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New results about preconditioning of rotated trilinear nonconforming FEM elasticity systems in the case
of mesh anisotropy are presented. The solver of the arising linear system is based on the constructed
efficient preconditioner of the coupled stiffness matrix. Displacement decomposition of the stiffness matrix
is used as a first step of the algorithm. At the second step, modified incomplete factorization MIC(0) with
perturbation is applied to a proper auxiliary M-matrix to get an approximate factorization of the obtained
block-diagonal matrix. The derived condition number estimates and the presented numerical tests well
illustrate the behaviour of the theoretically studied algorithms as well as their robustness for some more
realistic benchmark problems.

1. INTRODUCTION

Nonconforming finite elements based on rotated multilinear shape functions were introduced by
Rannacher and Turek [11] as a class of simple elements for the Stokes problem. More generally, the
recent activities in the development of efficient solution methods for nonconforming finite element
systems are inspired by their attractive properties as a stable discretization tools for ill-conditioned
problems including the case of strong coefficient jumps. Such a situation is typical for problems
related to computer simulation of foundation systems in weak soil layers. This paper is focused
on the numerical solution of the Lamé equations of elasticity strongly motivated by the attractive
sparsity of the corresponding stiffness matrices which regular structure holds even in the case of
non-regular meshes. Two algorithms are presented, where M P and MV stand for the variants of
the nodal basis functions corresponding to midpoint and integral midvalue interpolation operators.

Let us consider the weak formulation of the linear elasticity problem in the form: find u €
HE ()] = {ve [HY(R)?: Y, = Ug} such that

: ’ . 5 1 t t
/Q[Que(g) :e(v) + Adivu dlvy]dﬂ—/niyd9+/nvgsgdl’, (1)

Vv € [Hy(2)] = {v € [H'(2)P : up, = 0}, with the positive constants A and p of Lamé, the
symmetric strains

e(u) == 0.5(Vu + (Vu)?),

the volume forces f, and the boundary tractions g.

The construction of robust nonconforming FEM meéthods are generally based on application of
mixed formulation for v and divu to obtain a stable saddle-point system. By the choice of non
continuous finite elements for the dual variable, it can be eliminated at the (macro)element level,
and we get a symmetric positive definite FEM system in primal (displacements) variables. This
approach is known as reduced and selective integration(RSI) technique, see [8].
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Let 27 = wff x wil x wi be a regular coarser decomposition of the domain £2 ¢ R3 into (convex)

hexahedrons denoted by €, and let the finer decomposition 2" = w? x w! x wh be obtained by a

regular refinement of the macroelements € € £2¥ into eight similar hexahedrons denoted by e. In
defining the isoparametric rotated trilinear element, one uses the unit cube (with edges parallel to
the coordinate axes) as a reference element é. For each e € 2", let 1 : € — e be the corresponding
trilinear transformation. The element nodal basis functions are determined by the relations

{¢’i}1,6=1 == {Q’SZ o we—l}'?zb

where ¢; € span{l,éj,ff- - 32 +1vJ = 1,2,3}, and ‘o’ denote the composition of functions $; and
¢.1. For the algorithm M P, the reference element basis functions {Jﬁi}?zl are determined by the
standard interpolation conditions

$:(b7) = by,
where {bfq}?zl are the midpoints of the walls {I‘e] 9_) of &, and then

(Y, ={(1£3¢+20-€2,,-€,,) /6 j=1,2,3}.

Alternatively, for the algorithm MV, integral midvalue interpolation operator is applied in the form
Il‘gl"l/.éi = dij,
ri
and then

{$iYeey = {(2 £ 66 +6¢2 — 3¢2,, — 3¢2,,)/12, j=1,2,3}.

Now, the non-conforming FEM space Vé‘ is defined as follows

6
V£ =~ {Qh = [L2(Q)]3 : the z th(ze,i)¢i, Ve € Qhayh(be, FD) = Hs(be, FD)} ¢

i=1

Here z.; is the current midpoint/node of the hexahedron faces, and b, r,, stands for the midpoint
of the related element face I" if I' C I'p. Let us denote also by Vbh the FEM space, satisfying (in a
nodalwise sense) homogeneous boundary conditions on I'p.

We consider a RSI FEM discretization of the problem written in the form: find u® € Vg such
that

2ue* uh) s*(yh + Adivu! divot| de = i+ gtohdr, 2
e [9.93 Ja/ =

ecNh N

Vol € Voh, where
e*(u) := Vu— 0.519" [Vu— (Vu)!] .

The operator II?H denotes the Lo-orthogonal projection onto Q¥, the space of piecewise constant
functions on the coarser decomposition 27 of £2. The introduced variational problem (2) can be con-
sidered as a generalization of the related 2D formulation studied, e.g., in [5]. It was first introduced
in [9] (see also [10]).

It is important to note that the straightforward low order, nonconforming FEM discretization of
the elasticity problem (1) is ill posed since the obtained discrete problem does not satisfy the Korn’s
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second inequality. This disadvantage is overcome in (2) by the I Q projection which is equivalent
to a mixed formulation with respect to the space pair (Vi x Q% )
Applying the RSI FEM discretization (2) we get the linear algebraic system
Ku=f (3)

where K is the related symmetric and positive definite stiffness matrix. Let us assume that K is
written in a 3 X 3 block form

Kiu Ki2 Kiz
K= | Ky Kyp Ky |,
K3 K3z K33

where the block structure corresponds to a separate displacement component ordering of the vector
of nodal unknowns. Our aim is to develop an efficient solution method for the system (3) suitable
for large-scale and very large-scale problems.

For preconditioning of K we use the isotropic variant of the displacement decomposition (DD)
approach, see e.g. [2, 4], where the preconditioner Cpp is written as follows

A
Cpp = A g 4TF, (4)
A

with a proper approximation (preconditioner) A of the stiffness matrix A corresponding to the
bilinear form

o) = 3 [£(3- 2252 e 0

ecNh

Such preconditioning of the coupled matrix K is theoretically motivated by the Korn’s inequality
which holds for the RSI FEM discretization (2) under consideration.

2. DD MIC(0) PRECONDITIONING

In this section we recall some known facts about the modified incomplete factorization MIC(0)
preconditioner applied to the matrix A (see (4)). Our presentation at this point follows those
from [4]; see [12] for an alternative approach. Let us rewrite the real N x N matrix A = (aj;) in the
form

A=D-L-1It (6)

where D is the diagonal and (—L) is the strictly lower triangular part of A. Then we consider the
approximate factorization of A which has the following form

Cumrc(o) = (X — L)X 71X - L)},
where X = diag(z1,--- ,zn) is a diagonal matrix determined by the condition of equal rowsums
Curcoe=4e, e=(1,---,1) eRN.

For the purpose of preconditioning, we are interested in the case when X > 0 and thus Cpz;¢(q) is
positive definite. If this holds, we speak about stable MIC(0) factorization. Concerning stability of
MIC(0) factorization, we have the following theorem.
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Theorem 1. Let A = (aij) be a symmetric real N x N matrix and let A = D — L — L* be the
splitting (6) of A. Let us assume that

r O
A = U
A§+Lt.e_ > 0, §=(17"'a1)t€:RN7

i.e. that A is a weakly diagonally dominant matrix with nonpositive offdiagonal entries and that
A+ L' = D — L is strictly diagonally dominant.
Then the relation

i—1

N
5 ik

k=1 "% j=k+1

gives the positive values z; and the diagonal matrix X = diag(z1,--- ,zn) defines stable MIC(0)
factorization of A.

Now we introduce the displacement decomposition incomplete factorization preconditioner
CDD MIC(0) in the form

Cumrc(o)(4)
Cpp mrc)(K) = Cumrc)(4) - (7
Cumrc()(4)

Here Cprrc(0)(A) stands for the MIC(0) preconditioner of A. It is assumed that if (in the general
case) the matrix A does not satisfy the stability conditions of the Theorem 1 it should be first
modified in a proper way to a matrix allowing stable MIC(0) factorization [12].

Remark 1. The numerical tests presented in the last section are performed using the perturbed
version of M1C(0) algorithm, where the incomplete factorization is applied to the matrix A = A+D.
The diagonal perturbation D = D(§) = diag(dy,...dn) is defined as follows:

= { €ag if @i 2 2w

V% if ai < 2wy

i =

where 0 < € < 1 is a constant and w; = Zj>i —aij.

3. LOCAL ANALYSIS

For the chosen (brick) finite element e € 2", we introduce the local squares of ratios of mesh
anisotropy p = min, j(hi/h;)?, ¢ = max;;(hi/h;)?,i,j € {1,2,3}, where h; are the local mesh
parameters, and let » = min; h;. Then the element stiffness matrices corresponding to M P and MV
variants of the rotated trilinear FEM read as follows:

11 12 13
amp AMmp AMP

2
ASCI)P = 2;(6,—)T alip aitp aitp |
L 31 32 33
a a a
mp 9vp AMp
ag the ( 43pg+4q+4p —1lpg+4q+4p >
MF —1lpg+4q9+4p 43pg+4q+4p )’

4@ s <4pq+43q+4p —4pq—11q+4p>
MP —4pq —11g+4p 4pg+43q+4p )’
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S sl 4pq +4q +43p 4pg—4q—1lp
MP 4pqg—4q—43p 4dpg+4q9+43p )’
bt T (—8pq—8Q+4p —8pq—8q+4p)
o3 —8pg—8q+4p —8pg—8q+4p )’
( —8pq +4q — 8p —-8pq+4q—8p)
—8pg+4q—8p —8pg+49—8p )’

23 _ (4pq—8q—8p 4pq—8q—8p>

13
aGpMp =

a —
b 4pg—8q —8p 4pq—8q—8p
azlv}v a}vgv a}v?v
g o 2a(e)r 21 22 23
MY, T -3 /Pl apy Apmy Apqv )

31 32 33
Apyy Omy o Omy

g <7pq+q+p pq+q+p>
MY. pg+q+p Tpg+q+p )’
22 = (pq+7q+p pq+q+p>
! pg+q+p pg+Tq+p )’
e (pq+q+7p pq+q+p)
) pg+q+p pa+q+T7p )’
(—2pq—2q+p —2pq—2q+p)
-2pg—29+p —2pq—2q9+p )’
igges <L (—2pq+q—2p —2pq+q—2p)
AR -2pq+q—2p —2pg+q—2p )’
il il (pq—2q—2p pq—2q—2p>_
i pg—29—2p pg—2q—2p

12
apyy =

Lemma 1. The element stiffness matrix for algorithm MP is M-matrix if and only if (p,q) € T,
where the curvilinear triangle T is given by

4p Se 11p

4 :
55 4p 11p
4) <qg<
pe (LA o= p SAS T

The element stiffness matrix for algorithm MV is never M-matrix.
The global stiffness matrix can be written in the form A = ZA(e) where the sum stands for

e
the standard FEM assembling procedure. We will analyze here two constructions of auxiliary M-
matrices to be used as a preliminary preconditioning step of A. We will first introduce By = Z B§e)
e

where the element stiffness matrix Bge) corresponds to M P algorithm in [—h, h]3, namely

17 -1 -4 -4 -4 -4
-1 17 -4 -4 -4 -4
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In the second option, we use By = ZB’ée), where the element matrix Bée) is obtained from the
[

original matrix A(®) by simply zeroing the positive offdiagonal entries, and then modifying the
diagonal to fulfill the rowsum criteria, see [7]. Here a detailed local spectral analysis for the first
variant is presented. The eigenvalues of the generalized eigenvalue problem

Ag‘:})Pu = /\BF)U

are as follows

PNy TIRO Y. U VR -
VP4q VPq VPq
N LPatp+a)+/(pg+p+9)?—3pgp+g+1)
4.5 == )
3 VP4
and respectively for the algorithm MV
ASSI)V'U’ = )\Bfe)u,
p q Pq
A = ——, Ay = —, A3 = —,
1 /B 2 /b 3 /b
N, —3Patp+a+V(pg+p+a)?-3palp+q+1)
45 == .
4 VPq

Similar results are obtained for second variant where the same eigenproblems with Bz(,e) in the right
hand side are solved.

Now, let us locally modify the introduced matrices B,(:). The following readily seen lemma will
be used to get the final results of this section.

Lemma 2. Let us define By, k = 1,2 in the form

Be=), (i) B®, k=12

e min

Then the relative condition number of this locally scaled preconditioning matrix satisfy the estimate

5 ((B) ™' 4) < maxx ((B,(;))_l A(e)) = max ’/\\i%:

Theorem 2. Let us denote by Q the maximal of the locally introduced parameters of mesh
anisotropy q, that is

Q = maxgq.
e
Then the following estimates for the relative condition numbers hold (see [6]):

w((BI7) 7 4lP) <, < ((BY7) 7 4) < 30,

() A <hoen, (@) 4v) < e,

In the end, we obtain our preconditioners by MIC(0) factorization of the introduced auxiliary
matrices B,ICMP and B}c"[v, k=il 2.

Remark 2. The local scaling procedure is simple but very important, especially in the case of
varying directions of dominating mesh anisotropy.

Remark 3. The general conclusion is that the proposed algorithms are suitable for problems with
moderate mesh anisotropy. Advantages of the first variant could be considered, because the estimates
for the condition number are better.
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4. COMPUTATIONAL COMPLEXITY

The Preconditioned Conjugate Gradient (PCG) algorithm for solution of the linear system
Ku=)»

can be written as follows (see [1]):

given u°

compute QO =b— Ku®, h® = C‘lgo, d®=h°
for i =0,1,2,--- until ||g’|| < €||g°|| do

= g\ BV (Kd d),
uFli= by d,
gi+1 = gi — r,Kd,
AEtL o C—-lgﬂ—l’
,Bi o4 (gi+1,b_i+1)/(gi,hi),
&= AT Ad
enddo .
We analyze here the computational complexity N* of one PCG iteration. It is easy to see that
N =2N(( ., .)) + 3Ny + N(Kz) + N(C'z), (8)

where N(( ., .)), N1, N(Kz), and N(C~'z) stand respectively for the computational complexity of
the inner product, one linked triad of the form z = y+ o2, the stiffness matrix vector multiplication,
and the solution of a linear system with the preconditioning matrix C.

Next we will assume that the mesh is (topo)logically equivalent to the uniform mesh in the unit
cube with mesh size h = h;, i = 1,2,3 and the number of intervals in each coordinate direction is
equal to n. This means that the size of the stiffness matrix K is N = 9(n + 1)n2.

The contribution of the first three terms of N;; does not depend of the preconditioner, and can
be written in the form

IN((.) - ))+8Ner = 10N +--

N(Kz) = 407N +-.. 9)

where only the leading term with respect to NV is explicitly given. We would now turn the attention
of the reader towards the relatively large number (3 x 68 = 204) of the non-zero entries per row of the

stiffness matrix K which is due to the II?H projection term of the stabilized RSI FEM formulation
(2) of the problem.

To complete this analysis we derive estimates of the computational complexity of the solution of
a linear system with the introduced displacement decomposition preconditioner:

N(CpD mic@®) = 21N +--- (10)

Combining (8), (9) and (10) we get the final computational complexity estimates per iteration in
the form:

At the end of this section we consider the important particular case of a rectangular brick mesh
where the number of intervals equal to n in each coordinate direction. This means that the macroele-
ments are parallelepipeds divided into eight subparallelepipeds. We can separate the nodes of the
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macroelement in two groups: interior nodes and nodes belonging to the macroelement walls. Taking
into account that different nodes have different contribution in the macroelement matrix we can
calculate that the average number of the non-zero entries per row is equal to 27 and hence

N(K®™)g) = B3N +---

N = 84N +--.

um) (12)
DD MIC(0)

The superscript um in (12) stands for the case of (u)niform (m)esh.

5. BENCHMARKING

The presented numerical tests illustrate the PCG convergence rate of the studied displacement
decomposition algorithms when the size of the discrete problem, the coefficient jumps and the mesh
anisotropy are varied. A special attention is given to the simulation of the stressed-strained state of
a pile in a weak soil layer where also a locally refined mesh is considered.

The computational domain is the parallelepiped {2 = A; x A, x A, where homogeneous Dirichlet
boundary conditions are assumed at the bottom face. A uniform mesh is used, where accordingly
to the RSI FEM discretization (2) of the elasticity problem, the coarser grid and the finer grid
parameters are respectively H;, h;, i = 1,2,3. The number of intervals in each of the coordinate
directions for the coarse grid is equal to m and respectively for the finer grid n = 2m. The size of
the resulting non-conforming FEM system is N = 9n%(n + 1).

A relative stopping criterion (C~1rNi rNit)/(C~17% r9) < €2 is used in the PCG algorithm,
where r? stands for the residual at the i-th iteration step, and ¢ = 1073,

Benchmark 1. Computer simulation of the stressed-strained state of a soil body under a square
footing is considered. The volume forces are assumed equal to zero with a vertical external load
which is uniformly distributed across the squire seal |S| = H; x Hy, (see Fig. 1(a)).

The mechanical characteristics Es = 10 MPa and v, = 0.35 correspond to a softly plastic clay
layer. The related numerical results are given in Tables 1 and 2. What we clearly observe is the
stable behavior of the PCG algorithm. The obtained test data fully confirm the expected asymptotic
of iterations Ny = O(Q'/?).

Table 1. Benchmark 1. PCG iterations: algorithm M P

variant 1 variant 2
(p,9) X
m=n/2 N (1,1) | (1,4) | (1,16) | (1,64) | (1,1) | (1,4) | (1,16) | (1 ,64)
3 2 268 37 62 79 160 37 58 58 119
7 26 460 54 96 131 291 54 65 105 145
15 251 100 7| 137 188 438 7 79 155 192
31 2179548 | 106 | 190 262 626 106 1125 216 309

Table 2. Benchmark 1. PCG iterations: algorithm MV

variant 1 variant 2
(p,9) (. 9)
LEE N (1,1) | (1,4) | (1,16) | (1,64) | (1,1) | (1,4) | (1,16) | (1,64)
3 2 268 42 12 129 191 42 69 120 137
7 26 460 66 | 119 165 361 65 | 117 130 274
15 251 100 955 17 235 546 94 | 171 194 442
31 2179548 | 134 | 240 328 784 $32:4i242 271 637
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Fig. 1. (a) Squire footing: BM1; (b) Foundation element: BM2(m = 3); (c) Foundation element: BM2(m = 15)

Benchmark 2. The interaction between a soil media and a given model of foundation element
with varying elasticity modulus is considered.

The geometry is similar to this in Benchmark 1 (see Fig. 1(b)-(c)). The characteristics of the
foundation are E, € {10 MPa, 100 MPa, 1000 MPa, 10 000 MPa} and v, = 0.2 while these of
the soil are as in Benchmark 1. A vertical external load is applied uniformly distributed across the
top side of the foundation. In the finest grid case, i.e. when m=31, and when E, = 10 000 MPa,
this benchmark could be associated with computer simulation of a single pile in a weak soil layer.
The results for Benchmark 2 are presented in Tables 3 and 4. Here, one can observe how the
preconditioning algorithm behaves when the coefficient jump varies, and when in addition, the size
of the included foundation element decreases with the mesh parameters H, and Hy. This benchmark
well illustrates the features of the method and the related algorithms when the coefficient jumps
are extremely (based on the mesh size) local.

Table 3. Benchmark 2. PCG iterations: algorithm M P, variant 2

(p,g) = (1,1) (p,g) = (2,1) (p,g) = (4,1)
E=Ey=Ey= | Ep=[Ep=]| Eo= | E,= |E,= | E, =
m=n/2 N 100 | 1000 | 10000 | 100 | 1000 | 10000 [ 100 | 1000 | 10000
3 2268 | 51 | 88 | 111 49 | 112 | 144 55 97 | 124
7 26460 | 65 | 143 | 186 53 | 115 | 268 69 | 146 | 252
15 251100 | 86 | 193 | 289 90 | 123 | 319 S0 a8
31 2179548 | 116 | 229 | 393 | 156 | 195 | 344 | 119 | 194 | 477

Table 4. Benchmark 2. PCG iterations: algorithm MYV, variant 2

(p,g) = (1, 1) (p7 q) = (2,1) (p, q) = (4, 1)
Ey=|Ey=| Bp= | Bp=| B, = | Bp= | B, = | E,= | B, =
m=n/2 N 100 | 1000 | 10000 | 100 | 1000 | 10000 | 100 | 1000 | 10000
3 2 268 56 91 124 59 115 149 62 133 172
7 26 460 76 | 132 210 75 167 255 89 | 204 324
15 251 100 | 106 | 173 355 101 180 413 115 217 478
31 2179 548 | 145 | 210 490 136 207 509 150 241 615
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Benchmark 3. Computer simulation of a real-life single pile in a weak soil layer. The domain
2 =34.8 m x 34.8 m x 31 m and the size of the pile is 1.2 m X 1.2 m x 15 m. The related coefficients
for the soil are Es = 19.88 MPa, vs = 0.42 and for the pile are E, = 31.5 GPa, v, = 0.2. The
pressure over the pile is 1.5 MPa.

=

D

L L L 1 L L
5 10 15 20 25 30

Fig. 2. Benchmark 3: Local refinement around the pile, vertical displacements, vertical stresses, vertical
strains; cross section y = 17.9 m

The locally refined mesh (see Fig. 2) is constructed so that the size of the discrete problem is the
same as for so called coarse grid (mg; = my = m, = 29). The locally refined subdomain corresponds
to the a priori known zone of biggest gradients of the solution due to the strong coefficient jump
which corresponds to the zone of strongest interactions between the concrete pile body and the
surrounding soil layer.

We also consider a global regiment with factor two (m; = my = m, = 58). The numerical results
for this benchmark are presented in Table 5. The computational efficiency of the local regiment is

Table 5. Benchmark 3. PCG iterations

algorithm | variant | coarse grid | local refinement | global refinement
AMP 1 455 913 845
2 537 619 658
AMV 1 538 1085 990
2 652 948 918
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well expressed taking into account that the size of the discrete problem for the case of global
refinement is approximately eight times larger.

Benchmark 4. Computer simulation of a pile foundation system in a multi-layer soil media.
A system of four piles connected on the top by a linking plate is considered.

This is a fully real-life engineering problem well illustrating the increased potential of the devel-
oped code. The symmetry of the construction is taken into account allowing for reduced computa-
tions of a pair of piles equipped with certain boundary conditions (see Fig. 4).

30-/ i 30/

25+ 4. . 2bF

30

25

20 20 20

15

=
#

wn
wn

5 10 15 5 10 15 5 10 15

Fig. 3. Benchmark 4: first pile; vertical displacements, strains and stresses; cross section x = 15.00 m.

The computational domain is the parallelogram 2 = 34.8 m x 17.4 m x 31 m. The boundary con-
ditions are as follows: homogeneous Dirichlet boundary conditions on the bottom side; homogeneous
Neumann boundary conditions on the vertical sides; and nonhomogeneous Neumann boundary con-
ditions on the top cross sections of the piles represent the loads of V; = 2000 kN, V5 = 4000 kN and
H, = Hy = 150 kN, coming from the upper bridge construction. The subscript here indicate the
number of piles where first is the left one. The soil media consists of four layers numberd towards
up-to down and determined by the following mechanical characteristics: EFs; = 20 MPa, vs = 0.4;
Ess = 11 MPa, vg = 0.35; Es3 = 7 MPa, vgsg = 0.25; Es4 = 4.6 MPa, vgy = 0.2. The mesh is
properly refined around the piles. The presented selected set of plots well represent the complex
spatial behaviour of the computed stressed-strained state of the interaction between the pile system
and the surrounding multi-layer soil media, see Figs. 3 and 4.

Concluding Remarks: The analysis of the numerical tests confirms the robustness of the
developed new algorithms and codes. The research team considers the obtained results as very
prospective. One of the important steps in this field is to implement the accumulated know how to
the numerical solution of coupled thermo-hydro-mechanical problems. Such a proposition is strongly
motivated by the stable approximation properties of the nonconforming FEM with respect to all
of the included phenomena. Such a complex treatment could be of a serious importance for various
large scale engineering problems including such related to the foundation systems under compli-
cated geological conditions. Another practical problem of great importance, described by the same
mathematical model, is related to the long-term perspective study of the behaviour of nuclear waste
repositories.
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Fig. 4. Benchmark 4:Local refinement around the piles, vertical displacements, vertical stresses, vertical
strains; cross section y = 15.40 m
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