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This paper presents an iterative method for solving two-dimensional wave problems in infinite domains.
The method yields a solution that satisfies Sommerfeld’s radiation condition, as required for the correct
solution of infinite domains excited only locally. This problem occurs in the solution of the wave equation
in infinite domains when using an asymptotic local DtN (Dirichlet-to-Neumann) map in computational
procedures applied to a finite domain. We are demonstrating that the amplitudes of the reflected fic-
tive harmonics depend upon the wave number, the location of the fictive boundary, as well as on the
DtN operator used in the computations. A constant value of the operator cannot sufficiently eliminate
the amplitudes of all reflected waves, while the results are poor especially for higher harmonics. Thus,
we are proposing an iterative method, which varies the tangential dependence of the operator in each
computational step.
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1. INTRODUCTION

In solving wave problems in infinite domains the main problem is to satisfy the Sommerfeld’s radia-
tion condition — the boundary condition at infinity. The radiation condition is satisfied automatically
as a part of the fundamental solution in the boundary element method. Unfortunately, the funda-
mental solution is not always available. Although the boundary element method is regarded as the
most powerful procedure for modelling the unbounded medium, it requires a strong analytical and
numerical background.

In several wave motion problems in infinite domains it is more convenient, or even necessary,
to solve the problem only in a finite computational domain analytically, or numerically by finite
difference, finite element or finite volume methods. To obtain the finite computational domain ({2y)
as an interior boundary value problem, the infinite domain must be truncated by introducing a
fictive finite boundary (f), see Fig. 1. As a consequence spurious reflections of waves from 3 are
obtained. In order to diminish these reflections various authors have devised improved boundary
conditions on f.

An idea is to use the Dirichlet-to-Neumann (DtN) map on the artificial fictive boundary ap-
proximated by a series of Hankel functions. Bayliss and Turkel [1] used the asymptotic expansion of
displacements valid for the field far from fictive boundary, which yielded similar to approximate local
boundary conditions. Keller and Givoli [2] and Givoli and Keller [3] obtained exact non-reflecting
boundary conditions on 3, which totally eliminate all reflections. Porat and Givoli [4] obtained solu-
tions of the Helmholtz equation in elliptic coordinates by involving the so-called Mathieu functions.
This approach is applicable when choose elliptic artificial boundaries. Givoli and Patlashenko [5]
developed a systematic way to derive optimal local Non-Reflecting Boundary Condition (NRBC)
of given order. The optimal NRBC may be of low order but still yield some high-order modes in
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the solution. Some authors developed special finite elements for exterior problems of wave propa-
gation — [6] and [7]. Givoli [8] presented the state-of-the-art review of the standard DtN methods.
He concentrates on two major recent advances: (a) the extension of the DtN finite element method
to non-linear elliptic and hyperbolic problems; (b) procedures for localizing the non-local DtN map
leading to a family of finite element schemes with local artificial boundary conditions. Pinsky and
Thompson [9] used approximate local boundary conditions from [1] in the finite element formula-
tion in order to solve two-dimensional time-dependent structural acoustic problem. Thompson and
Pinsky [10] did the same for three-dimensional problems.

In all these standard DtN methods the Dirichlet to Neumann operator is introduced into the
finite elements on the artificial finite boundary. The consequence is that difficulties with continuity
between elements on the artificial boundary may occur when high-order local operators are used. In
these cases Galerkin’s discontinuous finite element formulation is used in order to get good results.
Hohage et al. [11] presented a new efficient algorithm for the solution of direct time-harmonic scat-
tering problems based on the Laplace transform. The starting point in the method is an alternative
characterization of outgoing waves called pole condition, which is equivalent to Sommerfeld’s radi-
ation condition for problems with radially symmetric potentials. Furthered representations of the
formula based on the pole condition are presented in [12].

Aiello et al. [13] presented a new iterative procedure for solving electrostatic problems in infinite
domains. In their method they used Green’s function to obtain various Dirichlet and Neumann
boundary conditions. Unfortunately, the form of Green’s function can be very complicated for
certain mechanical problems or may not exist at all in an analytical form.

The aim of this paper is to solve the problem of wave motion in infinite domains when a so-
lution is obtained with the DtN map on the inserted fictive boundary. In Sec. 2 the idea for an
improved solution, achieved by an iterative variation of DtN operator, is presented. Some nu-
merical examples with comparison in results obtained by the standard DtN method are given in
Sec. 3.

2. THEORETICAL BACKGROUND

The method yields an iterative solution for solving wave problems in infinite domains. The infinite
domain, which represents the exterior boundary value problem, is first truncated by introducing
a fictive finite boundary (). The actual system is mathematically divided into two subsystems

(Fig. 1):

e an infinite domain outside of the fictive boundary (exterior boundary value problem),

* a finite computational domain () (interior boundary value problem), bounded with obstacle
(actual boundary I') and fictive boundary 3.

a)

Fig. 1. a) Exterior boundary value problem; b) Interior boundary value problem
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2.1. Infinite domain outside of the artificial boundary

The radiation condition in a space outside of the fictive boundary can be represented with DtN
(Dirichlet-to-Neumann) operator:

g—z ="DtN-d;" "on 8. (1)

In Eq. (1), u(z) is the unknown displacement field and n is the outward normal on the fictive
boundary. An exact operator (DtN) is the normal derivative of the displacements on the fictive
boundary providing that the displacements exactly satisfy radiation conditions. The operator yields
to the given displacements the belonging stresses, thus Diriclet-to-Neumann boundary conditions.
When an exact operator is used the radiation conditions are exactly satisfied. In general, the exact
formulation of the operator cannot be represented in an explicit analytical form, but only in an
integral form and is usually not simple enough to be used in the finite element formulation on the
fictive boundary. Thus, the use of a local operator usually approximates a non-local one.

To obtain local operators, some asymptotic expressions for Hankel functions must be introduced
with respect to the independent value of the product (kR). Thus the accuracy of operators depends
on the location of the fictive boundary (R) and on the considered wave number (k). Asymptotic
local operators obtained by Bayliss and Turkel [1] are expressed in the following forms, starting
from the crudest approximation to more exact ones:
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The simplest operator S3/4 is called Sommerfeld’s operator. The operator S; is the axial symmet-
ric operator, which does not depend on the tangential coordinate (¢), while the non-symmetric
operators Sy and S3 do.

2.2. Finite computational domain

In the presented method an iterative procedure for solving the wave equation in the finite domain
is proposed. The finite computational domain {2 is subjected in each iteration to actual (the same)
boundary conditions on I" and to various ones on the fictive boundary (Dirichlet or Neumann). The
modified wave equation with starting boundary conditions is in the first computational step of the
iteration in the form:

VZu + k*u = 0; u = u(ka) on I', u = FDBC on (6)
FDBC represents fictive Dirichlet boundary conditions on the fictive boundary (3). These conditions

may be completely arbitrary. The simplest are the zero displacements (FDBC = 0), but the method
needs less computing steps when choosing F'D BC, which are similar to radiation conditions. Normal
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derivatives on (3 as a result of FDBC must first be computed. While the interior boundary value
problem is discussed, a general solution is composed of the two terms in the form:

N-1

g-% =Y [Awm- (-F HOKR) + k- HGL, (kR)
m=0
i M (-% - HO®R) + k- HD (kR)) |. %

In the solution N is the total number of the considered harmonics and H,(,}) (kr) and H,(,f) (kr) are
Hankel functions of the first and the second kind and order m according to the independent value kR.
The constants Aj,, and Ay, are the amplitudes of the waves propagating inwards and outwards
of the considered domain, respectively. They depend on the prescribed boundary conditions, on
the selected asymptotic local operator (Sy) and also on the starting FDBC. As the asymptotic
local operators are not exact, spurious reflections from the fictive boundary are obtained. They are
physically represented with the amplitudes Ayy,.

In the second computational step the displacements on 3 are obtained due to fictive Neumann
boundary conditions (F'NBC') on the fictive boundary. This step yields the second “point”. For the
choice of FNBC applies the equivalent comment as for the F'DBC mentioned above. Of course, the
finite computational domain and the exciting conditions are the same in all computational steps.

Thus, in the first two steps of the iteration procedure we have for every point on the fictive
boundary a pair of values consisting of obtained displacements and derivatives. For the sake of the
explanation of the method, we shall call these pairs “the points” (P1 and P2). In the graph, with the
displacements on the abscissa (P1) and the derivatives on the ordinate axis (P2), we shall present
them symbolically as a single point (Fig. 2). It is worth noting that the “point” is complex.

In the third step of the iteration procedure the two above computed “points” yields a line 3
(Fig. 2), while the DtN operator, which is usually in the asymptotic local form, is symbolically
presented by another line (Sy). The solution of both lines is symbolically presented by the point
A®_ This completes the first iteration, which yields new FDBC and FNBC to start the next one.
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Fig. 2. Iterative procedure for determining new fictive boundary conditions
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The lines y® and “points” A® i =1,2,..., in Fig. 2 are only a symbolic graphic presentation of
equations and their solutions in each iteration, because the arguments are complex functions, or in
case of FEM complex vectors. Thus the graph suggests the idea of the method only symbolically.
The operator Sy is complex and is simply the proportionality factor between the normal derivative
and the displacement. It can be considered formally as a tangent function of a complex angle.

The examples presented later suggest that the method has several advantages:

e As the method is iterative, the iterations render the possibility to change the operator in each
step of the iteration in order to eliminate various harmonics comprised in the waves reflected
from the fictive boundary. Thus, although the iterations require more computations, they
improve the results at the same time. However, we can achieve considerable accuracy of the
results already in a couple of iterations providing we start with values on the fictive boundary,
which at least poorly approximate the outgoing waves.

e The method does not include the DtN operator into the dynamic stiffness matrix, unlike the
standard DtN methods. The advantage is that the problem of the continuity conditions of
higher harmonics, which may occur between the finite elements, is not present at all. Else,

there is no need for special finite elements on the fictive boundary as opposed to the standard
DtN methods.

e Finally, the method can simply be employed in the standard computer programs for standard
finite element method. It requires only some additional simple mathematical manipulations,
which are in principle simple to integrate it into the computer program.

3. NUMERICAL EXAMPLE

Consider a simple out-of-plane wave motion in a full space with a circular hole, having a radius a
(Fig. 3).

Fig. 3. Space with a hole

Wave number is k. Wave motion in a whole space (r > a) is described by a differential equation
of Helmholtz type:

Viu + k*u = 0. (8)
We are supposing that we have prescribed harmonic Dirichlet boundary conditions on the hole:

u(ka) = Zuo - cos (myp), m=0,1,..,N—1. 9)
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3.1. Approximate solution obtained by iterative DtN method

The interior boundary value problem solution is in form of Eq. (7) but with respect to the prescribed
actual boundary conditions (Eq. (9)):

i N-1 5
o= = [Am: (-7 - HDER) + k- BS),(kR))
m=0
+ Ao - (2 HO(R) + k- HEL (kR)) ] - cos(mep). (10)

We will discuss two different numerical examples:

a) with two considered harmonics (N = 2),
b) and with first four considered harmonics (N = 4).

a) N = 2; Discuss the numerical example with ¥ = 1.0 and a = 1.0. The fictive boundary is
located very close to the origin (R = 1.5). Figure 4 shows the solutions for the real and the imaginary
part of the normal derivative obtained with the iterative method in the fourth iteration and the
with the standard DtN method. The same non-symmetric operator Sz with D = —Cos(1¢) is used
by the both methods.
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Fig. 4. Solutions for the real and imaginary part of the normal derivative on R = 1.5; N = 2

It is evident that results obtained by the iterative method are better. To get a better insight into
accuracy of the method it is also interesting to present the amplitudes of the reflected harmonics.
Table 1 presents the obtained absolute values of the constants A;o and A;; from Eq. (10) if the most
rigorous fictive boundary conditions (FDBC = FNBC = 0) at the start are selected. Operator Sy
in form of Eq. (4) is used with different values of the tangential dependence D, but it is constant
during iterations. Some solutions with another FDBC and FNBC can be found in [14].

It is evident that by using the symmetric form of the operator (D = 0) we have problems with the
second (non-symmetric) harmonic. By introducing the tangential dependence with D = —Cos(1¢)
we can improve the accuracy of the second harmonic, but then the reflections of the first (symmetric)
harmonic are bigger. We explained in Sec. 2 that it is in the iterative method possible to change the
operator during the iterations. The results of the case with the variable D are presented in Table 2.
The tangential dependence is changed in the following form:

e D =0 in each odd iteration — symmetric form,
e D = —Cos(1¢) in each even iteration — non-symmetric form.
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Table 1. Absolute values of the constants A1o and A1

A1o An
D=0 D= —-Cos(l¢) | D=0 D = —Cos(1¢)
2. iteration | 4.516E—3 0.0526 0.1160 0.0119
3. iteration | 4.614E—3 0.0579 0.1102 0.0110
4. iteration | 1.989E—3 0.0471 0.1141 0.0174

Table 2. Absolute values of the constants A10 and A1;

A1o An
2. iteration 4.516E—3 0.1160
3. iteration 0.0435 0.0926
4. iteration 0.0443 0.0805
5. iteration 0.0356 0.0423

The results in the second iteration are of course the same as by previous example D = 0 =
const. The amplitude of the reflected second harmonic (Ajp) is in the second iteration bigger as a
consequence of non-symmetric form of D in the previous iteration. But in general, in comparing
with Table 1, the obtained results are improved by changing D during the iterations.

b) N = 4; Discuss now the problem with first four considered harmonics. We explained that we
usually have problems to obtain accurate solution for higher harmonics if the fictive boundary is
located close to the origin. In the previous subsection we showed that a true way to an accurate
solution is in a suitable selection of the asymptotic local DtN operator, which is used to satisfy a
radiation condition in the truncated area.

For the same numerical problem as by N = 2 we keep the same distance of the fictive boundary
(R = 1.5). Table 3 presents the obtained absolute values of the constants A;, from Eq. (10) if a
different tangential dependence in the selected Sy operator is used, but it is still constant during
the iterations.

Table 3. Absolute values of the constants Aj,

A1 An A1o A1z

2. iteration

D=0 0.0604 0.1025 0.6826 2.3858

D = —Cos(1¢) 0.1006 0.0817 0.5382 2.2317
3. iteration

D=0 0.0160 0.1105 0.5349 1.8099

D = —Cos(1¢) 0.0605 0.0648 0.4007 1.6658
4. iteration

D=0 4.268E—3 0.1132 0.5416 1.8250

D = —Cos(1¢) 0.0595 0.0617 0.4054 1.6742

The problem of higher harmonics (m = 2 and m = 3) is evident. Again a better solution can
be obtained by iterative variation of the tangential dependence (D) in the selected operator in the
following form (Form 1):

e D = —Cos(1¢) in each odd iteration — first non-symmetric mode,
e D = —Cos(3¢) in each even iteration — last non-symmetric mode.
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Obtained results in the fourth iteration are graphically presented in Fig. 5. They are also
compared with the results obtained by the standard DtN method in which a constant value
D = —Cos(1¢) is used.
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Fig. 5. Solutions for the real and imaginary part of the normal derivative on R = 1.5; N = 4

It is easy to see again that with the iterative variation of the tangential dependence (D) in
the selected Sy operator better solutions can be obtained. The iterative method also permits other
possibilities how to change D during iterations. Table 4 presents also an option with the simultaneous
variation in the following form (Form 2):

1. iteration: D =0

2. iteration: D = —Cos(1¢)
3. iteration: D = —Cos(2¢)
4. iteration: D = —Cos(3¢)

Table 4. Absolute values of the constants Ain

A1 An Aqp Az

2. iteration

D = (Form 1) 0.0970 0.0759 0.5533 2.3014
D = (Form 2) 0.0545 0.0994 0.6975 2.4566
3. iteration

D = (Form 1) 0.0903 0.0943 0.4034 1.3937
D = (Form 2) 0.0509 0.0610 0.3912 1.6800
4. iteration

D = (Form 1) 0.0592 0.1530 0.2408 1.2831
D = (Form 2) 0.0429 0.0738 0.4265 1.7818

In comparing the obtained amplitudes with those from Table 3 it is evident that especially for
higher harmonics better results can be obtained by iterative variation of the tangential dependence
in the selected operator. In comparing only between Form 1 and Form 2 better results for higher
harmonics (m = 2 and m = 3) are obtained with Form 1, but for a good solution for the first
and the second harmonic it is more convenient to use Form 2. Of course there exist also other
possibilities how to change D during iterations. The presented two possibilities are on our opinion
the most interesting.
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4. CONCLUDING REMARKS

With the method presented, wave problems in infinite domains can be solved. The proposed iterative
method is based on an iterative variation of fictive boundary conditions on the artificial boundary.
It is very important that the method does not include the DtN operator into the dynamic stiffness
matrix as opposed to the standard DtN methods.

We showed that by using a constant value of the operator an accurate solution for all harmonics
cannot be obtained. Thus it is recommended to change the tangential dependence during iterations.
The method permits many possibilities how to variety the operator, we presented only the most
logical and interesting solutions. The most accurate was the variant with the iterative changing
between the first and the last non-symmetric mode. Comparisons with the results, obtained with
the standard DtN method, where it is not possible to change the operator, show many advantages
of the proposed iterative method, especially if the artificial boundary is located close to the origin
and if the problem of higher harmonics is discussed.
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