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In the paper the numerical analysis of thermal processes proceeding in the domain of biological tissue
subjected to an external heat source is presented. Heat transfer in the skin tissue was assumed to be
transient and two-dimensional. The bioheat transfer in the domain considered is described by the system
of Pennes equations determining the temperature field in successive skin layers. Between the layers the
ideal contact is assumed. On the selected part of skin surface the Neumann condition determining the
value of external heat source is given, on the conventionally assumed internal surface of the tissue the
no-flux condition is accepted. For time ¢ = 0 the initial distribution of temperature is known. The degree
of the skin burn can be predicted on the basis of the so-called Henriques integrals and the main subject of
the paper is the sensitivity analysis of these integrals with respect to the skin parameters. On the stage of
numerical computations the boundary element method has been used. In the final part of the paper the
results obtained are shown.
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1. GOVERNING EQUATIONS

The skin is treated as a multi-layer domain, in which one can distinguish the following sub-domains:
epidermis with thermophysical parameters A\; [W/mK] (thermal conductivity), ¢; [J/m3K] (volu-
metric specific heat), dermis with parameters Az, c2 and sub-cutaneous region with parameters A3, c3

— Fig. 1.
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Fig. 1. Skin tissue
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The transient bioheat transfer in domain of skin is described by the system of equations [1, 2] -

Fig. 2
i C?E’lgf—“ = AV To(x,8) + ke [T — To(@, )] + Qrme (1)

where e = 1,2,3 correspond to epidermis, dermis and sub-cutaneous regions, k. = Gecp is the
product of blood perfusion rate and volumetric specific heat of blood, T’ is the blood temperature,
Qme is the metabolic heat source, z = (z1, z2). It should be pointed out that k; = 0 and Q,,1 = 0 [3].
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Fig. 2. Domain considered

On the contact surfaces between sub-domains considered the continuity conditions are assumed,
namely

ql(xvt) = Q2(x,t) aE Qb(l‘,t),
x €I}y (2)
Tl(xat) — T2(m7t) = Tb(x’t)

and
g2(z,t) = g3(z,t) = qa(z, 1),
x€ly: (3)
Ty(z,t) = Ta(z, t) = Tu(z,1)
where ge(z,t) = —A\e0T¢(z,t)/0ne, where n, is the outward normal vector at the boundary point z.

On the skin surface the following boundary condition can be accepted

Q1(l',t) = (s, t S ts;
&Ly 4)
gile =0, YL

where gs is the known boundary heat flux, ¢; is the exposure time. Along the remaining parts of
the boundary the non-flux condition

z€lo: ge(z,t)=0 (5)
is given. The initial condition takes a form

f=0: Tzt =THs) (6)
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The knowledge of transient temperature field in the domain of skin tissue subjected to the external
heat source allows to determine the Henriques integrals [3, 4]. The time-dependent values of these
integrals can be applied for the prediction of burn degree. The temperatures appearing in the
Henriques integrals correspond to the local temperatures of basal layer I}, (the surface between
epidermis and dermis) and dermal base I'q (the surface between dermis and sub-cutaneous region)
— Fig. 2. The basal layer and dermal base are parallel to the skin surface I's(zy = z1p, 71 = 214).
Thermal damage of skin begins when the temperature at the basal layer rises above 44[°C] (317 [K]).
Henriques [4] found that the degree of skin damage could be predicted on the basis of the integrals

N AFE
I e P P& Filase ol 49
zely:i I /0 b €XP [ RTb(:E,t)] dt (7)
and
i AE
: = P TR RN
r€ely: Iy A d €XP I: RTd(:L‘,t)J dt (8)

where AE/R [K] is the ratio of activation energy to universal gas constant, Py, Py [1/s] are the
pre-exponential factors, [0, 7] is the time interval considered.

First degree burns are said to occur when the burn integral (7) is from the interval 0.53 < I, < 1,
while the second degree burns when Ij, > 1 [3, 4]. The third degree appears when the integral I; > 1.

2. SENSITIVITY ANALYSIS

In the paper the direct approach of sensitivity analysis [5-8] is used. So, the basic equations con-
stituting the model of the process are differentiated with respect to the tissue thermal parameters
Zn, where Rl = )\1,22 = )\2,23 = /\3, 24 = C1,R5 = C2,26 = C3,27 = kz,Zs = k3, z29 = Qm2;210 = ng.
At first, the Eqgs. (1) are differentiated, and then

dcc 0T, O (6T> 8k, )

s . 0 ok, O, . 0Qme
0z, Ot “Ozn \ Ot |~ Oz “Ozn

2 e —_— —_—
(V T)+ [TB Te) — ke D7 + Tl (9)

Using again the Egs. (1) we obtain the following form of (9)

O s 2 c X O\ 0T,
s )\ i
Gl 7Y U b ()\ 0z 0w ) Bt 5
1 0 Ok OQme
o © [ke (T — Te) + Qme) + Be, (Tg — Te) — keUen + GER
where Uy, = 0T, /02z,.
Differentiation of the boundary conditions gives
e for basal layer
10X 1 8)\1>
V I,t = V _'E,t + | ——— - z, t
z € Iy: n(2:%) = Van(2,?) ()\z Ozn A1 02 %(2,8), (11)
U@, t). = Uon(xit) = Lon(E;1);
e for dermal base
1 8)\3 It 6/\2>
Von(z,t) = Vs x,t+(—— z,t),

Uzn(m‘,t) — Ugn(w,t) = Udn(.’t,t);
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e for skin surface

1 0\
Vaaka, 1) —qs, t < ts,
g rote Lamh ey, Retth (13
Vvln(x)t) =0’ t>ts;
e for the remaining parts of the boundary
2€°Fg: Ve, 1) =0, (14)

where Ven(z,t) = —AeQUen(z,t)/0n.
Finally, we differentiate the initial condition, this means

t=0: Ue(z,t)=0 (15)

Taking into account the form of I and Iy (c.f. Egs. (7), (8)), the sensitivity of these integrals with
respect to the parameter z, should be calculated using the formulas

Bl o 2 2 AR T AE

a_zn‘/ "RT2(x,t) ) § RTb(x,t)]U””(“”t)dt (e
and

8L " 1. AR " AE

=2 = e i WL A TV E

b, /0 TR0 T | RTd(m,t)]Ud (2,%) i

The change of burn integrals connected with the change of parameter z, results from the Taylor
formula limited to the first-order sensitivity, this means

%Azn (18)

&b [ & fovn) = Dl e ) & 97

and
0ly

Zn

iz, £ A8 Y= 13(2,) :l: —Azp. (19)

3. BOUNDARY ELEMENT METHOD

The primary and also the additional problems resulting from the sensitivity analysis have been
solved using the 1st scheme of the BEM for 2D transient heat diffusion. At first, the following
Fourier equations are considered

OF(z,t)
ot

where Fe(z,t) denotes the temperature or functions resulting from the sensitivity analysis, Se(z,t)
are the source functions. The functions Se(z,t) take a form

€t Ce = A\ V2F.(z,t) + Se(z,t), e=1,2,3 (20)

e for the primary problem (c.f. Eq. (1))
Sel2:t) =k [Te = Tl 0 &+ Qume; (21)
e for the problems concerning the sensitivity with respect to z, (c.f. Eq. (10))

e 0 Gce> (x5} L8N

Se(Z',t) = <-A—e.8zn —_ —az 6t s A_e [k' TB keTe(:B,t) —+ Qme]

6k a me
INCLY o e(m,t)]—keUen(x,t)+;2T.

(22)
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We introduce the time grid
0=0<tl<...ctFl<tf <... <09, At =tf —tf-1, (23)

If the 1st scheme of the BEM is taken into account [2, 7, 9, 10] then the boundary integral equations
corresponding to transition /=1 — ¢/ are of the form

tf
Be(é)Fe(ﬁ,tf)ﬂLci/ /Fe*(é,m,tf,t)Je(x,t)dFedt
e Jtf—-1 ¥
S
=2 [ [ nest oREyara (24)
f—1 e

tf
+// F;(g,x,tf,tf—l)Fe(x,tf-l)dfze+-cl— / Su(z, ) FX (€, 2, ¢, £)d 02, dt
e e Jtf-1 2.

where I, denotes the boundary limiting sub-domain §2,,e = 1,2, 3 and B,(£) is the coefficient from
the interval (0,1).
In Eq. (24) F} are the fundamental solutions [9, 10]:

2
e CaT
b s tt) = ———e —_— 25
where 7 is the distance from the point under consideration z to the observation point £, while

NLAGERN)

J:(f,l‘,tf,t) S on
e

(26)

and

OF(z,t)

Je(xvt) = —'/\e 8718

(27)

For the constant elements with respect to time [9, 10] the boundary integral equations (24) take
a form

Be(E)Fe(gytf)','A Je(x,tf)ge(fax)drez/r Fe(x;tf)he(f,x)dre

(28)
% / / T2, ) F(e, 1) d 2 + / / Se(z, )06 (€, 2) d 2,
e e
where
3
e / T2t 8 dt (20)
Ce Jtf—-1
and
g q¢
St s 2 / Fr(6,a, ¢! ) dt. (30)
Ce Jtf—-1

In numerical realization the constant boundary elements and constant internal cells have been used.
We assume that the boundary of sub-domain §2; is divided into N; constant boundary elements
Ij,j = 1,1,...,N; and the interior {2, is divided into L; constant internal cells. Similarly, the
sub-domain (2 is divided into N3 — Nj boundary elements I'j,j = N1 +1,N1+2,..., N2 and Ly — Ly
constant internal cells, while the sub-domain (23 is divided into N — N; — N2 boundary elements
Ij,j=N3+1,Ny+2,..,N and L — L, — Lo internal cells. Then we obtain the following discrete
forms of the boundary integral equations (28)
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o for epidermis sub-domain

Ny Ny L L

-1 -1
2 Gyl =D HyF] + 3 PR/~ + 3 Zis{ (3
j=1 =1 =1 =t

e for dermis sub-domain

Ny N2 Lo L
=) %
2. GhJf=3% mEiF[+ 3 RFT'+ Yzl (32)
Jj=N1+1 Jj=N1+1 I=L1+1
e for sub-cutaneous region
N N L 1
<3 *1
Soucpfaliu N3 el & TN ki, 8 g BpRac (33)
Jj=Na+1 j=Na+1 l=La+1
where
6y = [ s 0ar; (34)
I
h £iax)dr': iFEJ
g — Jre€aran (35)
—0.5, i=j
and
i = // F(&,x,tf,t/1)d 0, (36)
2
5=// ge(€',7)d 0. (37)
2
The system of equations (31)—(33) can be written in the matrix form, namely
GeJ! = H°F{ + PeF{™! + zes{™ !, (38)

If we separate in these system the fragments concerning the skin surface I's, the common boundary
I'y between 2 and 2, and the common boundary I'y between (% and 23 (c.f. Fig. 2) then we have

e for epidermis sub-domain

3}
[G: G Gi]|J |=[H] H H]]
I
e for dermis sub-domain
3

[6* G Gi]| 3, |=[®* B} H}]

F{ | +PW¥[ 4 z1sfY (39)

+PF{ 2%, (40)
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e for sub-cutaneous region
f
J3

7
et 4 PP g8 (41)
o f
3d

|-t =)

e a) :

The boundary conditions given on the surfaces I's, I and I'q can be written in the form
e for basal layer (c.f. Egs. (2), (11))
{ 3, =3, +R],
z€ly:

f =l el
Fip=Fy =Fp;

(42)

e for dermal base (c.f. Egs. (3), (12))
;=3 + R,
xely: " , " (43)
Foa = F3 =Fg;
o for the skin surface (c.f. Egs. (4), (13))
zely: Jf=Aq£. (44)

We introduce the conditions (42)-(44) to the Egs. (39)-(41). Taking into account the remaining
boundary conditions (Egs. (5), (14)) we obtain

e for epidermis sub domain

B F{ -
F£ 1 1 f—lk 1gf-1
[-H! -H! -H} G} ] RS Glagl FPF -+ 28T (45)
b
B
e for dermis sub-domain
F{
I%
[=H} G} o2 -—H3 /G | foB) &-GIR] +PAFY™ + 23817, (46)
f
Fd
| 34 ]
e for sub-cutaneous region
F)
ol o3 —mt]lal | =HR{wPIR) 4 238" (47)
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Joining the above systems of equations finally we have

f B 1pf-1 1ef-1 1
~H'-H!-H!G! 0 0 0 0 Fy G;Aq; + P'F;  +2'Sy

3 -1 -1
0 0--H2G?-H?-H3G2 0 b |_| GJR{+P%F] " +2%s]

H°R] + P°F{™" + 238§~

0 0 0 0 0 -H3GS-H3

After the determining the ‘missing’ boundary values of F' and J, the values of function F at the
internal points & for time ¢/ can be calculated using the formulas

e for epidermis sub-domain (i = N +1,N +2,..., N + L)
N Ny L, Ly
3 =
T/ =) HGF[ =Y 6L+ PiFT + Y zhsi™, (49)
j=1 j=1 =1 1=1

e for dermis sub-domain (i = N+ L; +1,N+ L; +2,..,N + Ls)

N N2 Ly Lo
-1 -1
T/ = > HyE[- 3 Gyif+ 3 PRI+ 3 Zish (50)
Jj=N1+1 Jj=N1+1 I=L1+1 I=L1+1

e for sub-cutaneous region (i = N + Ly +1,N + Ly + 2,..., N + L)

N N L L
-1 -1
T/= 3 HyF - 3 G+ 3 RFT+ 3 Zs (51)
Jj=N2+1 Jj=N2+1 l=L2+1 l=La+1

4. RESULTS OF COMPUTATIONS

The symmetrical fragment of 2D domain of skin shown in Fig. 2 is considered. The dimensions of
12 equal 0.0121 x 0.02 [m]. The positions of basal layer and dermal base correspond to z; = 0.0001
[m] and 21 = 0.0021 [m]. The thermophysical parameters of skin tissue are collected in Table 1 [3].

The ratio of activation energy to universal gas constant AE/R = 55000 [K], the pre-exponential
factors: B, = 0 for T'(z1p, 72,t) < 317 [K], Py = 1.43 - 102 [1/s] for T(z1p,2,t) > 317 [K] and
Py =0 for T(z14,22,t) < 317 [K], Py = 2.86 - 10% [1/s] for T((z14,z2,t) > 317 [K] [3]. The initial
temperature of skin: Tp = 37 [°C].

The external boundary of tissue Is is subjected to the heat flux given by formula (for ¢ < t,)

0, g € [—0.01, —0.005],
2s(0,z2,t) = Sri_oaxzh, x5 € [-0.005,0.005], (52)
0, x5 € [0.005,0.01],

where a;, are the coefficients.
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Table 1. Thermophysical parameters of skin and blood

Parameter Unit Sub-domain Value
epidermis 0.235
thermal conductivity W/mK dermis 0.445
sub-cutaneous region 0.185
epidermis 4.31-108
volumetric specific heat J/kgm?3 dermis 3.96 - 106
sub-cutaneous region | 2.67 - 106
blood 3.9962 - 10°
epidermis 0
metabolic heat source W/m?3 dermis 245
sub-cutaneous region 245
blood temperature °C 37
epidermis 0
blood perfusion coefficient | m3blood/s/ | dermis 0.00125
m3tissue | sub-cutaneous 0.00125

On the stage of numerical computations the interior of domain has been divided into 6640 internal

cells, while the external and internal boundaries into 646 boundary elements.

In the first example of computations the following values have been assumed: ag = —6500, a; = 0,
ag =5.2-10%,a3 = 0,a4 = —1.04 - 10! and exposure time t; = 18 [s].

In Fig. 3 the temperature distribution in the domain considered for 15 [s] and 25 [s] is shown.
The sensitivity analysis of temperature field and burn integral I has been done with respect to the
all thermophysical parameters. It turned out that especially essential in the case considered are the
changes of thermal conductivity and volumetric specific heat of the dermis sub-domain. In Fig. 4 the
distribution of burn integral Ij(z1p, 22, 16) and its sensitivity with respect to ¢y for Acy = 120000

is shown.
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Fig. 3. Temperature distribution for 15 and 25 [s]
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Fig. 4. Distribution of integral I, for ¢t = 16 [s] — change of c»

In the second example the following values of coefficients (c.f. Eq. (52)) have been assumed
ap = —80000,a; = 0,as = 6.4 -10°,a3 = 0,a4 = 1.28 - 10'* and exposure time t; = 5 [s]-

In Fig. 5 the temperature distribution in the domain considered for 5 and 20 [s] is shown. The
sensitivity analysis of temperature field and burn integral I; has been also done with respect to
the all thermophysical parameters. It turned out that especially essential in the case considered are
the changes of thermal conductivity and volumetric specific heat of the dermis and sub-cutaneous
region. In Fig. 6 and 7 the distribution of burn integral I;(z14, z2,22) and its sensitivity with respect
to the Ag and ¢y for AXy = 0.025 and Acy = 12000 are shown.
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Fig. 5. Temperature distribution for 5 and 20 [s]

Summing up, the methods of sensitivity analysis and application of BEM on the stage of numer-
ical computations constitute the quite useful tool for estimation of thermal processes proceeding in
the biological tissue subjected to an external heat source.
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Fig. 6. Distribution of integral I; for ¢t = 22 [s] — change of ),
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Fig. 7. Distribution of integral I; for t = 22 [s] — change of c2
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