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In the cellular automata simulation, the object under consideration is divided into small cells and the
simulation is performed according to the local rule which is defined as the local relationship among cells.
In this paper, the concept of cellular automata is applied to the design scheme of truss structures. First,
truss elements are considered as the cells of the cellular automata and the local rule is derived from the
optimization problem. The objective functions are defined to minimize the total weight of the structure
and to obtain even stress distribution in the whole structure. The constraint conditions are introduced in
order to define the local rule.

The present method is applied to the design of the plane and the three-dimensional truss structures
such as Schwedler and Lamella Domes. The convergence histories of the total weight and the mean and
the maximum stresses are shown in order to discuss the property of the present method.
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1. INTRODUCTION

In cellular automata simulations, the object under consideration is uniformly divided into small
cells and states of each cell are updated according to so-called “local rules”. Since local rules are
defined as local relationships among neighboring cells, the simulation schemes are very effective
for the phenomena of which global governing equations cannot be defined clearly. Therefore, many
researchers have studied the application of the cellular automata to phenomena such as pattern
analysis of butterfly and spiral shell, traffic and pedestrian flow and so on [1-6]. On the other hand,
the application of cellular automata simulation to truss structure design is described in this paper.

Some researchers have presented structural design schemes based on the concept of the cellular
automata [7-29]. Xie et al. have presented Evolutionary Structural Optimization (ESO) method in
1993 [7-21]. We recognize that Evolutionary Structure Optimization method is the first application
of cellular automata simulation to structural designs. In the method, a design domain is uniformly
divided into small elements or cells and finite element analysis is performed for whole structure.
Some design parameters named as rejection ratio (RR), evolutionary ratio (ER) and so on are
defined and then, removal and addition of cells are performed according to the relationship among
the design parameters and the physical quantities at each cell such as stress.

Definition of local rules is very important in the cellular automata simulation. Local rules in
existing studies can be classified into experimental, evolutionary, biomechanical and mathematical
formulations. In the experimental formulation, the local rules are defined as nonlinear functions
among stress states and design variables [22, 23|. Since the nonlinear functions are determined from
numerical experiments, the derived rules depend on the problems to be solved. In the evolutionary
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formulation, the local rules are defined by help of genetic algorithm, artificial neural network or
L-system [24-26, 30]. Also in these cases, the rules should be learned by the help of the experimental
data and so on. By the way, a remodeling equation of bones shows that the bone density depends
on the strain energy and the volume of the load-applied bones. In the biomechanical formulation,
the local rule is derived from the remodeling equation [27, 28].

On the other hand, the mathematical formulation, which is employed in this paper, derives the
local rule from the optimization problem. The global optimization problem for the whole structure is
defined from two objective functions and then, the introduction of the special constraint conditions
transforms the global optimization problem for the whole structure to the local optimization problem
for the local structure. The local rule is derived from the local optimization problem defined from
two objective functions and the constraint conditions. This formulation is based on the so-called
gradient-type optimization procedure from the theoretical viewpoints. However, it is not necessary
to estimate the gradients of the objective functions (the design sensitivities) actually. This is because
the design sensitivities are derived as the local rule between the neighboring cells. The rule has been
successfully applied to continuum structural design in the previous study [31]. The rule is developed
to the design of truss structures in this paper.

Truss structures, which consist of bar elements, are widely used for large-scaled structures such as
bridges, towers, space stations and so on. The optimization of the truss structures have been already
presented by some researchers [32-36]. Especially, the ground structure method presented in the
reference [32] have given the important solutions from the practical applicability. When applying
the concept of the cellular automata to the truss structure design, there is some difficulties to be
overcome. The first problem is to represent the truss structures by cells. The truss structures consist
of bar elements and therefore, the elements are considered as cells of cellular automata to define a
local rule. The rule is applied to design of plane truss and three-dimensional dome structures.

This paper is organized as follows. In Sec. 2, the stress analysis in the truss structure is explained
briefly for convenience of the derivation of the explanation for local rules in the next section. In Sec. 3,
a concept of cells is developed to express truss structures by cells and to define cell relationship.
Then, a local rule is derived from an optimization problem consisted of two objective functions
and constraint conditions and then, an algorithm of the present scheme is described. In Sec. 4,
the present scheme is applied to design of plane truss and three-dimensional dome structures. The
discussions are summarized in Sec. 5.

2. STRESS ANALYSIS OF TRUSS STRUCTURE

We shall explain briefly the stress analysis in the truss structures for convenience of derivation of
the explanation for local rules [37, 38].

An element of a truss structure is shown in Fig. 1. The parameter 6 denotes the angle from
x-coordinate to the element and the nodes on both ends of the element are as 1 and 2, respectively.
We shall denote the displacement components in z- and y-directions at node 7 (i = 1,2) as u;; and
ui2 and external forces at a node i as f;; and f;2, respectively.

A stiffness equation can be derived from finite element formulation as follows.

Kaoug=1;; (1)

where f., u, and K, denote the external force and displacement vectors and the stiffness matrix at
the element, respectively, which are defined as

Ue = {UllaU12au217U22}T, (2)
fe = {f115f121f21)f22}T, (3)
FA~

Ke == TKe, (4)
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Fig. 1. Truss element

where E, A and L denote the Young’s modulus, the cross-sectional area and the length of the
element, respectively.
Holding Eq. (1) at each element of a structure and arranging them in matrix form, we have

Ko =1, (5)

where f, u and K denote global external force and displacement vectors and global stiffness matrix,
respectively.
A stress at a element o is estimated from the displacements:

o=B.u., (6)

where B, denotes the vector related to the stress-strain relationship.

3. DERIVATION OF LOCAL RULE
3.1. Cell-representation of truss structure

In the cellular automata simulation, the object domains are usually divided into small cells. Since
truss structures are composed of bar elements, it is difficult to express them by cells of cellular
automata. To avoid this problem, bar elements are considered as cells in cellular automata simulation
to define a local rule. All elements connecting to an updated element are basically accounted for
neighborhood elements for the element. The updated element is numbered as 0 and the other
numbered elements are neighborhood elements for the element-0.

3.2. Optimization problem
3.2.1. Global optimization problem

In the present method, the global optimization problem for the whole structure is transformed into
the local optimization problem by using the constraint conditions.
As the objective functions of the global optimization problem, we shall take
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1) to minimize the total weight of the whole structure, and

2) to obtain even stress distribution on the whole structure.

The first objective function is defined in order that the elimination of the unnecessary elements
reduces the total weight. Usually, the second one may be considered as the stress constraint condition
in the traditional optimization problem for the truss structures. However, as shown in the following
section, the special constraint condition is added to the original optimization problem in order to
derive the local rule. Therefore, the stress condition is considered as the objective function.

3.2.2. Local optimization problem

The local optimization problem is defined for the local relationship among an updated element and
its neighborhood ones.

Design variable. In the cellular automata simulation, only the state or the design variable of the
updated element is updated according to the local rule. Therefore, a cross sectional area of the
updated element A is considered as the design variable of the local optimization problem.

Objective functions. In the global optimization problem, two design objectives are considered;
minimization of the total weight of the whole structure, and obtaining even stress distribution on
the whole structure.

In the local optimization problem, the objective function for minimizing the total welght can be
defined by the weight of the updated element as follows.

= 2
5
Hewie b
! 2<A0>

where A and Ap denote cross sectional area of the element and its initial value, respectively.
The objective function for obtaining even stress distribution can be defined from the deviation
between the stress and the reference stress as follows.

~ 2
H2=—21-<IUO|—1> E%(ao—l)z, (8)

Oc

A, (7)

=
2

where g and o, denote the stress at the element and the yield stress of the material, respectively.

Constraint condition. If the area of the updated element is changed independently, the equilib-
rium state between the element and the neighborhood ones may b broken. The constraint condition
is defined so as to insure that the stress states at neighborhood elements are almost insensitive with
respect to the variation of the design variable.

g¢=:5_150i_1= (i:l,"',Nn), (9)

where 6; and 69 denote stresses at a neighborhood element i at present and previous iteration steps,
respectively. N, denotes total number of neighborhood elements.

3.3. Penalty function

By introducing penalty parameter p and weight parameters o and 3, we have the penalty function

H

Nn
p 2
aHy + fH, + 5291-
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where the parameters a and (3 are defined as
at+f=1 (11)
o={¥ s
Expanding o; around A + J A, we have
oi(A+6A) ~ai(A) +6i0A (1=0,---,Np), (13)

where () = 0/0A.
By substituting Eq. (13) into (10), we have

H(A+0A) ~ %a(A +0A) + %ﬁ(ao + 6904 —1)?
P
2 2
+§Z(ai+ai5A— 2, (14)

i=1

Minimizing Eq. (14) with respect to 6 A, we have

OH(A+46A " 2
——%4—)—) = a(A+6A) + B(oo + 00 A — 1)dg
N
+p (0i+6i6A—1)6; =0 (15)
i=1

and rearranging, we have

0A =

_ad+ B(oo = 1)60 +p i (0i — 1)6:

; (16)
a+ P63 +p Y i 62

Design sensitivities 6¢ and &; in Eq. (9) are estimated as follows.

3.4. Approximate estimation of 4y

If the constraint condition is satisfied or almost satisfied, an updated element can be solved inde-
pendently. A stiffness equation for the updated element is as follows.

%ﬁf{eue =f. (17)

Direct differentiation of this equation with respect to A leads to

E e EA g > ’
E-Keue + TKeue = fe = 0,

L st _1E~ 28 lle
Eame TR )

Equation (18) denotes a displacement sensitivity.
A stress sensitivity is derived from direct differentiation of Eq. (6) with respect to A as follows.

U, =

60 = Beliy = —Be— = ——. (19)
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3.5. Approximate estimation of 4;
We shall consider the stiffness equation for a neighborhood element as follows.
K.t =1, . (20)

A right-hand side term f, is a vector of external forces applied to the element. If a cross sectional
area of the updated element A decreases, f, increases. On the contrary, f. possibly decreases if the
cross sectional area A increases. Therefore, we shall assume that f, are in inverse proportion to A;

Af, = const. (21)
Direct differentiation of this equation with respect to A leads to

f, + Af, =0,

: f,

g:-i. (22)

Besides, differentiating Eq. (20) with respect to A, we have
K., = f,. (23)
Substituting Eq. (22) to (23), we have
te = (Ke) " 'fe
- - (5) - -%. -
Direct differentiation of Eq. (6) with respect to A leads to
u gi

0"1 = Beﬁe = _BeIe = _Z . (25)

3.6. Definition of local rule
Substituting Eqs. (19) and (25) to (16), we have

—aA? + B(oc —1)o +p2£v="1(ai — o

AAi= A. 26
ad? § fo? 1 p LV of o

The cross sectional area is updated with
Ak+L gk + 64, (27)

where superscripts denote numbers of iteration steps.

3.7. Convergence criterion

A convergence criterion is defined from the convergence rate of the total weight of a structure as
follows

WM+V—Wﬂ'<s, (28)

where W and e denote total weight of a structure and a positive number specified in advance. The
superscript k is a number of iteration step.
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3.8. Algorithm of present scheme

The algorithm of the present scheme is as follows.

1. Input initial data such as element data, boundary and design conditions.
2. Estimate stress distribution on the whole structure.

3. Check convergence criterion. If the criterion is satisfied, process goes to output results. If not so,
the process goes to the next.

4. Calculate A from Eq. (26) and update cross sectional area by Eq. (27).
5. Go to Step 2.

4. NUMERICAL EXAMPLES
4.1. Plane truss structure

A first example is a plane truss structure shown in Fig. 2. Design parameters are shown in Table 1.

09 . denotes a maximum stress at an initial assumed structure and initial cross sectional areas of
each cell are A = 10! (m?).

Element A

Element B

Element C

Fig. 2. Initial shape (Plane truss structure)

Table 1. Design parameters (Plane truss structure)

Number of elements 68

Young’s modulus B= 110" Pg
Load P =1000 N
Initial cross section A% = 0.1 m?
Penalty coefficient  p =10

G0
Reference stress Oc = Omax

Convergence histories of stresses and a total weight of a structure are shown in Fig. 3. The abscissa
and the left- and right-ordinates denote the number of iteration, stress divided by a reference stress
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o. and a total weight of a structure W divided by its initial value Wy, respectively. The maximum
stress omax increases slightly at primary iteration steps and converges to the reference stress at
5000th iteration step. The mean stress oy, gradually decreases to 60% of the reference stress. The
total weight of the structure W rapidly decreases and converges to 20% of the initial weight at
5000-th iteration step. Structure profiles at 1000, 2000, 5000 and 10000-th iteration steps are shown
in Fig. 4. The results demonstrate that the structure converges to a truss structure consisted of two
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o g
© -
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0.4 - 04
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Number of iteration

Fig. 3. Convergence histories of stresses and total weight (Plane truss structure)

'

(a) 1000th iteration

(c) 5000th iteration (d) 10000th iteration

Fig. 4. Structures at each iteration (Plane truss structure)
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element. The study of Bojczuk and Mroz [?] indicates that the lower chord of the optimal profile
should follow a parabolic rather than a straight line. The reason why the final profile by the present
method is different from their result is the initial placement of the elements. Since the elements are
placed in the specific directions (horizontal, vertical and 45-degree directions), it may be difficult to
obtain the parabolic line. Convergence histories of objective functions of typical elements are shown
in Fig. 5. The abscissa and the ordinate denote number of iteration step and objective function
defined as

H = aH, + BH>.

0.5

0.4

0.3

Element A Element C

0.2

Normalized objective functions

0.1 Element B

0.0

| | | ]
0 2000 4000 6000 8000 10000

Number of iteration

Fig. 5. Convergence histories of objective functions (Plane truss structure)

The labels A, B and C indicate the elements shown in Fig. 2. The results demonstrate that
the objective functions will convergence to zero and that the convergence rate of the objective
functions of the element B and C is slower than that of the element A. While the area of the
element A increases, the elements B and C will finally disappear. Low convergence rate of the
objective functions of the elements B and C probably mean that the disappearance of the elements
is time-consuming.

4.2. Schwedler dome

A second example is a three-dimensional truss structure “Schwedler dome” shown in Fig. 6. All nodes
on ground are fixed in all directions and loads of P are applied to all nodes in vertical direction.
Design parameters are shown in Table 2. Topology of the structure is fixed and cross sectional areas
of each element are updated.

Convergence histories of total weight and stresses are shown in Fig.8. The abscissa and the
left- and right-ordinates denote number of iteration step, stress and total weight, respectively. The
maximum and mean stresses decrease gradually and finally go into the reference stress o, = 0.1 x
09 .- A total weight of the structure increases gradually and finally goes into 3.7 times of an initial
weight. In this case, the reference stress is specified to be very small and therefore, cross sectional
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(i) Initial shape

(ii) 100th iteration
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(iii) 1000th iteration

Fig. 7. Structures at each iteration (Schwedler dome)
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Table 2. Design parameters (Schwedler dome)

Number of nodes 144

Number of elements 360

Young’s modulus F=2%10" Ba
Load P =500 N
Initial cross section A = 0.1 m?
Penalty coefficient p=25

Reference stress d.=0lxal

areas of almost of the elements increase gradually. Distributions of cross sectional areas at each
iteration step are shown in Fig. 7. The results demonstrate that elements in radial direction are
getting thick and that elements in spiral direction are thin.
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Fig. 8. Convergence histories of stresses and total weight (Schwedler dome)

4.3. Lamella dome

A final numerical example is a so-called “Lamella dome” as shown in Fig. 9. All nodes on ground are
fixed in all directions and loads of P are applied to all nodes in vertical direction. Design parameters
are shown in Table 3. Topology of the structure is fixed and cross sectional area of each element is
updated.

Table 3. Design parameters (Lamella dome)

Number of nodes 144

Number of elements 360

Young’s modulus E=2x10"Ps
Load P=500N
Initial cross section A% = 0.1 m?
Penalty coefficient p=5

Reference stress FREE R
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Fig. 10. Structures at each iteration (Lamella dome)
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Distributions of cross sectional areas at each iteration step are shown in Fig. 10. Convergence
histories of total weight and stresses are shown in Fig. 11. The results demonstrate that maximum
and mean stresses converge to a reference stress and a total weight of the structure gradually
increases.
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Fig. 11. Convergence histories of stresses and total weight (Lamella dome)

5. CONCLUSIONS

A design scheme of truss structures using cellular automata simulation is shown in this paper.

In traditional cellular automata simulation, the object under consideration is divided into square
cells. Truss structures, however, cannot be represented with square cells. So, in the present scheme,
elements are considered as cells and all elements connecting to an element are considered as neigh-
borhood cells (elements) for it.

A local rule is defined analytically from an optimization problem as follows. An optimization
problem is defined by design variable, two objective functions and constraint conditions. Cross
sectional areas of elements are taken as design variables. The first objective function is to minimize
a total weight of a structure and a second is to obtain uniform stress distribution on a whole
structure. Special constraint conditions are defined so that stress states at each neighborhood cell
are invariant with respect to a design variable of an updated cell. A penalty function is defined from
the objective functions and the constraint conditions and minimized to derive a local rule.

The rule is first applied to the design of a plane truss structure. A final profile can be determined
successfully but the number of iterations is relatively large. To discuss the problem, the convergence
histories of the objective functions of some elements are estimated. The results demonstrate that
the converge rate of disappearing elements is slow. This is probably the reason of the relatively large
number of iterations. Next, the rule is applied to the design of three-dimensional truss structures
“Schwedler dome” and “Lamella dome”. Final profiles can be determined successfully. We can say
that the results demonstrate the validity of the present scheme.
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