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A numerical method is presented for analyzing the mixed mode interface crack between two dissimilar
isotropic materials. A simple and efficient solution procedure is developed based on the finite element
method and the compliance approach in conjunction with the fundamental relations in fracture mechanics.
The procedure makes it possible to separate the Mode I and Mode II stress intensity factors K1 and K1
respectively for an interfacial crack in bi-material media under different loading conditions. The strain
energy release rate is first computed, then using the compliance method and the known auxiliary solutions,
the values for K7 and K7 are evaluated. The procedure is investigated for different crack extensions. The
formulations used for computing the strain energy release rate and the stress intensity factors are presented.
The method converges to accurate solutions for small crack extensions. A numerical example is presented
to demonstrate the accuracy of the proposed model.
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1. INTRODUCTION

The study of an interface crack between two dissimilar isotropic elastic materials has gained con-
siderable attention in the field of fracture mechanics. The problem represents an idealization of two
different materials joined together with a crack developing along the interface due to faulty joining
techniques. This problem was studied earlier by Williams [14]. Analytical solutions to evaluate the
stress intensity factors and to find the values of displacements and stresses near the crack tip were
formulated by Erdogan [3], Rice and Sih [11, 12,] and England [2]. The solutions show that both
the opening mode stress intensity factor (Ki) and the sliding mode stress intensity factor (Kiy)
are present in a single mode loading which is different than the homogeneous case when only one
stress intensity factor was involved. These solutions, however, beside being asymptotic were also for
specific geometries and loadings. Thus, it was necessary to develop numerical procedures to obtain
complete solutions for more general configurations of loading and geometries. The J-integral method
was used by several researchers [6-8] in conjunction with the finite element method to evaluate the
stress intensity factors in a continuum containing an interface crack. Hong and Stern [9] formulated
a path independent integral for calculating the stress intensity factors in a continuum enclosing an
interface crack. Smelser [13] obtained the stress intensity factors from crack flanges displacement
data using finite elements. Hamoush et al. used the crack closure integral approach [4] and a stiffness
derivative technique [7] for the evaluation of K7 and Ki;.

In this paper, an alternate method is developed to separate the K7 and K7p stress intensity factors
for the composite sheet shown in Fig. 1. The method is based on the compliance approach and the
finite element method to determine the total energy release rate. By imposing known auxiliary
solutions, the stress intensity factors can be successfully computed with a high degree of accuracy.
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A similar approach was used by the author [5] to compute the stress intensity factors for single mode
loadings and also to separate Ki, Ky for a homogeneous sheet subjected to a mix-mode loading.
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Fig. 1. The bi-material interface crack problem

2. FORMULATION

The strain energy release rate can be evaluated as proposed by Irwin [10]. When a crack of length
2a extends to a new length 2a + 2Aa, the strain energy release rate G is defined as follows:

: AU
G Hinkariar ]

(1)

where AU is the change in potential energy and AA is the newly formed area for the extended
part of the crack. The change in potential energy is calculated in terms of the applied loads and the
displacements by the following:

AU = 2 (P) (Au), (2)

Au; are the changes in displacements in the direction of the applied loads P; as the crack length
increases from 2a to 2a+2Aa. Substituting for AU and the new formed crack area, Eq. (1) becomes:

1
=1 8Aab

L(P;) (Au;). (3)

In Eq. (3), b is the thickness of the composite sheet enclosing the crack. Thus, with the knowledge
of the crack extension Aa, the applied loads P; and the numerical values for Au;, the strain energy
release rate G can be computed.

The relationship between the computed G and the stress intensity factors Kj and Ky can be
obtained as proposed by Irwin [10]. The analytical expression for the strain energy release rate G
can be expressed as follows [4]:

G = a[K{ + K7, (4)



The compliance approach for ... 277

where « is a constant that depends on the properties of the two materials that form the composite
sheet and is evaluated as follows:

1[(k1+1) (ka+1)
=— - _
16 m )

(5)

The constants k; and ky are given by Eq. (A4) in the Appendix and up, uo are the shear moduli
for the two materials forming the composite sheet.

Thus, for the loading Case 1 in Fig. 2, which also represents the original problem under study,
Egs. (3) and (4) become:

el 2(P)W (Au;)D, (6)

= SA b
6W = oKV + K, ()

where (Au;)(!) are the changes in the displacements in the direction of the applied loads (P;)™).
Equation (6) makes it possible to compute numerically the value of G(!) and from Eq. (7) the
sum of the squares of the stress intensity factors can be evaluated. The two equations do not give
enough information to separate K1 and Kj;. The separation, however, is possible by superposition.
In Fig. 2, when the independent state of equilibrium (Case 2) is superimposed over the original
problem (Case 1), the result will be the combined state (Case 1, 2).

For Case 2, Egs. (3) and (4) are written:

G = _—— — Z(B )@ (Au;)@, 8)
G® =a [KI‘” +K7), 9)

where (Au;)® are the changes in the displacements in the direction of the applied loads (P2
for Case (2). Similarly, for the combined Case (1, 2), the equations are written:

1
12 =1 5p)12)(ag)12
G = = SR (Au)H, (10)
G0 il 2 ] (11)

also, (Au;)?) are the changes in the displacements in the direction of the applied loads (F;)(%:2)
for Case (1, 2).
This last equation can be written:

: c12) — a[(KI(I) +KI(2))2 - (KI(Il) +K121)2]

= o K" + K + 2KV K + 2k K + K+ K. (12)

In order to separate the Mode I stress intensity factor, we need to employ a known auxiliary
solution. According to Rice and Sih [12], the Stress Intensity Factors for a semi-infinite crack problem
with isolated forces P and ) located close to the crack tip are:

Ki = %\/%[P cos (eloga) + @ sin (eloga)], (13)
Knp= %\/%[Q cos (eloga) — Psin (eloga)], (14)

where a is half the crack length and € is the bimaterial constant given in Eq. (A3).
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Fig. 2. Separation of the mode I stress intensity factor
By assigning K1 = 1.0 and K = 0, the values of the forces P and @) can be computed by solving

Egs. (13) and (14). The value of the resulting sliding force @ is too small compared to the opening
force P and therefore it may be neglected.

For Case 2, by assigning the values of K %2) =1land K g) = 0, Eq. (12) becomes:
G0 = o [k + K" +2K +1 (15)
which can be simplified into the following form

G2 — ) 4 2aKI(1) + a. (16)
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Rearranging Eq. (16), the value of the stress intensity factor (K1 = K %1)) can be computed as

follows:

gL [G(m) W) s a], (17)

: 2a

The numerical values for the strain energy release rate are computed from the applied nodal loads

and the resulting nodal displacements. The values of G2 and G() are computed numerically for

Case (1, 2) and Case (1) respectively. The value of the bimaterial constant « is given by Eq. (5).

After the separation of K7, the other stress intensity factor K can be computed from Eq. (7).
Note that from Eq. (10), the relationship between the Strain Energy Release Rates for all three

cases can be expressed as follows:

1
8Aab

= i (2P 8 1+ £PP8?) +

G(1,2) - & 5 (Pi(l) & Pz(Z)) (Augl) + Auz@))
1
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1
It can be noted that the same approach can be deployed to find the Ky factor by assigning Ky = 1.0
and KI =0

This solution technique was used within a finite element model as shown the following sections.

3. NUMERICAL INVESTIGATION

The procedure described in the previous section has been incorporated into a conventional finite
element code. The accuracy of the current approach is demonstrated by solving the problem shown in
Fig. 1 that has a known closed-form asymptotic solution available in the literature [11]. The problem
shown represents an interface crack between two semi-infinite plates of two dissimilar materials. The
composite sheet is subjected to a uniform tensile stress of unit value applied at infinity as shown in
Fig. 2. The finite element discretization of the plate is shown in Fig. 3. The ratio 2w/2a is taken to
be 10. Previous research [5] has shown that this ratio is suitable for modeling this type of problems.
Four node elements are used in the analysis with an aspect ratio below 5. The finite element mesh
was optimized based on previous studies [4, 6, 7] and it is noted that the finite element solution
converges when a total of 424 elements and 482 nodes are used in the analysis. A much finer mesh
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Fig. 3. One fourth of the finite element mesh
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is used at the crack tip zones. The exact analytical solution for the problem to determine the stress
intensity factors was developed by Rice and Sih [11] and is given by Egs. (Al) and (A2) in the
Appendix.

The ratio of the numerical stress intensity factor (Ki nuym) obtained by the given model and the
exact stress intensity factor (K7 exact) given by the analytical solution given in Appendix is shown
in Fig. 4. The figure gives the plot of the K ratios against the crack extensions Aa/a for different
values of Ey/FE,. Note that for Ey/E; = 10, the solution converges to the exact value when the
crack extension is equal to about 0.012 a, where a is half the crack length. For higher values of
E1/E,, the convergence occurs at bigger crack extensions. For all the computed values for K7, the
maximum error was less than 5%. After separating the K factor, the Ky factor can be computed
from Eq. (7).
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Fig. 4. The normalized stress intensity factor K for different E;/E, ratios

4. CONCLUSION

A method of analysis based on the compliance approach and the fundamental relationships in
fracture mechanics has been proposed for analyzing the bi-material interface crack problem. The
analysis is formulated by imposing two independent states of equilibrium in conjunction with the
compliance method.

The present model is relatively simple and straightforward. It can be conveniently conducted
using any numerical method such as the finite element method. Good agreement between analytical
exact solutions and the present study has been demonstrated by solving the classical bi-material
interface crack problem. In this problem, the analysis is carried out on a composite sheet made of
two homogeneous isotropic materials subjected to uniform stresses normal to the direction of the
interface crack.

It can be concluded that the choice of Aa significantly influences the convergence of the solution.
The value of Aa should be chosen away from the crack tip zone where the stress oscillations asso-
ciated with interface cracks occur. It appears that the ratio of Aa/a should be selected within the

range of 0.012 to 0.02 in order for the method to converge to the exact solution within acceptable
accuracy.
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APPENDIX

For a bi-material interface crack in a composite sheet subjected to a uniform tensile stress o, normal
to the crack direction, the stress intensity factors are expressed as follows:

1

K = m{ay[cos(s log 2a) + 2¢ sin(e log 2a)] } v/7a, (A
1

" w2 1 ' A2

K cosh e {ay [sin(e log 2a) + 2 cos(e log 2a)] }\/7r_a (A2)

The bimaterial constant € in Egs. (A1) and (A2) is computed as follows:

k1 1

I PP
E=gln 22—__1— y (A3)

B2 M1

where p1 and pp are the shear moduli of the two materials forming the composite sheet enclosing
the bi-material interface crack.
Rice and Sih [12] defined the stress intensity factors K = Ky — iK]; as

K1 — iKyp = 2(27)/%e™ lim (2 — a)/%(z — a)“ 1 (). (A4)

zZ—a
The constant k is evaluated as follows:

ki = (3 — 415) for plane strain,
ki=3—4v;)/(1 4+ 1) for plane stress,

where v; is Poisson’s ratio.
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