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In this paper, meshless element free Galerkin method has been used to obtain the numerical solution of
transient and steady state heat conduction problems in two-dimensional domains. The unknown function of
temperature T'(x) has been approximated by moving least square approximant 7" (x). These approximants
are constructed by using a weight function, a polynomial basis and a set of non-constant coefficients.
Variational method is used to obtain the discrete equations. Essential boundary conditions are imposed
by Lagrange multiplier technique. Two new weight functions namely hyperbolic and rational have been
proposed. The results have been obtained for a two-dimensional model problem using different EFG weight

functions and are compared with those obtained by finite element and analytical methods.
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NOTATIONS
a - elemental (cell) area,
aj(z,y) - non constant coefficients,
¢ - specific heat of the material,
dmel; dmyr  — size of the domain of influence at I** node in z and y directions,
dmax — scaling parameter,
h - convective heat transfer coefficient,
k — coefficient of thermal conductivity,
pj(z,y) - polynomial basis function,
Q - rate of internal heat generation per unit volume,
Th(z,y) - moving least square approximant,
T, - edge temperature,
Tw - surrounding temperature,
Tini - initial temperature,
t- —. time,
" Oy
2z Lyy 922’ 9y?’
ot
w(x —x7) - weight function,

0 - variational parameter,
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— Lagrangian multiplier,

—~  two-dimensional domain,
shape function,

— boundary of the domain,
— mass density.

s
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|

1. INTRODUCTION

Different numerical techniques have been used to solve transient and steady state heat conduction
problems. The point-matching technique was used by Sparrow [5] to obtain the temperature distri-
bution inside an irregular shape system. France [4] obtained analytical series solution for steady-state
heat conduction problems with irregular shaped boundaries. The probability method was used by
Sheikh and Sparrow [1] to solve steady state and transient heat conduction problems of arbitrary
shapes with arbitrary boundary conditions. Khader and Hanna [16] used an iterarative boundary
integral numerical solution for steady state heat conduction problems. Monte Carlo method was
used by Fraley [21] to solve transient heat conduction problems. Beck [10] used Green’s function
solution technique to solve transient heat conduction problems for different set of boundary con-
ditions. Lapace transform technique is being used by Ozisik [17] to solve transient heat transfer
problems. At present, most of the transient heat conduction problems are solved by finite difference
method [11], graphical method [6] and finite element method [20].

In all these methods, finite element technique can be considered as the most general technique for
steady state and transient heat conduction problems. The finite element method (FEM) has been
successfully applied in solving variety of problems in heat transfer. In this method, the function over
the solution domain is approximated by a polynomial over a small domain, known as finite element.
The discretization of domain into small elements is very time-consuming process. Therefore, there
is a need of a method that may be somewhat more expansive from the viewpoint of the computer
time but requires less time in the preparation of the data.

In recent years, few new techniques have been developed, named as meshless methods. First
meshless method is developed by Lucy [15], which is known as smooth particle hydrodynamic
(SPH) method [12,14]. Moving least square (MLS) approximants are first used by Nayroles [2] to
develop Galerkin equations, called diffuse element method (DEM). This method has been refined
by Belytschko et al., known as element free Galerkin (EFG) method [24,29]. The other meshless
method include partition of unity method (PUM) [9, 13|, hp-cloud method [3], reproducing kernel
particle method (RKPM) (28], method of finite spheres [23], free mesh method (FMM) [7], local
boundary integral equation (LBIE) method [27], meshless local Petrov-Galerkin (MLPG) method
[22], natural element method (NEM) [18] and natural neighbour Galerkin method [19].

In this paper, EFG method has been used to discretize the space domain of steady state and tran-
sient heat conduction problems. In EFG method, function approximation is done entirely in terms
of nodes and integration over solution domain needs only integration cell to obtain the solution.
Although this method is more expansive from the viewpoint of computational time but requires less
time in the preparation of data. Crank—-Nicolson technique has been used for discretization of time
domain. Two dimensional steady state and transient heat conduction model problems have been
solved by using different weight functions. The results obtained by EFG method, are compared with
those obtained by finite element and analytical methods [8].

2. THE EFG METHOD

The discretization of the governing equations by element free Galerkin method requires moving least
square (MLS) interpolation functions which are made up of three components: a weight function
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_ iated with each node, a polynomial basis and a set of non constant coefficients. The weight
function is non-zero over a small neighborhood at a particular node, called support of the node.

ing least square approximation

} moving least square approximation, the unknown function T'(z,y) is approximated by
"(z, y) over the domain §2 [24]

e b = ij z,y) a;(z,y) = p" (z,y) a(z,y) = p" (x) a(x) (1)

j=1

ere m is number of terms in the basis, pj(z, y) is monomial basis function, a;(z, y) is non-
constant coefficients,

=fzy, PE=[1 2z y.
The coefficients aj(x) are found by minimizing the quadratic functional J(x) given by

2

dix) = Z'w X—X7) ij(XI)aj(x) - T (2)
=1

J=1

where w(x—xy) is a weight function which is non zero over a small domain, called domain of
influence. n is the number of nodes in the domain of influence.
- The minimization of J(x) w.r.to a(x) leads the following set of equations

a(x) = A7/ (x) B(x) T, ©)

where A and B are given as

A=) wx—x/)p)p"(x)

I=1
1 T Y1 1 2 Y2
=wx-x1) | 71 22 Ty |+twx—x2) | 22 T3 200
Y1 11 y% Y2  T2Yy2 y%
Tn Yn
+..wx—x,)| zp m% Eatin H, (4)
Yn TnYn y?,
B(x) = [w(x — x1) P(x1), w(X — X2) P(X2), ererereerererenne w(x — X,) P(xp)]
I 1 1
2= ol =Xl o [0 =Xl L 45 | drsimvnminise WX — Xe) | 2y . (5)
n Y2 Yn
2 =S Tl (6)

By substituting Eq. (3) in Eq. (1), the MLS approximants can be defined as
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where the shape function @7(x) is defined by
m
@1(x) =Y p;(x)(A7! (x)B(x));; = pTA~'B;. 8)
§=0

The derivative of the shape function is given as

Prx(x) = (PTAT'B)) x =pxAT'B; +p (A7) By + pTAT(B)) x. (9)

Weight function description

The weight function is non-zero over a small neighborhood of x;, called the domain of influence
of node I. The shape of this domain is arbitrary but in the present analysis rectangular domain is
preferred [24]. The choice of weight function w(x — xj) affects the resulting approximation T"(x;).
In this paper, two new weight function namely hyperbolic and rational weight functions have been
proposed. The different weight functions used in the present analysis can be written as a function
of normalized radius r as follows:

The gaussian weight function [25]

—(2.57)2 0<r<1i
e 7
- = = ol - : 10
wix = x1) = w(r) { : s (10a)
The quartic-spline weight function [26]
1—6r%+8r3 —3rt 0<r<l1
Y = E Lo . 10b
w(x — x1) = w(r) { 0 e (10b)
The hyperbolic weight function
s mp e s [aath e d) o 0 TE)
w(x~x1)—w(7)-—{ 0 i } (10c)
The rational weight function
i 0<r<i1
r
wx—x7)=w(r) =< r2+0.1 T o ) (10d)
0 r>1
where
zT—x —
(7'1‘)1 o H I ” and (Ty)] = ” y yl ” :
dmz[ dmy[
dmzr = dmax -Cz1 and dmyl = dmax -Cyl,

dmax — scaling parameter.

cz1 and c¢ys at node I, are the distances to the nearest neighbors. dy,z; and dp,y; are chosen
such that the matrix is non-singular everywhere in the domain.

The weight function at any given point can be calculated as

w(x —x7) = w(rg).w(ry) = wp.wy (11a)

where w(r;) or w(ry) can be calculated by replacing r by r; or 7y in the expression of w(r).
The derivatives of the weight function are obtained as
dw, dw,
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3. DISCRETIZATION AND NUMERICAL IMPLEMENTATION
A two-dimensional transient heat conduction equation for isotropic material is

k(Taq+ Tyy) +Q—pcT =0. (12a)
The Initial conditions are

at t=0, T=Ty inf (12b)

The boundary conditions are

at edge I, T =T,
at edge Iy, kT, =0,
! (12¢)
at edge I3, —kTz = h(T — Teo),
at edge Iy, —kTy = h(T — T).
The weak form of the Eq. (12a) with the boundary conditions is obtained as
~ / [k (wzTz +wyT,y)]d2 + / w QdR —/ pewT df2
n n N
—/ wh (T = T) dF3—/ wh (T =Ty dIy = 0. (13)
F3 I'y
The functional IT(T') can be written as
Bos : hT°
I(T) = | 5[Ta+Ty| d2+ [ pcTTd2 - o Qdn+ —ng
0] 2
¥ g
+/ —dIly— | hTTedl3 — | hTTydl}. (14)
Iy 2 I3 I'y

Enforcing essential boundary conditions using Lagrange multipliers, the functional IT*(T) is ob-
tained as
hT?

IT*(T) = /nk[T2+T2] d.(2+/chTd!2 /TQdQ+/ by s —dF4
4

T To dTs — hTToodF4+/ (T —T,)dI. (15)
I3 I'y Iy

Using Variational principle, Eq. (15) reduces to

5H*(T)=/nk[:r,’£511m+:lf§5:r,y]dn+/Qch<sTdrz-/QQ5T.drz+A h T 6 TdIs
p 3

+/ hT(STdF4—/ hTooéTdF;J,—/ hTsd Tdly
Iy I's Iy

ASTdI + S (T —T,)dIy. (16)
. In I
Since 6T and d\ are arbitrary in preceding equation, the following relations are obtained by

using Eq. (7)
[KI{T} + [CH{T} + [G]{A} = {f}, (17a)
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[GT{T} = {a}, (17b)
where
K,J:/ [ Pre ] [k 0} [ L ] d(2+/ h<I>,T<I>JdF3+/ h®T & ,dry, (18a)
n ley 0 k QJ;?! I's '3
plpec 0
Cry= | @] &, d0, (18b)
0 0 pc
Gikc = [ @iNydr, (180)
I
f1=/Q<I’1d.Q+/ h.Too<I>1.d>\3+/ h.Too®1.d)y, (18d)
)\3 Aq
ax = [ TNgan. (18¢)
&

Using Crank-Nicolson method for time approximation, the Eq. (17) can be written as

KGJ;C(: { e }={ P(‘l" } (19)

where
R, = ([C] - (1 — ) At [K]){T}n1 + alt {£}, + (1 — @) AH{E},_1, (20a)
K* = oAt[K]. a8

4. NUMERICAL RESULTS AND DISCUSSION

The parameters considered for the transient analysis of the model shown in Fig. 1 are tabulated
in Table 1. Table 2 shows, a comparison of results obtained by EFG method for different weight
functions with the results of finite element method at the corner (z = L, y = W/2) for 121 nodes.
A similar comparison of results has also been shown in Fig. 2 at the center (z = L/2, y = 0) of the
model for the same number of nodes.

The parameters considered for the steady state analysis of the model shown in Fig. 1 are tabulated
in Table 3. The EFG results for the steady state analysis of the model by using different weight
functions have been compared in Table 4 with analytical and finite element results. The Lq-error
has also been calculated for different weight functions EFG and FEM with analytical solution and is
given in Table 5. The La-error has been plotted in Fig. 3 for the calculation of rate of convergence.
The rate of convergence for quarticspline, gaussian, hyperbolic, rational and FEM are obtained as
0.5153, 0.4821, 0.8232, 0.5170 and 0.4752. It can be noted from these results that the hyperbolic
weight function has the greatest rate of convergence and FEM has least rate of convergence.

It can be noted from the tables and figures that the EFG results are converged and in good
agreement with the results of finite element and analytical methods. From the analysis, it is clear
that the EFG method is very much efficient for two-dimensional steady state and transient heat
conduction problems. For high accuracy, large number of nodes can be easily generated with least
effort. This work can be extended for the thermal analysis of three-dimensional composite structures
using EFG method.
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Fig. 1. Two-dimensional model for transient and steady state heat transfer
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Fig. 2. Comparison EFG results for different weight functions with FEM at the center point
(z=1L/2, y=0)
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Fig. 3. A plot of Ly — errorfor different weight of EFG and FEM
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Table 1. Data for the 2-D transient heat transfer

Parameters Value of parameters
Length (L) 1.0 m

Width (B) 1.0 m

Rate of internal heat generation (Q) 0.0

Specific heat (c) 400 J/kg°C
Density of the material (p) 10.000 kg/m?
Thermal conductivity (k) 400 W/m°C

Heat transfer coefficient (h)

Surrounding temperature (7%)

100 W/m2°C
20°C

Edge temperature (T) 200°C
Initial temperature (Tin;) 50°C
Time step (At) 50 sec

Table 2. Comparison of EFG results for different weight functions with FEM at the corner point
(z =L, y = W/2) for 121 nodes.

Time (s) Temperature (°C)
t x 10°
EFG EFG EFG EFG FEM
Gaussian | Quarticspline | Hyperbolic | Rational
0 50.0000 50.0000 50.0000 50.0000 | 50.0000
1 51.1917 51.2044 51.2126 51.2057 51.55694
p 71.9143 71.9318 71.9433 71.9335 | 72.2840
3 90.3770 90.3929 90.4034 90.3945 | 90.6385
4 104.1320 104.1460 104.1553 | 104.1475 | 104.8925
5 114.1681 114.1817 114.1901 114.1830 | 114.7179
6 121.4740 121.4856 121.4934 121.4869 | 121.5636
7 126.7888 126.7997 126.8071 | 126.8009 | 126.8508
8 130.6555 130.6660 130.6730 | 130.6671 | 130.6977
9 133.4687 133.4788 133.4857 | 133.4800 | 133.4967
10 135.5154 135.5253 135.5320 | 135.5264 | 135.5332
L1 137.0045 137.0142 137.0208 | 137.0153 | 136.0149
12 138.0878 138.0974 138.1039 | 138.0985 | 138.0929
13 138.8760 138.8855 138.8920 | 138.8866 | 138.8773
14 139.4494 139.4589 139.4654 139.4600 | 139.4479
15 139.8666 139.8761 139.8825 | 139.8772 | 139.8632
30 140.9712 140.9806 140.9870 | 140.9817 | 140.9628
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Table 3. Data for the 2-D transient heat transfer

Parameters Value of parameters
Length (L) 1.0 m

Width (B) 1.0m

Rate of internal heat generation (Q) 0.0

Thermal conductivity (k) 400 W/m°C

Heat transfer coefficient (h) 100 W/m?°C
Surrounding temperature (T) 20°C

Edge temperature (7) 200°C

Table 4. Comparison of EFG results for different weight functions with FEM at few locations for 121 nodes

Location (m) Temperature (°C)
EFG EFG EFG EFG

X ¥ Gaussian | Quarticspline | Hyperbolic | Rational FEM
0.2 0.0 188.2386 188.2400 188.3641 | 188.2767 | 188.2342
0.4 0.0 177.2721 177.2732 177.3195:: 217431507 7.27563
0.6 0.0 167.5037 167.5041 167.5744 | 167.5381 | 167.5136
0.8 0.0 159.0288 159.0291 159.1006 | 159.0569 | 159.0416
1.0 0.0 151.8497 151.8522 151.9364 | 151.8626 | 151.8377
0.5 0.5 160.8237 160.8143 160.9150 | 160.8425 | 160.9319
0.5 0.3 166.8321 166.8288 166.9544 | 166.8428 | 166.8736
0.5 0.1 170.8248 170.8248 170.8838 | 170.8583 | 170.8398
0.5 -0.1 173.3083 173.3093 173.3361 | 173.3491 | 173.3101
0.5 -0.3 174.6589 174.6600 174.6830 | 174.7000 | 174.6559
0.5 -0.5 175.0680 175.0675 175.1064 | 175.1169 | 175.0829

Table 5. Ly — error in temperature for different weight functions of EFG and FEM

Elemental EFG
area/cell area FEM
(m?) Gaussian Quarticspline | Hyperbolic Rational
0.0625 0.58612 0.65150 2.49859 0.66269 0.59100
0.0156 0.28012 0.28954 0.70841 0.29473 0.76366
0.0100 0.22331 0.22796 0.60161 0.23181 0.23295
0.0025 0.12530 0.12543 0.17531 0.12686 0.13049
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