal conductivity λe and heat capacity Ce of electrons
are given [14, 24]:

λe(Te, Tl) = λ0
Te
Tl

(8)

and

Ce(Te) = γTe, (9)

where λ0, γ are the material constants. It needs to be highlighted that the simple
form of expressions (8) and (9) is only suitable for temperatures Te much more
smaller than the Fermi temperature TF = EF /kB, where EF , kB are the Fermi
energy and Boltzmann constant, respectively [24].
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3. The direct problem – solution method

To solve the direct problem, the FDM is employed. Specifically, the version
of this method with staggered grid (Fig. 2) [16, 27] is applied. This means that
even nodes are introduced: T fei = Te(ih, f∆t), T fli = Tl(ih, f∆t), where h is the
mesh size, ∆t is the time step, and i = 0, 2, 4, ..., N , f = 0, 1, 2, ..., F . For odd
nodes, we introduce qfej = qe(jh, f∆t), qflj = ql(jh, f∆t), where j = 1, 3, ..., N−1.

Temperature nodes [i ]

Heat flux  nodes [j ]

N

Fig. 2. Discretization for 1D model.

An explicit scheme of the FDM is formulated. Approximation of Eqs. (4)
and (5) can be written in the form:

qf−1
ej + τe

qfej − q
f−1
ej

∆ t
= −λf−1

ej

T f−1
ej+1 − T

f−1
ej−1

2h
(10)

and

qf−1
lj + τl

qflj − q
f−1
lj

∆t
= −λl

T f−1
lj+1 − T

f−1
lj−1

2h
, (11)

where the index j corresponds to the odd nodes – heat flux nodes (Fig. 2).
Equations (1) and (2) are also discretized and written in the form:

Cf−1
ei

T fei − T
f−1
ei

∆t
= −

qfei+1 − q
f
ei−1

2h
−G

(
T f−1
ei − T f−1

li

)
+Qf−1

i (12)

and

Cl
T fli − T

f−1
li

∆t
= −

qfli+1 − q
f
li−1

2h
+G

(
T f−1
ei − T f−1

li

)
, (13)

where the index i corresponds to the even nodes – temperature nodes, as shown
in Fig. 2.

The modification of the heat fluxes from the odd nodes to the even nodes is
as follows:

qfei−1 − q
f
ei+1 =

τe −∆t

τe

(
qf−1
ei−1 − q

f−1
ei+1

)
+

∆t

2hτe

[
λf−1
ei−1

(
T f−1
ei−2 − T

f−1
ei

)
+ λf−1

ei+1

(
T f−1
ei+2 − T

f−1
ei

)]
(14)
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and

qfli−1−q
f
li+1 =

τl −∆t

τl

(
qf−1
li−1 − q

f−1
li+1

)
+
λl∆t

2hτl

(
T f−1
li−2 − 2T f−1

li + T f−1
li+2

)
. (15)

By putting (14) into (12) and (16) into (13), one obtains:

Cf−1
ei

T fei − T
f−1
ei

∆t
=

(τe −∆t)

2hτe

(
qf−1
ei−1 − q

f−1
ei+1

)
+

∆t

4h2τe

[
λf−1
ei−1

(
T f−1
ei−2 − T

f−1
ei

)
+ λf−1

ei+1

(
T f−1
ei+2 − T

f−1
ei

)]
− G

(
T f−1
ei − T f−1

li

)
+ Qf−1

i (16)

and

Cl
T fli − T

f−1
li

∆t
=

(τl −∆t)

2hτl
(qf−1
li−1 − q

f−1
li+1)

+
λl∆t

4h2τl
(T f−1
li−2 − 2T f−1

li + T f−1
li+2 ) +G

(
T f−1
ei − T f−1

li

)
. (17)

After mathematical transformations based on Eqs. (16) and (17), we obtain:

T fei =

(
1−Af−1

ei −B
f−1
ei − G∆t

Cf−1
ei

)
T f−1
ei

+Af−1
ei T f−1

ei−2 +Bf−1
ei T f−1

ei+2 +
G∆t

Cf−1
ei

T f−1
li

+
∆t(τe −∆t)

2hτeC
f−1
ei

(
qf−1
ei−1 − q

f−1
ei+1

)
+
Qf−1
i ∆t

Cf−1
ei

(18)

and

T fli =

(
1− 2Af−1

li − G∆t

Cl

)
T f−1
li +Af−1

li

(
T f−1
li−2 + T f−1

li+2

)
+
G∆t

Cl
T f−1
ei +

∆t(τl −∆t)

2hτlCl

(
qf−1
li−1 − q

f−1
li+1

)
, (19)

where:

Af−1
ei =

(∆t)2(λf−1
ei−2 + λf−1

ei )

8h2τeC
f−1
ei

, Bf−1
ei =

(∆t)2(λf−1
ei + λf−1

ei+2)

8h2τeC
f−1
ei

, (20)

Af−1
li =

λl(∆t)
2

4h2τlCl
. (21)
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The thermal conductivities are also approximated as follows:

λf−1
ej =

λf−1
ej−1 + λf−1

ej+1

2
. (22)

The stability criteria for the explicit scheme of the FDM are formulated
(Eqs. (10) and (11)):

τe −∆t

τe
≥ 0,

τl −∆t

τl
≥ 0 (23)

and (Eqs. (18) and (19)):

1−Af−1
ei −B

f−1
ei − G∆t

Cf−1
ei

≥ 0, 1− 2Af−1
li − G∆t

Cl
≥ 0. (24)

For the transition tf−1 → tf , Eqs. (10) and (11) are solved first and then the
temperatures Te and Tl are defined using Eqs. (18) and (19).

4. Optimization algorithm – AIS

Three different mechanisms of AIS can be used: positive, negative and clonal
selection mechanism used in this paper [4, 13]. This AIS approach is presented
in Fig. 3. It works in several stages. In the first stage, memory cells are randomly
generated. In the next stage, new memory cells are generated using a procedure of
proliferation and mutations. The number of clones created for each memory cell
depends on the value of the objective function for a considered memory cell. In
the subsequent stage, the value of the objective function is calculated for each me-
mory cell and its clones. Selection is the next stage of AIS. During this process,

Fig. 3. Artificial immune system.
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memory cells are compared with their clones and the clones with the better
value of objective function replace the original memory cells. The next and very
important stage ensuring diversity of the population of solutions is crowding
mechanism. During this stage, similar memory cells are eliminated. The whole
optimization process is performed iteratively until the stop condition is met.

Several different stop conditions can be used, such as the maximum number
of iterations, a target value for the objective function and expected improvement
in the objective function after several iterations. This type of AIS is based on
the Wierzchoń method [37]. The difference between Wierzchoń’s method and the
method described in this article is the use of a different mutation operator. In this
study, a Gaussian mutation is employed instead of the nonuniform mutation [37].

For the optimization problem, an objective function is defined. During the
immune optimization, the objective function is minimized (or maximized) J :

min J
x

(x) (25)

for the decision variables, which are described in following form:

xjt =
[
g j1 , g

j
2 , ..., g

j
i , ..., g

j
n

]
, (26)

where g ji is the i-th parameter of j-th vector, i.e., the decision variable during
the optimization problem, and t is the iteration number.

The optimization process of any structure often involves equality or inequal-
ity constraints. These constraints are imposed on the parameters of the vector
(decision variables) from Eq. (26):

g jimin ≤ g
j
i ≤ g

j
imax, (27)

where g jimin is the minimum value of the decision variable for the j-th mem-
ory cell, and g jimax is the maximum value of the decision variable for the j-th
memory cell.

At the beginning of immunology process, memory cells are generated. The
parameter Lkp describes the number of memory cells in each iteration. During
the optimization process, the memory cells that contain decision variables are
proliferated. This process involves creating clones based on memory cells. All
memory cells and their clones form the population for which objective functions
are calculated. The parameter Lpop kl describes the number of clones in each
iteration, and the parameter Lpop describes the size of the entire population
(memory cells and their clones). Proliferation of memory cells occurs in the main
loop of immune process (the first stage of immune algorithm). The declared
number of clones is generated for each memory cell. The declared number of
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clones is generated for the best memory cell (parameter Lkl). For other memory
cells, only half of the declared number of clones is generated.

The population of all cells is expressed by the following equations:

Lpop = Lkp + Lpop kl , (28)

Lpop kl = Lkl + (Lkp − 1)
Lkl
2
, (29)

where Lkp is the number of memory cells in each iteration, Lkl is the number of
clones in each iteration, Lpop is the size of the entire population (memory cells
and their clones), and Lpop kl is the population of clones in each iteration.

In this immune algorithm, the mechanism of hypermutation is used. The main
purpose of this operator is the formation of new, modified (differentiated) mem-
ory cells. The probabilistic method of modifying a randomly selected fragment
of the memory cell is used. Each position of memory cell is mutated with certain
probability mutG, using this modification:

g ji new = g ji + ∆g ji , i = 1, ..., Lpop kl , (30)

where g ji new is the new value of memory cell parameter (using the modifica-
tion of Gaussian mutation), g ji is the i-th parameter of the j-th memory cell
(i-th decision variable during the optimization process), and ∆g ji is a variable
corresponding to the application of Gaussian mutation.

The value of objective function is calculated for all memory cells and their
modified clones. Then, the selection process is performed. During this procedure,
less effective memory cells are replaced with more efficient clones. Finally, some
old memory cells (from previous iteration) are replaced by better memory cells.
This selection mechanism is illustrated in Fig. 4. The selection mechanism is
based on the following idea with two memory cells MC-A and MC-B. For each
of these memory cells, four respective clones, named from C-A1 to C-A4 and
C-B1 to C-B4, are created. Next, the objective function of each memory cell is
compared with the objective function of its clones. After this comparison, clone
C-A4 and memory cell MC-B are selected for the next iteration. This operation
is repeated for each memory cell.

Next and important stage of immune process is the crowding mechanism. This
procedure ensures the maintenance of diversity within the population of memory
cells. During this procedure, similar memory cells are deleted. The similarity
is determined as the geometrical distance between two memory cells (Fig. 5).
The parameter mindis defines this minimal distance. The crowding mechanism
is illustrated in Fig. 5. During this mechanism, two memory cells are compared.
In Fig. 5, only memory cells 1 and 2 are in the similarity region and the better
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x

J(x)

Fig. 4. Graphical representation of the selection mechanism.

J(x)

x

Fig. 5. Graphical representation of the crowding mechanism.

one remains in the population and the worse is eliminated. After eliminating the
inferior memory cell, a new memory cell is generated randomly.

The minimum distance between two points for the crowding mechanism
mindis is:

min dis = 0.1 min dom

√√√√ n∑
i=1

(g jimax − g
j
imin)2

, (31)
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where g jimin is the i-th minimum value of the decision variable parameter (mem-
ory cell), g jimax is the i-th maximal value of the decision variable parameter
(memory cell), n is the number of the decision variables, and mindom is a pa-
rameter deciding about the size of the search space (memory cell comparison).

The iterative optimization process is stopped after stop condition is fulfilled.
The stop condition is determined as the maximum number of iterations.

5. Identification of thermophysical parameters

In the parameter identification process, a basis for experimental data is es-
tablished. The main purpose of identification is to obtain a model that will
reflect the actual course of the process as accurately as possible. The purpose
of identification process using an AIS is to assess the values of thermophysical
parameters. These parameters occur in a hyperbolic two-temperature model in
which the thin metal film was heated by laser pulses. The results of experiment
are compared with the results of the direct problem.

For this purpose, an optimization problem is formulated and solved using an
AIS. The value of the objective function determines the quality of the obtained
solution. The objective function is based on the least squares method or the
norm between the values derived from the numerical model and the experimental
measurements. The objective function has the following form:

J(x) =

√√√√√ n∑
i=1

(di(x)− diref
)2

n
, (32)

where x is the vector of the design variables, n is the number of sensor points
measurements, diref

is the i-th measurement value, and di(x) is the i-th value
obtained from the numerical model.

For the direct problem, a layer (made of gold) with a thickness of L = 100 nm
and the temperature at the beginning of the process Tp = 300 K is considered.
A laser with an intensity of I0 = 13.4 J/m2 and impulse tp = 100 fs is em-
ployed. For gold, a reflection coefficient is R = 0.93 and an optical penetration
depth δ = 15.3 nm [27].

Due to the relatively low laser intensity, the linear dependence of the heat
capacity of electrons on their temperature: Ce = γTe (formula (9)), where
γ = 62.9 J/(m3 ·K2). The other parameters are the heat capacity of phonons:
Cl = 2.5 MJ/(m3 ·K), the heat conduction coefficients for phonons: λl = λ0 and
for electrons λe = λ0Te/Tl (see formula (8)), where λ0 = 315 W/(m ·K).

For solving the direct problem, the FDM is used. The data for this method
are as follows: ∆t = 0.0001 ps and h = 1 nm. There are three design variables
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identified: the electron-phonon coupling factor G, the relaxation time τe, and
the relaxation time τl. The limits on the values of design variables are given in
Table 1.

Table 1. The design parameters constraints.

Variable Minimum value Maximum value
τe [ps] 0.005 0.100
τl [ps] 0.10 1.60

G [W/(m3 ·K)] 0.5× 1016 200.0× 1016

The purpose of this identification is to obtain three model parameters: the
relaxation times τe and τl and the coupling coefficient G. The identification is
carried out based on experimental data from [14]. Only electron temperatures for
the experimental data are available, which are shown in Fig. 6. At the beginning
of the process there is a rapid increase of temperature, followed by a slower
decrease.

Fig. 6. Experimental data [14].

The AIS parameters are presented in Table 2.

Table 2. The parameters of AIS.

Numbers
of decision variables

Number
of memory cells

Number
of the clones

Crowding
factor

Gaussian
mutation

3 15 15 0.5 0.5

In the first step, three variants of design variables are considered (Table 3).
For the first variant, design variables are set as the minimal values of constraints,



Identification of thermophysical parameters using an artificial. . . 533

Table 3. The design parameters for three variants.

Parameter Variant 1 Variant 2 Variant 3
τe [ps] 0.005 0.500 0.100
τl [ps] 0.10 0.85 1.60

G [W/(m3 ·K)] 0.5× 1016 100× 1016 200.0× 1016

for the second variant, they are average values between minimal and maximal
constraint values, and for the last variant maximal values of constraints.

The results of comparing the numerical solution with the experimental solu-
tion is shown in Fig. 7. The difference between these two solutions is significant
and unacceptable for all variants. The fitness function values for this three vari-
ants are: 151.18 K, 153.60 K and 152.39 K, respectively. In the next step, an AIS
is used. The results of the identification process are shown in Fig. 8.

a) b)

c)

Fig. 7. The comparison of the numerical solution with the experimental solution, three variants
of design parameters: a) variant 1, b) variant 2, c) variant 3.
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Fig. 8. Results of the identification process.

The difference between the numerical and experimental solutions is satisfac-
tory, and the value of the objective function is 77.32 K.

6. Final conclusions

The article solved the problem of heat transfer parameters identification in
a thin film subjected to a short laser pulse. An effective tool for immunologi-
cal identification of thermophysical parameters was presented. The implemen-
tation of immunological algorithms in this approach gives a high probability of
finding global optimal solutions. Furthermore, the presented approach can also
be used to identify other material properties or initial thermal conditions and
can be used for solving other problems. The effectiveness of the method can also
be improved, e.g., through the use of a hybrid AIS.
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