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The focus of this paper is on the development and implementation of a genetic algorithm (GA)-based
software system using message passing interface (MPI) protocol and library. A customized form of simple
GA used in previous research [1-4] is parallelized. This MPI-enabled version is used to find the solution to
finite element based design optimization problems. Results show that an almost linear speedup is obtained
on homogenous hardware cluster and, with proper reworking of the software, on heterogeneous hardware
cluster.
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1. INTRODUCTION

Genetic algorithms (GA) have evolved over the last three decades to be recognized as a very powerful
tool in obtaining solutions to non-engineering and engineering design optimization problems. The
simple GA while powerful, is perhaps too general to be efficient and robust for structural design
problems. First, function (or, fitness) evaluations are computationally expensive since they typically
involve finite element analysis. Second, the (feasible) design space is at times disjointed with multiple
local minima. Third, the design space can be a function of boolean, discrete and continuous design
variables. The use of GA to find the optimal solution(s) of engineering design problems is still an
open research area. Experience with GA has indicated that more often than not, tuning the GA
strategy and parameters can lead to more efficient solution process for a class of problems.

One of the most interesting aspects of GA is the explosive growth in the number of strategies
explored by researchers in a multitude of disciplines. Below, we present a fraction of a number of GA
variations used in advancing the applicability of GAs especially when parallel computing is available.

Goodman et al. [5] present an approach to optimal design of elastic flywheels using an Injection
Island Genetic Algorithm (iiGA). An iiGA in combination with a finite element code is used to
search for shape variations to optimize the Specific Energy Density (SED) of elastic flywheels. SED
is defined as the amount of rotational energy stored per unit mass. iiGAs seek solutions simultane-
ously at different levels of refinement of the problem representation (and correspondingly different
definitions of the fitness function) in separate sub-populations (islands). Solutions are sought first
at low levels of refinement with an axisymmetric plane stress finite element code for high speed
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exploration of the coarse design space. Next, individuals are injected into populations with a higher
level of resolution that uses an axisymmetric three dimensional finite element model to “fine-tune”
the flywheel designs. In true multi-objective optimization, various “sub-fitness” functions can be de-
fined that represent “good” aspects of the overall fitness function. Solutions can be sought for these
various “sub-fitness” functions on different nodes and injected into a node that evaluates the over-
all fitness. Allowing subpopulations to explore different regions of the fitness space simultaneously
allows relatively robust and efficient exploration in problems for which fitness evaluations are costly.

Miki et al. [6] present an approach where the whole population is divided into several subpop-
ulations which are called islands. A migration scheme that moves some individuals in one island
to another island is adopted to create new population mixes. In the proposed approach, different
values of the mutation rate and the crossover rate are assigned to different islands thereby creating
different GA environments in each of these islands. The optimization problem that is solved is the
minimization of the volume of truss structures under tensile, buckling, and displacement constraints.

Sarma and Adeli [7] use a bilevel strategy in finding the solution to the design problem using
GAs. First, parallel fuzzy GAs are used to obtain a continuous-variable minimum weight design.
In this stage, the objective function and the constrains are considered to be fuzz and a genetic
search is performed with a preemptive constraint-violation strategy. Small constraint violations are
allowed. This solution is then used as a preliminary startup design for the subsequent fuzzy discrete
multicriteria cost optimization. Both OpenMP directive and MPI calls are used in a shared memory
data parallel computing and message passing distributed computing to take advantage of the best
of both approaches.

Scott et al. [8] present a hardware-based GA solution methodology. Speedups of 1-3 orders
of magnitude have been observed when frequently used software routines were implemented in
hardware by way of reprogrammable field-programmable gate arrays (FPGAs). Reprogrammability
is essential in a general-purpose GA engine because certain GA modules require changeability (e.g.
the function to be optimized by the GA). Thus a hardware-based GA is both feasible and desirable.
A fully functional hardware-based genetic algorithm (the HGA) is presented here as a proof-of-
concept system. It was designed using VHDL to allow for easy scalability. It is designed to act as a
coprocessor with the CPU of a PC. The user programs the FPGAs which implement the function
to be optimized. Other GA parameters may also be specified by the user. Simulation results and
performance analyses of the HGA are presented. A prototype HGA is described and compared to
a similar GA implemented in software. In the simple tests, the prototype took about 6% as many
clock cycles to run as the software-based GA. Further suggested improvements could realistically
make the HGA 2-3 orders of magnitude faster than the software-based GA.

We have two major focus or objectives in this paper. First, the proposed improvements to the
simple GA are discussed. These improvements are aimed at improving the reliability and efficiency of
the overall process. Second, the parallel implementation is such that load-balancing issue is tackled
so that the overall methodology works efficiently on both homogenous and heterogeneous computer
clusters.

In the discussions that follow in the paper, the following definitions are used. When explaining
methodologies in the general sense, we define efficient, reliable, accurate and robust methods as
follows.

Efficient: AA methodology is defined as being efficient if it finds an acceptable solution with
minimal computational effort.

Reliable: A methodology is defined as being reliable if it finds an acceptable solution regardless
of the problem nuances or the starting point used.

Accurate: A methodology is defined as being accurate if it finds the best possible solution to a
problem.

Robust: A methodology that is generally efficient, reliable and accurate.

In addition, we define a homogenous computing cluster as follows.

Homogenous Cluster: A homogenous cluster is defined as one having identical computers (or

nodes) connected by a switch (a heterogeneous cluster is one where the nodes are not identical).
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2. GENETIC ALGORITHM

The design problem can be stated as follows.
Find x= bel,...,bxnb; T sxl,...,smnsJ to minimize f(x) subject to gi(x) < 0
= 1, ceny g
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where x is the design variable vector, f(x) is the objective function, n; is the number of inequality
constraints, n. is the number of equality constraints, n;, is the number of boolean design variables,
ng is the number of discrete design variables selected from a list of ng values, and n; is the number
of continuous design variables. The genetic algorithm used in this research has evolved and refined
over time. In this section we discuss some of the improvements that have been made to a simple
GA in order to improve its overall performance. Further details can be found in prior publications
[1-4].

(1) Adaptive penalty function: GAs were developed to solve unconstrained optimization problems.
However, engineering design problems are usually constrained. They are solved by transforming the
problem to an unconstrained problem. The transformation is not unique and one possibility is to
use the following strategy.

minimize : f(x) + Z ¢ - max(0, g;) + Z cj - |hyl (5)
i )

where ¢; and c; are penalty parameters used with inequality and equality constraints. Determining
the appropriate penalty weights ¢; and c; is always problematic. We use an algorithm here where
the penalty weight is computed automatically based on the traits of the current population and
adjusted in an adaptive manner.

(2) Improving crossover operators using the Association String: As discussed by some researchers,
the one-point crossover is preferred for continuous domains, and the uniform crossover for discrete
domains. However, schema representation still plays a pivotal role in the efficiency of the GA. If
one uses a one-point crossover then it is obvious that the ordering of the design variables is an
important issue. Since the characteristic of one-point crossover is that the shorter schema has a
better chance to survive, if two variables that have less of an interdependency are placed adjacent
to each other, or two variables with a strong relationship are placed far away from each other, the
crossover operation will make it more difficult for the GA to search the design space efficiently. To
implement this strategy, we introduce an additional string called the Association String. Results
show that the Association String improves the robustness of the solution process.

(3) Mating Pool Selection: The selection scheme (for generating the mating pool) together with
the penalty function dictate the probability of survival of each string. While it is very important
to preserve the diversity in each generation, researchers have also found that sometimes it may be
profitable to bias certain schema. However, results from most of the selection rules, like roulette
wheel, depend heavily on the mapping of fitness function. In this paper, the tournament selection
is used. There are at least two reasons for this choice. First, tournament selection increases the
probability of survival of better strings. Second, only the relative fitness values are relevant when
comparing two strings. In other words, the selection depends on individual fitness rather than ratio
of fitness values. This is attractive since in this research, the fitness value contains the penalty term
and does not represent the true objective function.

(4) Elitist Approach: Research has shown that the GA with the incorporation of the elitist
approach can be more reliable and efficient than the ones without. This approach is used in the
current research.
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(5) Population Size and Stopping Criteria: Generally speaking, the initial population should
contain uniformly distributed alleles. By this it is meant that, if possible, no chromosome pattern
should be missed. Each chromosome is represented by n bits with each bit being either 1 or 0.
If the distribution of 1’s (or 0’s) in each bit location is to be uniform, the initial population size
should be at least n. During the evolution, it is expected that that the chromosome converges to
some special pattern with the 0-1 choice decided for n locations. Assume that the choice of each
bit is independent of all the other bits. Since the population size is n in each generation, after every
generation from the statistical viewpoint we can expect to learn about at least one bit. Ideally then
after n generations, one can expect to learn about all the n bits forming the chromosome. However,
since each bit is not independent of the others, more than n generations are perhaps necessary
to obtain a good solution. This suggests that the population size and the number of generations
should be at least n. Numerical experience in our previous work suggests that using population and
generation size of 2n leads to acceptable results efficiently.

3. PARALLEL GA

The overall algorithm used in a GA-based design optimization problem is quite simple. The overall
flow is shown in Fig. 1. For engineering design problems, from a computational viewpoint, the fitness
evaluation is the most expensive step. Hence, it would be prudent to parallelize the fitness evaluation
step.

Initial Randomly
Generated Population

Fitness
Evaluation

Competition
(Fitter individuals survive)

Mating Pool
{Reproduction phase)

3
Crossover and Mutation
(Exchange of information)

Offsprings
{New generation)

Fitness
Evaluation

No

Fig. 1. Flow in a Simple Genetic Algorithm (SGA)



Optimal design of engineering systems 159

There are two algorithms that can be used in evaluating the fitness function in parallel. The first
version is presented next. We will assume that the number of available processes, n,, is less than the
population size, npop.

Send All-Then-Receive (SATR) Version
Master Process

ok

Set next available process as process j = 0.

2. Loop through all members of the population, i = 1,2, ..., npop.

3. Generate the vector of design variables, x.

4. Pass this vector to process j.

5. Increment j. If j = n,, set j = 0.

6. End loop.

7. Set next process as process j = 0.

8. Loop through all members of the population, .

9. Receive the objective function value and the maximum constraint violation from process j.
10. Increment j. If j = ny, set j = 0.
11. End loop.

Slave Process

1. Set next available process as processor j = 0.
2. Loop through all members of the population, i = 1,2, ..., npep.

3. If j is equal to the slave process number, receive the vector of design variables, compute and
send the objective function value and the maximum constraint violation.

4. Increment j. If j = n,, set j = 0.
5. End loop.

The problem with the above algorithm is that (a) for the master process, ‘receives’ do not start until
all the ‘sends’ are completed, (b) for the slave process, ‘sends’ do not start until all the ‘receives’
are completed, and (c) load imbalance will take place in a heterogeneous computing environment.
Under this scenario, a buffer overflow is likely to occur. Here is a typical error message that one is
likely to encounter.

MPI/Pro: [4] : Too many unexpected messages! Internal TCP buffer space exhausted
A modified version is presented next where send and receive take place one after the other literally
on-demand.

Load-Balanced (LB) Version
Master Process

Set number of messages sent, Ngeny = 0.

Loop through j =0, ..., min(npep, np).

Generate the vector of design variables, x. Pass this vector to process j. Increment ngept.
End loop.

Loop through all members of the population, i = 1,2, ...,np0p.

Receive the objective function value and the maximum constraint violation from process j.

N G oll b e

If ngent < Mpop, generate the vector of design variables, x for member i. Pass this vector to
process j. Increment ngen. Else send message to process j that this is the last message.

8. End loop.
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Slave Process (Valid only for process j < npop)

1. Loop until last message received.

2. If not last message, receive the vector of design variables, compute and send the objective
function value and the maximum constraint violation.

3. End loop.

It should be noted that in both the versions, only the master process executes the GA. The impli-
cation is that the communication time is held to a minimum. Assuming that one integer word is
4 bytes, one double precision word is 8 bytes and the objective function and maximum constraint
violation are designated as double precision, we can compute the total number of send and receive
bytes as follows for every generation.

Nsend = Treceive = 4npop (nb +ng + 2”3) +38 (2npop) (6)

With both these approaches, it is desirable to use MPI_Barrier after the entire population is
evaluated so that the execution remains synchronized on all the processes.

4. NUMERICAL EXAMPLES

The focus of the current research is to develop and test a parallel, MPI-enabled GA for engineering
problems. Hence, only a sizing optimal design problem is solved using an academic problem that has
the desired characteristics (number of degrees-of-freedom and design variables) to test the parallel
implementation. The results and conclusions, as we will discuss later, can be easily extended to
other types of structural design problems.

The sizing optimization problem is as follows.

Find
Xkx1- (7)
To
n
min f(x) = ZAiL,-pi (8)
i=1
subject to
9i = 0; < 0, 1= 1727 e T (9)

where xxx1 represents the cross-sectional areas of the truss members (design variables), f(x) repre-
sents the mass of the truss (objective function) and g; the stress constraints. To evaluate the fitness
evaluation one must compute the objective function and all the constraints. Without resorting to
any approximation technique, a full finite element analysis is required to evaluate the fitness as
shown in Eq. (2).

Hardware: The numerical examples were generated on two different clusters. The first is labeled
as High-Cost Cluster and is made up of more expensive computers and a high-performance switch.
The second is labeled as a low-cost cluster and commodity computers and switch are used.

High-Cost Homogenous Cluster Information: (a) Number of machines in the cluster = 7
(b) Typical machine: Intel P4 1.7 GHz Dual Xeon, 512 MB RDRAM, Ultra 7200 rpm
IDE Drive, Intel PRO/1000 T NIC, (c) Windows 2000 (SP 2), MPI-Softtech 1.6.3 [9],
Cisco Catalyst 3550-12T switch.
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Low-Cost Heterogeneous Cluster Information: (a) Number of machines in the cluster
= 2 (b) Computer 1: Intel P3-866 MHz, 768 MB RDRAM,. Ultra 7200 rpm IDE Drive,
3COM 3C920 NIC. Computer 2: AMD 1.2 GHz Athlon, 512 MB SDRAM, Ultra 7200 rpm
IDE Drive, 3COM 3C920 NIC, (c) Windows 2000 (SP 2), MPI-Softtech 1.6.3, Linksys
BEFSR41 10/100 Router.

Test Problems: The structural system that is designed is shown in Fig. 2. The planar truss is
described in terms of two parameters — the number of bays and the number of storeys. The truss
members are grouped into three groups per storey — horizontal members, vertical members and
diagonal members. Hence, the number of design variables is equal to three times the number of
storeys. The specific values used in the following examples are as follows.

p = 0.00881448 lbm /in®

o, = 10000 psi

zF = 0.1in? and 2V = 20in? and precision is taken as 0.1 in2,
Bay width = 240 in

Storey height = 120 in

Applied load, P=10000 1b

v

A 4

A 4

A 4

NSTORYS

TV 40 (T 34UV 4T (T ;0D 4T 470

s ——p

NBAYS

Fig. 2. Layout of the planar truss

Two test problems are solved and are identified as TRUSS1 and TRUSS2. TRUSS1 is a structurally
larger problems meaning that one complete finite element analysis takes more time compared to
the other model. However, the number of design variables is smaller. TRUSS2, on the other hand,
is different — smaller structural model but has much larger number of design variables. The problem
details and results are presented next. All timing information is in terms of wall clock (or elapsed)
time.

For a homogenous system, we compute the speedup and efficiency as follows.

Time for one process
Time for n processes’

Speedup obtained for n processes =

Speedup obtained v
n

Efficiency for n processes = 100. : 1£12)
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For a heterogeneous system, we compute the speedup as follows. Let the relative speed of the Ny
processes be denoted as s1, 52, ..., 1, ..., 85, the time taken for each single process run be denoted as
t1,t2, ...y tiy ey tny, and t is the time taken when n processes are used. Then

it max(ti, ta, ...,tnp)

S = 2 (13)
J
1y
e (2 Siti)
Speedup obtained for n processes = 1= (14)

t
Test Problem 1 (ID: TRUSS1): The problem-specific data are as follows.

Number of bays 300

Number of storeys 10

Nodes 3311

Elements 9010

Number of design variables 30
Chromosome Length 240

# of Generations 50

# of function evals/generation 480

The initial population is randomly generated and the GA is terminated after 50 generations. The
problem is solved in both the low-cost and high-cost clusters. The results are shown in Table 1.

Table 1. Results of TRUSS1 Problem

Initial Obj. Function (lbm) 122330
Final Obj. Function (lbm) 51517
High-Cost Cluster Low-Cost Cluster
# of Time | Speedup | Efficiency Time (s) Speedup | Efficiency
Processes (s) (%) C1/C2! (%)

1 1089 1 100 2540/1653 1 100
2 546 1.99 99.5 1021 1.96 98
3 367 2.97 99
4 277 3.93 98.3
) 224 4.86 97.2
6 191 5.70 95

Remarks: The timing values show that the GA-runs scale almost linearly in the high-cost (homoge-
nous) cluster. A relatively modest 245760 bytes are sent and received every generation. The low-cost
heterogeneous cluster shows an almost linear speedup indicating that the LB version of distributing
the fitness evaluations does a reasonable job — the number of fitness evaluation computed by C1 and
C2, on an average, is 170 and 310 respectively. The design history is shown in Fig. 3. In a separate
run to assess the quality of the solution obtained, the objective function was found to reduce to
34726 lbm after 100 generations.

1C1/C2: Computer 1 and Computer 2
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Fig. 3. Design history showing objective function versus generation (TRUSS1)

Test Problem 2 (ID: TRUSS2): The problem-specific data are as follows.

Number of bays 30

Number of storeys 50

Nodes 1581
Elements 4550

Number of design variables 150
Chromosome Length 1200
# of Generations 50

# of function evals/generation 2400

The initial population is randomly generated and the GA is terminated after 50 generations. The
results are shown in Table 2.

Table 2. Results of TRUSS2 Problem

Initial Obj. Function (lbm) Infeasible
Final Obj. Function (lbm) 70582
High-Cost Cluster Low-Cost Cluster
# of Time | Speedup | Efficiency Time (s) Speedup | Efficiency
Processes (s) (%) C1/C2 (%)
1 6762 1 100 18491/11930 1 100
2 3366 2.0 100 74742 1.94 97
3 2269 2.98 93.3
4 1709 3.96 99
5 1382 4.89 97.8
6 1155 5.85 97.5
10 716 9.44 94.4
14 520 13.0 92.9

Remarks: Once gain we see an almost linear speedup with the high-cost cluster. Network traffic
is much more in this example. A total of 5836800 bytes are sent and received every generation.
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When the number of processes is indicated as 10 and 14, both the processors on each computer
were used. Two processes are launched on each computer; hence, we have distributed as well as
shared memory scenario. However, the amount of physical memory appears to be adequate for the
problem being solved. When the system performance is monitored, the hard page faults are shown
to be minimal. The design history is shown in Fig. 4. In a separate run to assess the quality of the
solution obtained, the objective function was found to reduce to 64457 lbm after 100 generations.

Objective Function vs Generation
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Fig. 4. Design history showing objective function versus generation (TRUSS2)

5. CONCLUDING REMARKS

The development and implementation of an MPI-enabled GA is discussed. Due to the very nature
of genetic algorithms, linear speedup is possible with minimal effort — a good example of an em-
barrassingly parallel problem. As we can see from Eq. 6, communication time is a function of the
number of design variables and the population size. Strategies can be developed to reduce the com-
munication time, especially in a homogenous environment, by having the master process broadcast
the fitness values of the entire population to all the slave processes. With this approach, the design
variables do not have to be sent to all the slave processes. There are other approaches that can be
taken to improve the overall performance of the GA. For example, the concept of using DGA with
subpopulations and migration between these population islands is suitable for a parallel computing
environment. These and other ideas are currently being investigated.
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