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In the paper three computational models for crack growth analysis in quasi-brittle materials in plane stress
state are presented. These models have been worked out on the base of different methods of coupling the
finite element method and the element free Galerkin method. Effectiveness of the methods of analysis are
improved by the algorithm of dynamic domain decomposition into 2", £, £2"e parts. The usefulness of
the methods in crack growth analysis has been confirmed in examples.

1. INTRODUCTION

Finite element method (FEM) is a widely accepted and trusted method of numerical analysis in solid
mechanics. The basic ideas of FEM are discretisation of the domain solution by finite elements and
approximation of unknown functions in elements [24]. A different approach where approximation is
based on nodes rather than finite elements is used in the group of methods known as the meshless
methods [15]. Among the meshless methods the element free Galerkin method (EFGM) is most
often applied to the analysis of solid mechanics problems and in the paper the method is utilized.

The coupling of FE and EFG methods seems to be attractive in finding approximated solutions of
engineering problems. Such approach applies advantages of both methods and hides their drawbacks
at the same time. As it is stated in [12], EFGM does not require generation a connectivity matrix
and is specially suited for problems like adaptive refinement computations, problems with high
gradients, concentrated forces, large deformations or crack propagation analysis. FEM is, on the
other hand, less costly, Dirichlet boundary conditions are applied in a simple way and is widely
accepted by engineers.

EFGM usually gives better results than FEM when the same number of degrees of freedom is
used, however, since EFGM is much more costly, therefore the coupling algorithm should work in
such a way that EFGM is applied to specific, relatively small areas of solution domain {2 where
FEM does not work well.

The basic equations of FEM and EFGM are shortly described in Sec. 2 with special attention to
the definition of approximation fields. In the paper the Partition of Unity Method (PUM) is utilized
and also is shortly described in Sec. 2.

In Sec. 3 three methods of coupling FEM and EFGM are formulated which are based on the
algorithm presented in [12]. Additionally, the fourth coupling method is formulated with the help
of PUM.

To couple the two methods the domain of solution {2 has to be partitioned into three parts: (i)
Q" — the finite element part, (i) £22 - the meshless part and (iii) 27 - the region where 2" and §2¢
overlap. In order to improve the effectiveness of the coupling method in the crack growth analysis
in Sec. 3 an algorithm for the dynamic domain decomposition is proposed.

The coupling methods are used in Sec. 4 to elaborate three computational models for crack
growth analysis: (i) standard model, (ii) enriched base model and (iii) partition of unity model. The
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quasi-brittle material is assumed and therefore the fictitious crack model is used for crack growth
description. In Sec. 4 the iteration method of solution of an incremental set of equations of the crack
growth problem is also presented.

The correctness of the proposed coupling methods with dynamic decomposition, consequently
computational models, is illustrated with three examples in Sec. 5. The first example is the Laplace
problem and the other two examples concern crack propagation analysis. The paper ends with some
conclusions.

2. FEM AND EFGM FORMULATIONS
2.1. Problem formulation

The problems considered in the paper can be formulated as follow:
Find the function u € V C H such that variational equation

a(u,v) = l(v), YoeEV,, (1)

is fulfilled where a(-,-) is a symmetric and positive-defined bilinear form and I(-) is a linear form,
v is a test function that satisfies the essential boundary conditions and V is a subspace of the Sobolev
space H and V, C V.

An approximated solution of the problem (1) in finite-dimensional subspace V C V is the function
4 € V, such that equation

a(@,?) =1(3), VoeV,, (2)

is fulfilled where V, C V.
The solution of Eq. (2) can be obtained using different computer methods. In the case of finite

element method the subspace V = span{ N/}, where i € I"*, and in the case of free Galerkin method,

the subspace V = span{N;} where i € I. It means that one of the basic differences between FE
and EFG methods lies in the definition of approximation functions Ni’c (x), k = h, p. This simple
statement will be used to define various coupled FE-EFG methods. At first, however, the methods
which are used in the paper will be shortly described and details connected with approximation
fields will be emphasized.

2.2. Finite Element Method (FEM)

According to the procedure of the finite element method the solution domain {2 is divided into a

E
finite number E of elements 2., 2 ~ 2" = L)L 42
e=1

Unknown function u(x) can be approximated by function A"u (x) in the element 2, using
formula

u() m At (x) = Y pf () af = (p"(0) 2", Vxe 3)
i€Ih
where x is the global coordinate system, {piL (x)}i crn 18 @ set of complete base functions, {af}i cIh
are mathematical degrees of freedom and I is a set of global node numbers for element, 2.
Approximation (3) can also be expressed with the help of element shape functions Nf (x)

Al (x) = Z NE (x) ui , Vx € (2, 4)
i€lh

where u; are values of u (x) at the preselected nodes x; (global degrees of freedom).
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Now we introduce the definition of global interpolation functions in the domain £2" in the form

NI

(3

2 ¢ ID
(X)Z{O when x€ 2 and i¢I7, (5)

Ng(x) when x€ £, and i€Il.

In the following functions N}* (x) are called global finite element (GFE) shape functions (also called
global interpolation functions [18]).
Interpolant of function u (x) can then be written by a linear combination of the form

Ay (x) = Z NP (x) ug vx € O, (6)
ielh
E
where I" = |J Ih.
e=1

The finite element method can be defined with the help of GFE shape functions N} (x) in the
following way.

Definition 1. Flinite element method
Let V" := span{N}*}. Find the function u" € V" that fulfills the equation

a(uh,vh) = l(vh) : Vol e Vg, (7)

with the essential boundary conditions.

2.3. Element Free Galerkin method (EFGM)
2.3.1. EFGM shape functions

Let us assume that function w (x), defined on a domain (2, is approximated by function A¢u (x)
given by

u(x) ~ A% (x) =p°T (x)a(x), Vxen, (8)

where {p; (x)}i:1 =y {ai (x)}i:1 o 1 are vectors of base functions and vector of unknown coef-
ficients, respectivél’y, and L is the number of base functions.

The above approximation formula can also be written in the form of a linear combination of
functions Nf (x) and nodal values of approximated function u; = u (x;)

Atu(x) =Y Nf(x)u;, Vxen, 9)
jere

where 19 is a set of global node numbers in the domain (2. In analogy to the definition of shape
functions introduced in point 2.2, the approximation functions N (x) are called EFG shape func-
tions [1]. EFG shape functions can be determined imposing the so-called consistency condition which
is of the form

p%(x) = ) P (%) Nf () - (10)

jere

In the context of weighted moving least square (WMLS) approximation, the shape functions can
be expressed as [12]

NE (x) = P (x5) @ () (1), (11)
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where o (x) is the unknown vector and w(r;) is the weight function and r; = ||x — x;||. It is
assumed that the weight function w(r) is symmetric and has compact support which also describes
the support of EFG shape functions.

After substitution of Eq. (11) into Eq. (10) the linear system of equations that determines o (x)
is obtained
M (x) a (x) = p? (x) , (12)

with

M (x) = > p°(x;) P°" (x5) w(ry).
jele

The final formula for calculation of the shape function N f (x) formally has the form
~1
N7 (x) = p?" (x5) (M (x)) ™ p? (%) w(ry). (13)
The derivative of EFG shape function is calculated using formula
N7p (%) = pT (x5) e (¥) w(rs) + PO (%)) @ (%) wig (r5) - (14)

In the above expression the derivative of a (x) has appeared and can be easily obtained by
differentiation of Eq. (11)

M (x) @,z (x) + Mz (%) @ (%) = p* (%) , (15)

where
F
M, (x) = Z p? (xj) pQT (xj) Wz (Tj) .
j=1

Solving Eq. (15) for a4 (x) the following formula is obtained

e (%) = (M(x)) 7 (P%e (%) ~ My (x) @ (x)) . (16)

The base functions in vector p? (x) generally can be quite arbitrary. In most cases, however,
the functions are polynomial. In some cases the character of exact solution is known a priori, then
some special functions can be included in the approximation. When EFGM is enriched with special
functions then in the paper it is named enriched EFGM (EFGME).

The element free Galerkin method can now be defined with the help of EFG shape functions
N7 (x) in the following way.

Definition 2. Element free Galerkin method
Let V@ .= span{N f } Find the function u? € V? that fulfils the equation

a(u?,v?) =1(v?), Vv?eV?, (17)
o

with the essential boundary conditions.
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2.4. Partition of Unity (PU)

In the paper to enrich approximation the partition of unity method is also used [9, 16]. In that case
the approximation functions are expressed by the formula

ik (x) = @} (%) % (%) , (18)
where {¢!" (x)} is a set of functions with completeness of order m and 7 (x) are assumed to be
enriching functions and k = 1,..., K, K is the number of enriching functions.

Functions ¢! (x) fulfil conditions

I

I
Y orx)=1, 2c|supp{ey}, (19)
i=1

i=1

where I is the number of nodes.
From the above equations the following equality can be written

]
Z ¢ik =Yk (20)
=1

which means that functions 4% (x) can be recovered exactly by ¢k (x).
Function u (x) can be approximated with the formula

-
~ Y bukbik, (21)

i=1 k=1

where b;, are approximation coefficients.

Functions ¢! (x) can be formulated in a different way. In the paper it is assumed that ¢} (x) =
Nj (x), where N; (x) are GFE shape functions, EFG shape functions or their combinations.

If PU method is applied only to some subdomain, then the approximation takes the form

ulxp=> N aﬁ-ZZN x) B by, (22)

=1 i=1 k=1

which is the sum of standard and enriching part of approximation, where B is Boolean matrix, a;
are standard degrees of freedom and by, are now additional degrees of freedom. If N; (x) are GFE
shape functions then approximation (22) is a base for formulation of the so-called extended FEM
(XFEM). By analogy, in Eq. (22) N; (x) are EFG shape functions, when the method is called the
extended EFG method (XEFGM).

2.5. Integration

The solution of Eq. (7) or (17) needs numerical integration to be performed. It can be said in
general that in case of FEM the numerical integration is carried out in integration cells, which are
finite elements. In EFGM, however, integration cells have to be additionaly introduced. Integration
in EFGM is troublesome since the EFG shape functions are not polynomials and their supports
generally have spherical shapes. In consequence, the support border of EFG shape functions always
goes through integration cells, Fig. 1.

In the paper, the mesh of integration cells in EFGM is composed using any finite element mesh
generator. In such a way the mesh of basic cells is described. Then each basic cell is divided into
integration cells, where the proper quadrature is applied, Fig. 2. Such approach showed to be
especially effective in the process of coupling FE and EFG methods.
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mesh of integration cells
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Fig. 1. Domain of influence for node and mesh of integration cells
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Fig. 2. Triangle partition scheme into two, four and six integration cells
3. CouprLING OF FE AND EFG METHODS
3.1. Methods of coupling

Let us assume that the domain of solution {2 is partitioned into parts: (i) £2" — the FEM part,
(i) £22 — the EFGM part (2"|J 22 C £2), (iii) 2" - the region where £2" and 29 overlap each
other (2" = "N N9).

The parts 2" and £2¢ fulfil the following relations

M={zen|Jiel® NI(x)#0}, 23
P ={zeR|Ijel® Nf(x)#0}. i

In the paper three coupling methods are formulated:

1. FEM-EFGM - in this method the same polynomial base functions are used in approximation in
2" and 029, Fig. 3a.

2. FEM-EFGME - it means that approximation in 22 is enriched with special functions, Fig. 3a.

3. EFEM-EFGM - in this method FEM approximation is enriched in 2”2 part by shape functions
of enriched EFG method, Fig. 3b.

In Sec. 4 the above coupling methods are used to introduce computational models for crack
growth analysis. The first method is used in point 4.3 to formulate the standard computational model
and two following methods are used in point 4.4. to formulate the enriched based computational
model. In point 4.5 the third computational model, called the partition of unity computational
model, is presented where the FEM-XEFGM coupling method is applied. It is based on the FEM-

EFGM coupling where, however, in the domain 22 approximation field is enriched with the help of
Eq. (22), Fig. 3c.
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A

K

Fig. 3. Partition of solution domain: a) FEM-EFGM & FEM-EFGME, b) EFEM-EFGM, ¢) FEM-XEFGM
3.2. FEM-EFGM coupling

The approximation in 27 is constructed as a superposition of finite element interpolation and
element free approximation [12]

Aty (x) = Y NP u(a)+ Y NE(x)u(x;), Vxe2™. (24)

icIh gele

The finite element shape functions Nih (x) are supposed to be known, while the element free
shape functions N (x) are not known and will be evaluated using consistency condition.

In the method the order of completeness of approximation fields of EFG and FE methods is the
same. If we assume that p (x) = p" (x) = p? (x) then the following relation is true

YipE) NI =p)," Wxe @\
ielh

- (25)
iele

The finite element shape functions are not complete in the 2he part, which means that they are
not defined for nodes on the boundary 272 and 29\ £2"¢. The completeness has been recovered
with the help of Nf (x) shape functions.

The consistency condition of the mixed approximation in " takes the form

P = Do p) NP+ Y p) NEG) , . Yxe 0. (26)
ielh jele

The N, f (x) shape functions are expressed using Eq. (11). After substitution of Eq. (11) into
Eq. (26) the linear system of equations that determines c (x) is obtained

M (x) e (x) = p(x) = Y P (%) N} (%) - (27)
ielh
Eventually the formula for calculation of EFG shape functions in 2" has the form

N2 (x) =p" (x;) (M (x) ™ (p (x) = 3 p (x:) N () )w(ry) (28)

ielh
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In order to calculate derivative of Nf (x) shape functions Eq. (10) is used

N7, (x) = p" (%) o (%) w(rs) + PT (%5) & (%) wye (75) - (29)

In Eq. (29) vector a (x) is taken from Eq. (27), while derivative of the vector can easily be
obtained by differentiation of Eq. (26). The set of equations appears for vector a,; (x) in the form

M (x) @,z (X) = Pz (X) — Z P (xi) N{}I (x) = M,z (x) o (x) . (30)
ieIh
The £2"¢ region in FEM-EFGM is usually limited to a one element wide band. The finite elements
that belong to £2"¢ have nodes that belong to I2, where FE shape functions are, however, incomplete.
An example of shape functions in FEM-EFGM in case of 1D is shown in Fig. 4, where 22, 2"
and 2" are marked. In the picture the vectors of base functions in element free part and finite
element part are the same p” (x) = p? (x) = 11 =}

1

N(z)

e L n L
0 0.2 0.4 0.6 08 1

ne

I ol
ghp

Fig. 4. Shape functions in FEM-EFGM method in 1D case

3.3. FEM-EFGME coupling

In the method, the approximation (24) is still valid, but now p¢ # p”* and p? is enriched by
additional base functions. In consequence, the following relations are true

D pP(xi) NE(x)=p°(x) Vxe e\t

iele

N (31)
> P (xi) NI (x) =p?(x) Vx e h\0he
ieIh

and
Do) NP (x) =pt(x) Vxe M0
ieIh
(32)

=
> p"(xi) N (x) =p" (x) Vx e o\,

iele
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Shape functions N (x) are found in such a way as to recover the vector of base functions p? (x)
in 02" part
p?(x) =) PO(x:) N (x) + )PP (x)) Nf (x),  Vxent. (33)
ielh jerIe

The following steps of calculations are analogous to the procedure described in point 3.2.
The shape functions for 1D case are shown in Fig. 5 assuming

p?(x) = {lzsinzsin2z} and p”(x) = {1z}.

1
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Fig. 5. Shape functions in FEM-EFGME method in 1D case

3.4. EFEM-EFGM coupling

In the method 2 2 2" and 2" ¢ 2", which means that all domain (2 is covered by finite elements
and in some part of 2" domain the approximation is enriched by shape functions of the enriched
EFG method.

The procedure of computations of N (x) shape functions is the same as in FEM-EFGM coupling
with the difference that now N (x) shape functions are complete in nhe part.

In results of calculations the following matrix of shape function in 2 part is get

It can be proved that shape functions

NP (x) = N (x) + N (x) , vx € nhe (34)
of FEM and EFGM coupling are interpolation functions. Proof. The conditions of completeness
for N/ (x) have the form

S P N2 (x)=p°(x), Vxea, (35)
i€l

a
or, after substitution of Eq. (34)

> pe (k) NP (%) + )Pl (k) Nf () =p°(x), Vxe 2. (36)
iel iel’
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Equation (36) is valid for every point in 27, in particular for node k

3 P2 (xi) NP (xi) + 3 0 (xi) N2 (xie) = P2 (x) , ¥y € 27, (37)
i€l el

Shape functions N (x) fulfil the delta Kronecker’s condition and in effect Eq. (37) takes the form

% (xk) + )P (%) NP (xk) =p°(xk),  Vxp €. (38)
i€l

or after simplification

Y p?(xi) Nf (xx) = 0. (39)

i€l
Equation (39) is valid only if

NF (oz) =1, Vi,kel. (40)
On the base of (40) and delta Kronecker’s condition for N (x) shape function it can be written

NM(xj) =65, Vi,jel #. (41)

The conclusion from the above proof is that the N7 (x) vanish at nodes where an FE shape
function is defined. In 1D the two methods can be coupled without any problem, but in 2D or
3D Nf(x) shape functions do not vanish at elements borders in the case when p? (x) # p" (x).
In consequence the Nih‘-’ (x) are not continuous along the border between 2"\ £2"¢ and Qhe

regions. The discontinuities in most cases are quite small, and when discretisation is denser the
discontinuities are smaller and vanish at limit.

Assuming the same vectors of base functions p? (x) and p” (x) as in the previous example the
shape functions have been calculated and are shown in Fig. 6. Examples of shape functions in 2D
for methods: FEM, EFGM and EFEM-EFGM are shown in Figs. 8, 9 and 10. These functions have
been calculated for the central node shown in Fig. 7 assuming

p"(x) = {1 z y} and p®(x) = {1 = ysin(z) - sin(y) sin(z) - cos(y) cos(z - y)}.

1.2

1 A A A

N AN A\
08
06

04

N(z)

0.2

" ' / Y Y

-0.4

L L s n
0 0.2 04 0.6 0.8 1

nhe

_Qh
Fig. 6. Shape functions in FEM-EFGME method in 1D case
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Fig. 7. Finite element mesh with marked central node e.
NP (x)

1
0.8
0.6
0.4

Fig. 9. Shape functions EFGM in 2D case

3.5. Essential boundary conditions

One of the main problems in EFGM is applying the essential boundary conditions and till now
numerous methods to apply the boundary conditions have been developed [3, 4, 7, 15, 23]. In the
paper the coupling method is used to apply the boundary conditions to EFGM.

Let us assume that 2¢ = (2. The boundary I" is divided into I, and I, where the natural
and essential boundary conditions are defined respectively. Along the I3, the finite elements are
constructed and they create the 272 area, Fig. 11. In the elements the FE shape functions are built
for nodes that belong to the boundary. Since along the I, shape functions satisfy the Kronecker’s
conditions it means that the essential boundary conditions can be applied in the same way as in
FEM. It should be noted that in the case when the base functions in vector p? (x) are the same as
in vector p” (x) then the boundary conditions are satisfied exactly. In the case when the vector of
base functions p® (x) is richer than p” (x) then in 2D or 3D cases the essential boundary conditions
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z '.80.910~

Fig. 10. Shape functions in FEM-EFGME method in 2D case
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Fig. 11. Discretisation of the domain in EFGM with finite elements used essential boundary conditions

between nodes are disturbed. When discretisation is more dense then the disturbances are smaller
and vanish at limit.

When the coupling method FEM-EFGM is used the problem with boundary conditions is omitted
if I, ¢ 82" In the case when I, C 0422 the procedure presented above has to be applied.

3.6. Dynamic domain decomposition

As mentioned earlier, the main aim of couplin of the FEM with EFGM is to apply their advantages
and hide their drawbacks at the same time. It is more reasonable to couple the methods by using
the EFGM only to very specific, relatively small places. The special places can be, for example,
the regions of error concentration or the regions where the character of the solution is known a
priori. Therefore an algorithm is needed to partition the domain of solution £ into 2%, 29 and
M The algorithm should be simple to use and should include the possibility of dynamic change
of the partition (e.g. the region around the growing crack etc.), [13].

The main assumption in the algorithm is that the FEM is the basic method which is used in
analysis. At the beginning 2 is discretized with finite elements. Then information is entered to the
finite element mesh about the places where EFGM should be used. The information is in the form
of simple geometrical objects like polygons, circles or ellipses. The geometrical objects can be placed
in an arbitrary place in the mesh, in any shape and in any relation to each other. The objects can
overlap or they can go outside {2, Fig. 12a.

In the next step of the algorithm all nodes that are inside the geometrical objects have to be
identified. The nodes become nodes of element free approximation. In consequence all nodes are
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grouped into nodes of EFGM discretisation /¢ and the FEM nodes I h. Next, all finite elements
that are defined on nodes i, € I? are identified and the elements are marked with index e?. The
e? elements are erased from discretisation. In the next step finite elements €™ that are defined on
nodes i; € 12N I" are marked and form 2"¢ region. In the elements incomplete shape functions are
defined. The incompleteness refers to the nodes in the elements that iy € 72. The final discretisation
is shown in Fig. 12b.

It should be emphasized that the e? elements are removed only from the approximation field but
they are not removed from memory. In this way the elements become simultaneously the integration
cells in EFGM. In the above algorithm the operations on floating numbers appear only at the
beginning of the algorithm where the nodes that are inside geometrical objects have to be found.
The rest of operations have the logical character since they use connectivity table of finite elements.
As shown in Fig. 12a and 12b the algorithm works well on an unstructured irregular mesh.

a) b) o
Qhe
JL‘”‘., ? A
ISR
SN ,%’gg FESTREL
<R EHIEIHRA o N
O
A5 155 3
<L PRES £ ‘;;,"’Sj
..'a
REKTS

Fig. 12. Partition of the domain: a) the domain discretized by FE mesh and the marked places where
EFGM is assumed to be applied, b) the {2 domain partitioned into 2" 0°and 2he

The algorithm presented above is static in the sense that the algorithm works after defining
geometrical objects. The objects can be defined by the user, as an input to the program, or they can
be defined automatically and then the partition algorithm becomes dynamic. The need for dynamic
domain decomposition appears in the problem of crack growth analysis. In such problems the crack
is approximated by means of piece-line curve I';. Around the I'; curve a polygon is automatically
generated as its close surroundings, Fig. 13a. When the polygons are defined the above procedure is
performed and 22 and 2" are generated. Additionally, sometimes it is necessary to generate some
special pattern of nodes inside £22. For instance, in the crack analysis the nodes are generated along

both sides of I'; and around the crack tip, Fig. 13b.
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Fig. 13. Partition of the domain with cracks: a) the domain discretized by FE mesh and the marked places
around lines where EFGM is assumed to be applied, b) the partitioned domain with cracks



306 J. Jaskowiec and Cz. Cichon

When EFEM-EFGM method is used then the domain is-partitioned into £2"* and £2"¢ subdomains.
In such a case, in the above algorithm it is enough to mark e? elements as e¢. It means that no
elements are removed from discretisation and there is no need to construct incomplete FEM shape
functions in finite elements e"®.

4. COMPUTATIONAL MODELS OF CRACK GROWTH ANALYSIS
4.1. Computational models

In this section computational models for crack growth analysis in quasi-brittle materials in plane
stress state are formed. The computational models are obtained by linking particular coupling
methods with the variational formulation of the problem and with a model of crack propagation.
To describe propagation of the crack a fictitious crack model is applied. The scheme of formulation
of particular computational models is shown in Fig. 14.

Physical model
Fictitious crack Mathematical model
(set of
model (variational formulation)
assumptions)
COMPUTATIONAL MODELS COUPLING METHODS
standard FEM-EFGM
FEM-EFGME,
enriched base
EFEM-EFGM
FEM-XEFGM,
partition of unity
XFEM

Fig. 14. Computational models of crack growth analysis

4.2. Fictitious crack model

The fictitious crack model is broadly used in crack growth analysis of quasi-brittle materials such
as concrete or some ceramic materials [11, 14]. In the model it is assumed that in the front of pre-
existing crack there exists tension softening the fracture process zone through a fictitious crack. The
faces of the crack are acted upon be certain closing stresses such that there is no stress concentration
at the tip of this extended crack, Fig. 15a. It is also assumed that the closing stresses in the fracture
process zone are not constant but increase from a zero value at the tip of the pre-existing traction-free
macrocracks to the full uniaxial tensile strength value of the material f;, at the tip of the fictitious
crack. It should be stressed that the size of the fracture process zone may not be small in comparison
with the length of the pre-existing macrocracks and in result knowledge of the distribution of closing
stress o(w) along the fracture process zone is essential.
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The closing stresses o(w) are linked with the fracture energy G'r with the help of relation

G /:)w(a) e /Owca(w)dw, (42)

where w, is the critical tip opening displacement of the pre-existing macrocrack.
The o(w) function should be monotonically decreasing from f; to zero and can be expressed with
the help of at least two material parameters f; and G, Fig. 15b.

a) b)

o(w) ft i

w fi
We. w

.aa

w, — critical crack opening
l, - length of fracture process zone

a, - length of real crack

Fig. 15. Fictitious crack model

Fig. 16. Two sides I'q4+ i ['4— of crack I'g

4.3. Standard model
4.8.1. Continuous formulation

In the continuous formulation of a standard model cohesive forces are introduced as additional
external forces. The forces are applied to nodes along both sides I’z and I;— of the crack line in
such a way as to counteract crack opening [6], Fig. 16. The problem is nonlinear since the cohesive
forces depend on the current solution.

Variational equation of the problem for time At has the form

/ SAETG At A — [ sAUTE A Ar
n I's

+ SAuTt (witAh) dI + / sAuTt (WA dr =o, (43)
Ig- gy

where the body forces are omitted and
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o= (am oy sz)T — stress vector,

€= (ez Ey szy) — strain vector,

Resml e kg e — displacement vector,

=0, fy)T - prescribed traction forces vector applied on I'; boundary,
w = (wz wy)T — crack opening vector,

ta= (tcm tcy)T —  cohesive forces vector,

u= (ﬁz ﬁy)T —  prescribed displacement vector applied on I, boundary.

Unknown vectors in time ¢ + At can be expressed as the sum of known vectors at ¢ and their
increments

Rt T ot Ay,
utdt = ol 4 Au, (44)
witet = bty Aw,

Vector of the crack opening increments is of the form
Aw(xq) = Au(xgq4y) — Au(xq-), (45)

where x4 € I}, X4+ € T4y, x4- € Iy-.
Vector of cohesive forces in time ¢t + At can be expressed as

tc(wt+At) = tc(wt +Aw) = tc(wt) + At (46)
where vector of increments At, is calculated from the expression

Ot. . 0Ot
Atc ~ 8—WAW = a—w(Au+ = Au_) y (47)

where Au; = Au(xgy) and Au_ = Au(xg-).
It is assumed that the elastic continuum obeys the Hook’s law

Ao = DAe, (48)

where D is the material stiffness matrix.
Substituting Eqs. (45-48) into (43) the following incremental variational equation is obtained

/ SAeTDAed + | SANTAudlr + | sAuTANAD
(9

T I'y
- 5AuT-8&AudF -+ 5AuT%Au dr
T BW Ty 8W
= | sAuTE ¥ dr - / sAuTt (wh)dl - [ SAuTt.(wh)dI’
T T Ty
= / SAeTatdn. (49)
0

4.3.2. Discrete formulation

In order to obtain the discrete form of Eq. (49) the following approximations are assumed.
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1. Approzimation of the displacement increments vector
Au(x) = N(x)Aq, (50)
where Aq is the vector of degrees of freedom increments.

2. Approximation of the strain increments vector
Ae (x) = LN (x) Aq = B (x) Aq, (51)
where B (x) is the differential shape functions matrix.
Using Egs. (50) and (51) in Eq. (49) the incremental set of equations is obtained
KO Aq=FEA - F), (52)
where the following matrices and vectors are defined:

K(l) = Kl T Kg) )

| e 5 \ @
K1=/ BTDB 4, Kg>=_/ Iy et NdF+/ 22} "Ndr,
N Tyy 8w B BW

. (53)
FitAt :/ NTE gr FY _/ BTo® d + FY
2

ext 17 AT
o

Fil = / NTt.(w®)dr + / NTt.(w)dr,
) T

and where index (7) is connected with the iteration step solution of the above equations.
Matrix K® is the algebraic sum of the standard stiffness matrix K, and the cohesive stiffness

matrix Kgi). In several test computations it was noted that matrix Kg) caused some oscillations

in the iteration procedure of the solution. If matrix Kgi) is omitted, the monotonic convergence
is observed even for a small number of iteration steps. Additionally, omitting matrix Kg’) can

significantly simplify the calculations. Therefore in the examples the matrix Kg) was neglected. The
iteration procedure was always converged because the vector of residuum was properly calculated.

The region 29 in the standard model was built as the close neighborhood of the crack line.
During crack growing the region 2¢ was updated dynamically, explained in point 3.6. The crack Iy
was modelled with the help of the diffraction method [5].

4.4. Enriched base model
4.4.1. Continuous formulation

The variational equation of the problem for time ¢ + At now takes the form

/ sAeTat At 4 — | sAUTETAAr =0, (54)
0 Ly

The displacement vector u(x) is supposed to be discontinuous along curve I}y, that is why the
vector of strain increments is expressed

Ae (x) = LAu (x) + 0rynAfu] = Aé + é6r,nAfu], (55)
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where [o] is the function jump operator, dr, is the Dirac delta along I'y and

ng 0
n= {0 mny|, (56)

where ng, ny are coordinates of the normalized vector normal to Iy.
The opening crack vector w (x) and its increment are of the form

w (x) := [u] (%) , Aw (x) := A[u] (%) . (57)

Substituting Eq. (55) to Eq. (54) and taking advantage of the Dirac delta property

48
/ 5(6pdA[[u]]) nTottAtdn = 5A[[u]]th([[u]]t+At) ar (58)
(9] Iy
results in
/ SAETS A AN + [ oA [[u2]]th([[u]]t+At) dr = / sAUTETAdr, (59)
N 'Y Iy

where tc([[u]]t+At) is the cohesive forces vector distributed along the crack line I'y. It can be noted

that the vector of cohesive forces appeared again in the variational equation but now it is described
directly on I§y.
Unknown vectors in time ¢ + At are obtained from Eq. (44) and from formula

[u] 4 = [u]* + Alu],

tc([[u]]HAt) = tc<[[u]] s A[[ug]]) - tc<[[u]]t) i Atc<[[u]]t) , (60)
where

ate(1oF) ~ g (1) 2t

The incremental constitutive equation has the form

Ao =DAE. (61)

Finally, substituting Eqgs. (44), (60) and (61) to Eq. (59) the following incremental variational
equation is obtained

o
P o T c t
/n 5AeTDrAE A2 + /F gt 8[[u]]<[[u]] )Afu]ar
= [ sauTeretar - / 5870 A~ [ SAMu]"t([u]’) ar . (62)
Lo 2 Iy

4.4.2. Discrete formulation

In this computational model it is assumed that some base functions in vector p® (x) are discontinuous
along curve Iy. The discretisation procedure is analogous to the procedure in point 4.3.2 with
additional approximations.

1. Approximation of the crack opening vector

Alu] (x) =[N] (x) Aq. (63)
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2. Approzimation of the strain increments vector

Ag (x) =B (x) Aq. (64)

Using Egs. (50), (63) and (64) in Eq. (62) the set of incremental matrix equations (52) is obtained
where matrices and vectors are now defined

(i)
Taghy T r( Otc
K -/QB DBdQ-l—/Fd[[N]] (aM) [N]dT,

FtHat _ / NTEHA ar, FY — / BTo® dQ+F£i),
2

ext int —
o

FO = [ [N]Tt.(w®)dr. (65)
I'y
It can be seen that the difference between the enriched base model and standard model lies in
the way in which the shape functions are calculated, in the definition of the tangent stiffness matrix
K® and in the definition of vector of the cohesive forces Fgl). In the examples the second part of
matrix K was omitted with the same arguments as explained in point 4.3.2.

Matrix [N] has to be evaluated in the integration points I'y. Assuming that Iy C 022\ 0he
[Nl (%) =[N°](x), Vxely. (66)

In the paper matrix [N] was calculated with the help of some modifications of Egs. (10) and (11)
which take the form

 §

[pl(x) =Y p(x;)) [Nl (x), Vxe€Ty, (67)
j=1

[Nl (x) = p (x) [o] (x) w(r;), Vxe€Iy. (68)

Substituting Eq. (68) into Eq. (67) the following set of equations for calculation of [a] is obtained
M (x) [e] (x) = [p] (x) , Vx eIy, (69)

where

n

M(x) =) p(x)p) wir), Vxely.

=T

It should be noted that Eqs (66) to (69) are also valid when I'; C £27¢, which is the consequence
of N!' (x) € CY, so

IN*](x)=0, Vxely. . (70)

In the crack growth analysis to enrich the EFG shape functions the functions known from linear
fracture mechanics are often used, Fig. 17

1) =vioos(3),  m)=vFsin3). ()

In general I'y can be quite an arbitrary curve and an algorithm of computations of functions (71)
along the curved line is needed [2, 10].
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Fig. 17. Enriching functions ~;(x) i 72(x) for straight crack line
4.5. Partition of unity model
4.5.1. Continuous formulation

In the model it is assumed that the displacement vector is a superposition of the continuous part
u; (x) and the discontinuous one ug (x) along Iy

u(x) =u (x)+ug(x,Iy) . (72)

As the starting point the variational equation of problem (54) is assumed. The increments of the
displacement vector Au (x) and the strain vector Ae (x) have the form
Au(x) = Au(x)+Auz(x,1Iy),

73
Ae(x) = LAu; (x)+LAuy (x,Iy) 4+ dr,nAfug] = Aé + érnAfuy] . G

Proceeding in an analogous way as in points 4.3.1 and 4.4.1 the following incremental variational
equation is obtained

/Q SAETDIAEAD + mguz]]’f o ]](uug]]) [us] dT

s 5Aqut+“dr— / sA&Tat A2 — / 5 fua] "t [ua]) aT (74)
¥, 2 r

4.5.2. Discrete formulation

The discrete form of Eq. (74) is obtained assuming the following approximations.

1. Approzimation of the displacement increments vector, Eq. (22)

Au (x) = Aug + Auy
x) Aa + Z e (x x) BAby,

= N (x) Aa+ N (x) Ab, (75)

where Aa is the vector of standard degrees of freedom, Ab contains additional degrees of freedom
connected with enriching functions -k (x).

2. Approzimation of the crack opening increments vector

Alus] (x Z[m]] x) BAby = N (x) Ab. (76)
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3. Approximation of the strain increments vector

K
A& (x) =B (x) Aa+ Y B (x) BAb; = B(x) Aa+ B (x) Ab, (77)
k=1

where

[ Ok (%) .
Oz
Gi=| o X (75
O (%) O (%)
oy Az |

Using Egs. (61) and (75) to (78) in Eq. (74) a set of the incremental matrix equation is obtained

[Ku Ki2| [Aa : [Ftﬂ;ﬁt—Fglt} -
(i) 3 '
Kun Ky [Ab] |FGit—F()
where the following matrices and vectors are defined:
e / BTDrBd2, K= / BTD,B dn,
2 2
Ko =KiT,
(i ot \"
K =/1§TD ﬁd9+/ N o} NP
IR g r o \Olw]
—t+At STot+AL
) 3 / NP T Ar it / i i i
P = /Q BTo®dn, F{ = /rz BTo0) d0 + /F N7t ([ua] @) dr (80)
d

The incremental set, of Eqs. (79) is more complicated in comparison with Eq. (52) since additional
degrees of freedom have been introduced to the approximation. In the examples, the part of the
tangent stiffness matrix connected with the cohesive forces has also been neglected.

The set of equations (79) has a general form, which means that it is true for XFEM (£2¢ = 0)
and FEM-XEFGM (22 # 0).

4.6. Iteration method of incremental solution

The system of incremental Egs. (52) and (79) under load control can be written in a general form,
Fig. 18

K™Y =75 - Fio” |
e e gl A 1.2.3,... (81)

Q' =Q "+AQ
where Q—(i) is the extended vector of degrees of freedom of the problem after the i-th iteration in

step number n and A_Q—(i) is the correction vector applied in the i-th iteration.



314 J. Jaskowiec and Cz. Cichon
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Fig. 18. Iteration method of incremental solution

It is assumed that the external load is proportional to the load parameter A

Fext = )\ngt ) (82)

where Fe,, is a given reference load vector. In result of the Newton-Raphson iteration process at
the end of step n the load level and the current crack configuration of the structure are computed.

In numerical solution the incremental Eq. (81) was coupled with the linear constraint equation
of the Riks-Wempner type [17, 22|, which enabled us to use different control parameters of the
computation process, namely: load control, displacement control or arc-length control. The solution
for each step n was realized starting from the current crack configuration and the fully unloaded
structure. Such approach was applied because during crack growth the discretisation of the domain
solution changes, which means that the mesh of the integration points also changes. In the authors’
opinion it is a simpler approach than the recovery of the computations memory in the new mesh of
integration points.

5. EXAMPLES

5.1. L-shaped domain

The problem under consideration is defined by the Laplace equation with the essential and natural
boundary conditions [20]

—-Au(x) =0, xE S5,
U(X):O, XEFe, (83)
Oou(x)
- =glx}. x€Ih,

where (2 is the L-shaped domain shown in Fig. 19 and g(z) is given from the exact solution

. I8
u(x) =r'/3 sm(g) 4 (84)

The solution has a singular point at origin since at this point the derivatives of the solution
go to infinity. The FEM solution results in quite big errors in the vicinity or origin. In order to
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y
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Fy //;{L o
24

('—1a _1) I
Fig. 19. L-shaped domain with (r,6) polar coordinates with the centre at the origin

reduce the errors, the vicinity of origin has been enriched with EFGME. The analysis has been
performed with FEM-EFGME and EFEM-EFGM methods. The (2 is decomposed in such a way
that £22 or 2" are located around the origin. In 2" triangular finite elements were used; it means
that p" (x) = [1 2 y]. It has been assumed that the character of the solution is known a prior:
and in the example as a special function enriching p? (x) the exact solution is taken, so that in (2¢

and 2" vector of EFGM base function is of the form p? (x) = [1 z y r/3sin (0/ 3)] In such a
case calculation errors in the vicinity of origin are generated only because of numerical integration.

The calculations were performed with three meshes with 166, 652, 1106 nodes, respectively. The

discretisation for mesh with 1106 nodes for FEM-EFGM and EFEM-EFGM methods are shown in
Fig. 20.
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Fig. 20. L-shape domain discretisations for FEM-EFGME and EFEM-EFGM methods:
a) FEM-EFGME, b) EFEM-EFGM

The errors of calculations for FEM, FEM-EFGME and EFEM-EFGM methods are shown in
Fig. 21. The enriched part of domain was relatively small but, as can be seen, that resulted in large
reduction in errors in comparison with FEM solution.

5.2. Wedge opening loaded test

The crack growth in wedge opening loaded test (WOL) a specimen made of ceramic material Teoxit
was analyzed experimentally [21]. In Fig. 22a the geometry and load of the specimen are shown.
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The material properties of Teoxit are as follows: £ = 23.7 GPa, v = 0.25, f; = 5.2 MPa. In the
example the relation o = f(w) has been chosen in the form:

o(w) = ft<1 = iw”—)n (85)

c

where n = 14 and w, = 0.5 mm, assuming that fracture energy is Gp = 176.6 Nm/ m?.

-0.8 T T T T T T T

FEM —+—
FEM-EFGME ---x---
EFEM-EFGM ------

5
< -1.6 F -
g
Mrvvomnne,
1.8 | T s % 4
e
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22} w4
2% ; . i . : i ' )
22 23 2.4 25 26 27 28 29 3 31

log(#dof)

Fig. 21. Errors of FEM-EFGME and EFEM-EFGM coupling in relation to degrees of freedom #dof

The domain of solution has been initially discretized with finite elements, Fig. 22b. The mesh
consists of 329 nodes and 584 finite elements. In the calculations the 22 and 2" regions are
generated around the crack line. When the crack grows the £22 and 2" regions are updated in such
a way that the crack is inside the (22 region all the time. In Fig. 23 the discretisations of WOL
test in the process of crack growing for different coupling methods is shown. In the calculations the
crack mouth opening displacement (CMOD) has been used as the steering parameter.

S

) }) O O }; W = 151 mm 2
o d =120 mm
b =120 mm
d s =30 mm
ao, = 30 mm
h =30 mm B =15°
@) @]

b

Fig. 22. The WOL test geometry and discretisation: a) The WOL test geometry, b) The WOL test
discretized with finite elements

The results of calculations, in the form of equilibrium paths of the structure with a growing crack,
obtained with the help of the three computational models are shown in Figs. 24, 25, 26 and compared
with the experimental data. Additionally, in Fig. 26b the results of calculations using XFEM are
presented. As can be seen in the pictures, the results of calculations are quite satisfactory except
the analysis using the EFEM-EFGM coupling method, where great discrepancies are observed.
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Fig. 23. Discretisation of WOL test for different coupling methods: a) FEM-EFGM, b) FEM-EFGME,
FEM-XEFGM, c) EFEM-EFGM
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5.3. Four point bent Iosipescu beam

The Tosipescu concrete beam was experimentally tested and is widely used to confirm the validity
of numerical methods of analysis [19]. The crack propagation in the beam is a mixture of opening
mode I and sliding mode II. The beam is shown in Fig. 27. The following material data are
assumed: E = 35.0 GPa, v = 0.15, f; = 0.0 MPa. The relationship ¢ = f(w) is of the form (85)
where now n = 4 and w, = 0.167 mm, assuming fracture energy Gp = 10 Nm/ m?. In the analysis
the generalized fictitious crack model (GFCM) has been used [8].

The beam has been initially discretized using 945 triangle elements and 522 nodes, Fig. 28.

In Fig. 29 the discretisations of the beam in the process of crack growing for different coupling

methods are shown. The process of analysis was steered with the crack mouth sliding displacement
(CMSD).

In Figs. 30 and 31 the results of calculations in the form of equilibrium paths of the structure
with a growing crack, reached with the help of standard and partition of unity computational
models, are shown and compared with the experimental data. Additionally, in Fig. 31b the results
of calculations using XFEM are also presented. In this example good agreements with experimental
data for both models are seen. In case of analysis using XFEM the differences between experimental
and numerical results are visible after passing a maximum load level.

10
3 —P
e 11
J/IIP

100

| T20
T

20 180 20 20 180 20

Fig. 27. Four point bent Iosipescu beam; measures in [mm]|

Fig. 28. The discretisation of Iosipescu beam with finite elements

Fig. 29. Discretisation of Iosipescu beam for different coupling methods: a) FEM-EFGM, b) FEM-XEFGM
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In the paper three computational models for crack growth analysis in quasi-brittle materials in plane
stress state have been presented. These models have been worked out on the base of different methods
of coupling the finite element method and the element free Galerkin method. The effectiveness of
the methods of analysis have been improved by the algorithm of dynamic domain decomposition
into 2", 22, 2" parts. The usefulness of the methods in crack growth analysis has been confirmed
in examples. In the authors’ opinion the standard model and the partition of unity model are
specially effective in crack growth analysis. Using the EFEM-EFGM coupling to the crack growth
analysis gave unsatisfactory results, but on the other hand, for the analysis of L-shaped domain
with singularity the method worked quite well. In addition, in case of using FEM-EFGM coupling
the essential boundary conditions can be easily satisfied.

Detailed conclusions can be formulated as follows.

1. Coupling FE and EFG methods seems to be attractive in finding approximated solutions of
engineering problems. Such approach applies the advantages of both methods and hides their

drawbacks at the same time.

2. Consistency order of shape functions in the FEM-EFGM coupling can be improved in an arbitrary
place inside {2 domain without changing the discretisation. In such a way the coupled methods
can also be used as an adaptation technique of p type.

3. In the coupled methods special functions can be added to the approximation field in an arbitrary
place of 2 domain. It means that in the case when the character of exact solution is globally or

locally known, this information can be added to the approximated solution.
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4. In the crack growth analysis an assumption has been made that the crack shape is not known
apriori. It means that the dynamic domain decomposition algorithm updates automatically the

domain decomposition in such a way that the crack in the process of growing is always inside
022 or M@ part.
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