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The paper describes the applications of back propagation neural networks with the ability to process
input and output variables expressed as fuzzy numbers. The presentation of an algorithm for finding fuzzy
neural network weights is followed by three examples of applications of this technique to the problems of
implicit modelling of material and structure behaviour. The following problems are considered: prediction
of concrete fatigue failure, high performance concrete strength prediction, and prediction of critical axial
load for eccentrically loaded reinforced concrete columns.
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1. INTRODUCTION

The majority of mathematical models used in engineering and science is formulated for state vari-
ables and model parameters expressed in crisp numbers. This leads to several mathematical ide-
alisations, for instance the perfect circle. However, it is common experience that the real world is
far from ideal. Even a seemingly simple question of what the diameter of a pipe is, can lead to
surprisingly complex answer. This is due to the presence of imperfections and the fact that the real
world answers are fuzzy, probabilistic in nature. Such observations and a similar line of thought
motivated the introduction of fuzzy logic, pioneered by L. Zadeh [1].

Development of the fuzzy set theory opened the door to the theory of fuzzy numbers. Unlike real
numbers, fuzzy numbers can better capture uncertainties of real world variables. Fuzzy numbers are,
for instance, a very convenient tool to express uncertainties related to measurement data. Analysis
of measurement data is in turn a ground where fuzzy numbers can meet another very convenient
tool, which are neural networks. Some of the prominent applications neural networks are regression
problems in which implicit modelling gives relations between input and output parameters. By
endowing neural networks with the ability to process fuzzy input and output variables one obtains
a convenient framework in which surrogate modelling techniques and handling of uncertain or
stochastic data can be used at the same time.

The article presents a way to combine neural networks and fuzzy numbers analysis and shows
how this new tool can be applied to three distinct problems of building implicit models for materials
and structures behaviour [4]. In all three cases the implicit models were built on experimental data
sets, with all the ensuing consequences, that is an insufficient number of data points, unknown
coverage of the domain space, noised and erroneous data.
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2. BASIC PROPERTIES OF FUZZY NUMBERS

The neural networks described previously work on the basis of sets of real numbers which will be
called crisp sets and crisp numbers, respectively. The crisp set is defined as:

A={z|lze X}, (1)

where x — an element belonging to an assumed domain X'. In most cases the domain X" is assumed
to be the set of integer numbers or real numbers.

The use of real numbers for quantisation of physical parameters is a sort of idealisation, be-
cause in real life we have to deal with a fixed resolution of the measuring devices, uncertainties in
mathematical model, not to mention the most fundamental uncertainties of quantum mechanics.

Most of the shortcomings of modelling with real numbers can be remedied by the use of fuzzy
sets and fuzzy logic introduced by L. Zadeh [1]. An in-depth introduction to this topic can be
found for instance in [2, 3]. At this point only the basic idea and notation necessary for further
presentation will be introduced.

Fuzzy set is defined with respect to a pair:

A ={(z, pa(z))|lz € X}, (2)

where pa(z) € [0, 1] — membership function (MF) of element x to the set A.
For each element x € X the membership function assigns a grade of the statement that the
element belongs to the set A. One can distinguish three distinct states of element membership:

1. pa(z) =1 — full membership to the set A;
2. pa(x) =0 — no membership of z to the set A, thus x ¢ A;
3. 0 < pa(z) <1 - partial membership of = to the set A.

There are many possible types of membership function. Below three common types are presented,
which differ in the number of function parameters. These functions are also illustrated in Fig. 1.

a) singleton (crisp value/discrete value)
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0 for z <a,
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One of the most important technical concepts introduced by the fuzzy set theory is the so-called
a-cut, defined as follows:

Ay ={zlpa(z) > a, € X} for a€[0,1]. (6)
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Fig. 1. Membership functions a) singleton, b) Gaussian, c) triangular.
A «-cut can be associated with the range given by the formula:
Aa = [$L,$U]a = [3357332]7 (7)
where 2%, 2U are the minimum and maximum function value in the range. An illustration of a a-cut

is given in Fig. 1l¢ with assumed triangular membership function.
The concept of a-cut allows us to define arithmetic operations (addition, subtraction and mul-
tiplication) with the help of interval arithmetic:

Ay + By = [a,b] + [¢,d] = [a+ ¢, b+ d], (8)
Ay — By = [a,b] — [e,d] =[a—d, b—(], 9)
Ay X By = [a,b] X [¢,d] = [min(ac, ad, be, bd), max(ac, ad, be, bd)]. (10)

By defining the above operations it is possible to introduce the concept of fuzzy numbers and treat
them as an extension of crisp real numbers. Fuzzy numbers in turn are a very convenient setting
to express the uncertainties of the modelled phenomena mentioned above.

3. FORMULATION OF FUZZY WEIGHTS NEURAL NETWORKS (FWNNs)

A method for formulation of a fuzzy NN is shown in Fig. 2 where a schematic algorithm is presented.
It is related to a standard multilayer feed-forward neural network, called for short MLP. The
formulation assumes the training set of parameters:

L={xtPp=1,...,L}. (11)

with x being the network input vector and ¢ a single network output value.

Let us assume that the network was designed using a corresponding cross-validation procedure
using subsets selected from (11). The formulated network is then trained on the whole set at Stage I
of the algorithm shown in Fig. 2. A set of NN weights is collected as a set of initial value weights

WO = {wl|i=1,..., W}, (12)

where W — number of NN parameters (synaptic weights and biases).
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Set of training patterns
L={xt)P|p=1,...,L}
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Fig. 2. Schematic algorithm of the Fuzzy Weight Neural Network (FWNN) formulation.

The weights w? are adopted as initial weights to learn weights corresponding to each pattern
of the training set. At Stage II the network is trained L times for a sequence of single patterns
p=1,..., L. After the training a set of weights is completed as the matrix

W= {Witwsry = [w?|i=1,...,W; p=1,...,L]. (13)

The membership functions for the NN weights p; = u(W;) are computed at Stage III.
In Fig. 3a the triangular shape of MF (t) is shown for the weight w. The distances 3o, and 3oy,
are measured from the mean value w, where o, o — standard errors of patterns p that are smaller

or greater than 7, respectively. The interval values of the a-cut [w’”, wV], are shown in Fig. 3a as
L U
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Fig. 3. Shapes of membership functions for FWNN weights a) triangular (t), b) nonlinear (n).
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The order of formulation of a nonlinear MF (function (n)) is shown in Fig. 3b. The method
shown was proposed in [5, 11]. The idea lies in the computation of discrete cumulative functions
for the ranges wmin < wir, < W and W < wiy < Wmax, where kL = 1,--- NL; kU = 1,---NU
— numbers of weights on the left-hand side L and right-side U, measured from the mean weight
values w. The ratio of cumulative error is calculated for the left- and right- hand sides:

NS
rS = (Z k;S) JNS=1-puS for S=1L,U, (14)

k=1

where S — values of membership function for the side S = L, U, respectively.

The formulated MF is composed of two linear piece-wise branches pL, pU € [0,1] as shown in
Fig. 3b. In case of the a-cut the interval values w’ and wY can be computed by means of linear
interpolation (in Fig. 3b the cut a = 0.5 is shown for NL = NU = 5).

After the membership functions are formulated for each NN weight the fuzzy network is ready

for operation. The network can be used for interval values of inputs [a;JL x?]a for both fuzzy type

variables, i.e. (:EjL #* :Eg»])a, and crisp inputs, i.e. :L"f = azy for each a-cut. In general, the outputs
are computed as intervals [yl yU], for both fuzzy and crisp inputs. They are computed by means

of interval arithmetic manipulations for fixed a-cuts.

4. APPLICATIONS OF FWNN
4.1. Interval prediction of concrete specimens fatigue failure

The analysis and prediction of concrete fatigue strength is a very complex task. This is because
of several processes taking place in the concrete material at different resolution scales. The depen-
dency of these processes on several material parameters and insufficient experimental data base to
accurately capture and calibrate these dependencies must also be taken into account. Several of the
concrete parameters exhibit fuzzy nature, and this is exactly the reason why fuzzy weights neural
networks seem to be a suitable tool to analyse the dependency of the concrete fatigue strength on
these parameters.

To verify the last claim a fuzzy neural prediction of concrete fatigue strength was performed
[14, 15] and the results compared with empirical formula presented in [12]. The basis for the neural
prediction were the result of tests on concrete specimens subjected to compressive loading cycles,
that are collected in [12] and reproduced in Table 1.

The data shown in Table 1 were split into two groups. Group I consists of results for which
the crisp (not interval) value of concrete fatigue strength f. was measured. Group II, on the other
hand, is characterised by the interval for f. € [femin, femax)]- Figure 4 shows a comparison of
laboratory tests and simulation results for Group I concrete specimen, with case a) showing the
neural prediction of the number of fatigue cycles, and case b) showing the prediction according to
formula [12].

A better illustration of the results obtained, especially from the point of view of interpretation of
results obtained by fuzzy network, is presented in Fig. 5a. This figure provides clear interpretation of
the value of a-cut, and allows us to assess quickly the qualitative agreement between the predictions
obtained by all three methods.

The quantitative comparison of standard neural prediction, fuzzy one and empirical formula is
presented in Table 2 taken from [4].

The same analysis as for data from Group I was done for Group Il and the results obtained
are shown in Fig. 5b. From the simulations and obtained results one can draw several conclu-
sions. First of all, it can be noticed that fuzzy neural networks give results closer to experimen-
tal data than those obtained by empirical formula. One can also observe that neural networks
that were trained only on the data from Group I can give false results. This obviously comes
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Table 1. Experimental input data collected in [12].
Data Specimen No.
DB | Fig. f fe : :
R= min/ Omax d f
No. | No. | source Omin /0 [Fiz MPa] imensions o
[12] [cm] spec.
1 7 37 0.025 16.7 28.0 ¢ 7.6x15.2 18
0.15, 0.38
2 8 38 0.60, 0.88 150.0 41.0 ¢ 5.1x10.2 9
3 9 39 0.44 0.025 28.0 10.2%x10.2x30.5 9
4 10 40 0 5.0 [20.0, 30.0] 7.0x7.0x21.0 62
5 11 41 0.14, 0.75 7.5 [14.8, 32.7] | 13.0x13.0x40.0 25
6 12 42 0 20.0 [20.0, 45.0] | 10.2%x10.2x50.8 30
7 13 43 0 20.0 [33.1, 44.8] | 10.2x10.2x50.8 7
8 14 19, 20 0.044, 0.75 7.5 [14.8, 32.7] | 13.0x13.0x40.0 40
9 15 44 0.05 16.7 25.5, 42.7 ¢ 7.6x15.2 31
10 16 45 0.05 1.167 24.8, 33.1 | 15.2x15.2x162.6 28
11 17 21 0 [5.0,16.7] | [20.0, 30.0] different 33
12 18 46 0.074, 0.253 10.0 45.2 ¢ 5.0x10.0 63
13 19 47 0 0.25 20.7 10.2x13.0x82.7 13
14 20 - 0 6.67,15.0 26.2 15.0x15.0x15.0 10
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Fig. 4. Comparison of laboratory tests and simulation results for the Group I concrete specimens.

from the nature of the data — crisp values of the fatigue strength as well as other parameters
are of just averages and due to the variability of material parameters or simple measurements
error can be far from true values. Fuzzy values of the fatigue strength, in turn, catch the influ-
ence of several experimental conditions and leave the neural network more freedom in fitting its
parameters. The mechanism of a-cuts allows us to easily express our confidence in experimental

results.
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Fig. 5. Mapping f.-logN obtained by NN (—) and as empirical formula (- -). The a-cuts for a« = 1,0.9,0.75
based on the experimental results from: a) Antrim and Mc Laughlin, 1959, b) Graff and Brenner, 1934.

Table 2. Comparison of error measures and statistical parameters.

Network architecture avr ep [%)] r St e
4-5-4-1 L T P L T P L T
MLA 13] 1231330854 - | - |o7e | - | -
MLA [4] 12.6 | 15.5 | 0.863 | 0.871 | 0.855 | 0.736 | 0.701 | 0.777
FWNN a =1 13.0 | 14.7 | 0.870 | 0.879 | 0.861 | 0.735 | 0.700 | 0.772

4.2. Application of a neuro-fuzzy network to HPC strength prediction

The HPC (High Performance Concrete) strength and other performance parameters strongly de-
pend on the components of the concrete mixture. The new technological methods of HPC manufac-
ture have a large number of decisive parameters (up to 30). Despite enormous advances in material
modelling, formulating the relations between concrete mixture parameters like C — cement, W —
water, S — silica, Su — superplasticiser, FA — fine aggregate, CA — coarse aggregate, etc. and the
performance of the final material is very difficult. That is why one has to resort to experimental
methods and search for empirical formulas. However, due to the high number of decisive parame-
ters the number of laboratory tests required to obtain meaningful results is huge. Such data can be
collected only by gathering results obtained by different laboratories and over several years. Un-
fortunately, such data are very noisy and their analysis by traditional methods is difficult. This is
why neural networks have been proposed [9, 10] for the analysis of HPC strength. Neural networks
are able to deal with very noisy or incomplete data. This work is based on paper [10] where the
HPC experimental data were analysed with Fuzzy ART-MAP network.

The authors of paper [10] applied their network to a data base consisting of about 340 records.
The concrete mixture space was defined by six parameters: C' — cement, W — water, S — silica, Su
— superplasticiser, F'A — fine aggregate, C'A — coarse aggregate. Two variants of tests were carried
out — with data divided evenly into training and testing sets and with data split arbitrarily into
sets of 200 training patterns and 140 testing patterns. In both cases, unexpectedly high correlation
coefficients between the predicted and actual strength values were obtained: » = 0.870 for the
former variant and 0.784 for the latter one.
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Table 3 shows the range of HPC mixture parameters and concrete strength. HPC is characterised
with a high value of compressive strength and it can be seen that in the data base there were concrete
mixtures with relatively low compressive strength. However, because of the high value of the W/C
ratio, the lack of superplasticiser and silica it was decided that they would not affect negatively
neural network predictions.

Table 3. Minimal and maximal values of concrete components densities and HPC strength f..

C W S Su FA CA 1.
[kg/m?®] | [kg/m?] | [kg/m?] | [kg/m?®] | [kg/m?] | [kg/m?] | [MPal
min | 94 106 0 0 0 0 2
max | 1586 540 298 39 1761 | 1444 | 136

One of the goals of the performed simulations was the analysis of the influence of partitioning
data patterns into learning and testing sets. The following four cases were analysed:

A - random partitioning into L=231 and T=115 learning and testing patterns, respectively;

B - arbitrary partitioning: first L=231 patterns in data base as learning patterns and remaining
T=115 as testing patterns;

C - random partitioning into equal sets L=T=173;

D — partitioning into equal sets L=T=169 with the constraint that the patterns from one source
were either testing or learning.

Table 4 shows the learning and testing errors for the above listed cases.

Table 4. Comparison of learning and testing errors for the analysed cases.

learning err. tesing err.
Case L T
avr ep [%] | St e [MPa] r avr ep [%] | St e [MPa] r
A 231 | 115 13.95 9.33 0.937 21.07 11.80 0.902
B 231 | 115 12.80 8.89 0.927 19.80 16.45 0.854
C 173 | 173 11.03 7.87 0.953 12.65 10.15 0.930
D 169 | 169 12.59 10.11 0.899 18.11 13.80 0.851

One of the conclusions drawn from the above analysis is that the way of patterns partitioning
did not substantially affect the results. Better results were obtained in cases A and B, the other
ones were also acceptable. This was due to the fact that data were distributed evenly into the
parameters space.

The performances of the fuzzy approximator are shown in Fig. 6 for testing and learning phases,
respectively.

As can be seen from the figures, most of the experimental results are included in 20% error
cone, which is a good result for this kind of analysis. Another illustration of the neural network
performance is the plot of cumulative distribution function (CFD) of the results obtained. The
cumulative distribution function describes the probability that a real-valued random variable X
with a given probability distribution will be found at a value less than or equal to x. The shapes
of the curves shown in Fig. 7 confirm the conclusions drawn from Fig. 6, that is the relatively high
value of the probability to obtain results at the 20% error level.
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Fig. 7. Case C. Cumulative distribution functions for a neural network for o = 0.75.

4.3. Neural network prediction of critical axial load for eccentrically loaded
reinforced concrete columns

The analysis of the behaviour of reinforced concrete columns under critical axial load is a complex
problem and it is based mainly on experimental results. In the presented case the data patterns
taken from three independent sources [6-8] were used. In order to make it possible to compare the
results pertaining to different test arrangements all data cases were scaled to equivalent reference
column of Leqy height.

Table 5 shows number of patterns that were selected from the data bases mentioned above.

Table 5. Number data patterns in data banks used in presented analysis.

No. Data bank Total number of patterns | Number of skipped patterns
1 PEER [8] 296 231
2 Chudyba [6] 36 9
3 Cranston [7] 336 0
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Table 6, in turn, shows the number of learning and testing patterns that, together with the
data bank name, were selected for the neural network analysis. The cases A-E pertain to different
ways the patterns were selected for learning and testing. The aim of different ways of selection of
patterns was to check the data bases consistency and to make sure that they cover more or less the
same parameter space.

Table 6. The cases selected for neural analysis.

Case | Data bank L Data bank T
A PEER 65 Chudyba 27
B PEER 64 Chudyba 27
C PEER 65 Chudyba 27
D Cranston 296 | PEER + Chudyba 101
E Cranston 79 | PEER 4+ Chudyba 92

The second problem addressed in the analysis was the selection of neural network input param-
eters in the input vector x. It was decided that 6 parameters related to geometric and material
properties would be used. The output vector y was reduced to only one value y = [F'], where F' is
the critical load. The following input and output components were adopted:

X:{B7H7L7p7f07fy}7 y:{F}7 (15)

where B, H — cross-section dimensions, L — equivalent column height, p — reinforcement percentage,
fe — concrete compressive strength, f, — reinforcement yield stress, F' — critical force. Having at
hand the data from three data banks, it was decided that what is the most objective verification
of neural network generalisation properties is to verify them on the data from the data bank that
were not used to train the network.

Table 7 contains the results of network training and verification for the analysed cases. For
case C the same patterns as for case A were used, except that in this case the number of network
inputs was reduced from 6 to 5 by means of Principal Component Analysis (PCA) [4]. The PCA
allows transformation of the set of possibly correlated inputs into a set of uncorrelated values called
principal components. On the basis of the principal component variance it is thus possible to reduce
the number of network input values by truncating the components with low variance. The truncated
components carry the least significant input data, so their absence should not cause a significant
loss of information.

Table 7. Comparison of learning and testing errors for the analysed cases.

Critical load Statistical parameters
Case L T
[Fmina Fmax] [kN] St €L [kN] 1, St SN [kN] rT

A 95-2176 65 27 141.42 0.930 45.23 0.853
B 1602176 64 27 131.21 0.851 87.03 0.878
C 95-2176 65 27 163.78 0.823 199.01 0.881
D 61-2211 296 | 101 189.01 0.771 280.03 0.627
E 95-2211 79 92 133.17 0.891 162.91 0.917

The cases A-E were first analysed with classical, “crisp” neural networks. On the basis of perfor-
mance parameters such as means square error (MSE), root mean square error (RMSE), standard
variation (St ) and correlation coefficient () two cases A and E were selected as the bases for the
fuzzy network analysis.
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Table 7 shows standard variation and correlation coefficient calculated for normalised output
values. All values shown in this table were calculated for the a-cut of o = 1.0.

Table 7 shows the number of learning (L) and testing (T) patterns that fall into the ranges
defined by the respective a-cuts. Additionally, two last columns of the table show the so-called
“success coefficient”, calculated as the percentage of number of patters for which the relative error
is less than (1 — ) - 100%, for the given value of a.

Figure 8 shows correlation between the experimental data and results obtained from fuzzy neural
network analysis for a-cut with o = 1. The correlation points are spread around the diagonal which
indicates that no gross errors were made.
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Fig. 8. Comparison of NN simulation results versus experimental data for: a) case A, b) case E.

Alternative presentation of the results can be made showing ogive curves for the relative error
between the experimental critical force and the force obtained from fuzzy neural network. The ogive
is the curve of a cumulative distribution function that describes the probability that a real-valued
random variable X with a given probability distribution will be found at a value less than or equal
to z. The ogive for the cases A and E are shown in Fig. 9.
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Fig. 9. Ogive curve for o = 1: a) case A, b) case E.

5. CONCLUSIONS

The paper outlines an algorithm that enables processing of fuzzy number input and output variables
by back propagation neural networks. The performance of the obtained so-called fuzzy weights neu-
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ral networks is verified on the problems of prediction of concrete fatigue, concrete load capacity, and
the prediction of critical load of reinforced concrete columns. For the first of the analysed problems
it was shown that the fuzzy neural network can predict the number of cycles to fatigue as accurately
as an empirical formula. Contrary to the later it can however handle the interval input data, which
can be of great advantage. Concerning the concrete load capacity for high performance concrete,
the application of fuzzy neural networks allows one to better handle the confidence in the input
data. In the case of the third problem the analysis was strongly influenced by the inconsistencies
among the data bases that reduced the reliable number of training patterns. Generally, the results
obtained by FWNN are in agreement with empirical modelling and classical neural networks. In
contrast to the later, the FWNNs can handle crisp input variables, interval variables and stochastic
variables. In some cases they better capture the character of measurement data.
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