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Discrete model of twisted rings 
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A discrete model consisting N straight links and N springs is defined . The originally straight model is bent 
into a discrete torus, then it is twisted. The C2 symmetric shapes can be determined by four parameters, 
and there are three constrains. The equilibrium paths are determined by the simplex method (piecewise 
linear approximation). Global bifurcation diagrams, spatial equilibrium shapes and parasitic solutions are 
analysed. 

1. INTRODUCTION 

Let us consider a rod with circular cross-section of radius r. The rod is long (i.e. L » r, where L is the 
length of the rod) and initially straight. The rod is made of a homogenous, linear elastic material with 
the modulus of elasticity E and the shear modulus of elasticity G. Bending stiffness is characterized 

0w 0w 
by the constant A = EIx, where Ix = 4' and the twist stiffness by C = GIp, where Ip = 2' 
The rod is supposed to be inextensible and unshearable. Recently many publications [1- 5,8, 10, 11J 
deal with the following problem: first the rod is bent to a torus with a pair of moments acting 
on its end-sections. Then the end-sections are twisted around the rod axis, continuously providing 
their contact. The increasing twist rate causes stability loss at a special value, and then spatial 
equilibrium states are observable. 

This model is widely used as a mechanical model of DNA molecules, but several simplifications 
are made. In one of these simplifications the rod is treated as penetrable, i.e. we do not deal with the 
contact problem. The symmetry properties of such solutions are classified by Domokos [4J. When 
the impenetrable rod is examined, the situation is sophisticated. In simple cases contact points, at 
higher values of twist rate contact line(s) and points arise [lJ. There is an interval of twist rate, 
where only contact line arises [8J. The contact can even break the symmetries shown by Domokos. 
Not all of the equilibrium states are stable, of course. The stability of solutions was examined by 
Coleman et al. [1 J. 

The explicit solution of the system of differential equations of the elastic rod is given by Swigon 
et al. [10J. This solution is expressed in terms of elliptic integrals, what makes its handling relatively 
difficult, if we need the co-ordinates of all points of the rod-axis. (This is the case e.g. if we are looking 
for contact points). The extension of the solution to shearable or extensible rod is also complex. The 
DNA itself build up from discrete base pairs, which can be modeled by linear elements connected 
by springs. (Discrete models give good approximations to the solution of the continuous model, 
however the solution set is often richer, than that of the continuous model. A good example is 
shown in [9], where Euler's rod was examined.) A naturally discrete model of the DNA o-ring is 
developed by Coleman et al. in [2J. 























222 Z. Gaspar, R. Nemeth 

6. CONCLUSIONS 

We presented a discrete model for the twisted elastic ring. The model consists of links with infinite 
bending stiffness and springs with infinite twist stiffness. An iterative method was derived to the 
computation of the rod shape as a function of the internal stresses. We formulated the conditions 
of the closed ring, and presented the global bifurcation diagrams (the equilibrium paths) of the 
ring in some examples, computed with the simplex method. It was shown how the critical inner 
forces decrease, how the equilibrium paths change and how the parasite solutions disappear when 
we increase the number of the links. 
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