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A new analytic-numerical method has been developed for solving the Laplace equation in domains with
cones of arbitrary base, in particular with polyhedral corners. The solution is represented as an expansion
involving singular functions (the Multipoles), which play the role of basic functions. The method enables
to find these functions explicitly and to compute efficiently their singularity exponents. The method
possesses exponential rate of convergence and provides precise computation of the solution, its derivatives
and intensity factors at the edges and at the corner point. In addition, an asymptotic expansion of the
solution near the edges of polyhedral corner has been obtained.

1. INTRODUCTION

Solutions of elliptic boundary value problems (BVPs) in domains with cones or polyhedral corners
have singularities at vertices and edges of the cones and corners [1-6]. Because of the singulari-
ties, standard numerical techniques meet essential difficulties resulting in the loss of accuracy and
convergence [7-11]. The elaboration of effective computational methods for solving these problems
became a challenging issue [9-16].

In this work, we present a new effective analytic-numerical method for solving BVPs for the
Laplace equation in domains with cones of arbitrary base (in particular, polyhedral corners); its
idea was communicated at the conference [17], and first numerical results at the conference [18].
This method represents a generalization of the Multipole method, previously developed in [19-23]
for solving a certain class of 2D and 3D elliptic BVPs in domains of complex shape.

The principle underlying our method consists in using a system of basic functions ¥ that
conform to the structure of the solution near the conical surfaces of the boundary. Functions ¥ are
sometimes called singular functions [14], [2-26]. We call them Multipoles due to their similarity to
ordinary Multipoles, known in the theory of potential [27]. Such systems possess good approximating
properties. Most important is the fact that these basic functions are expressed in explicit analytic
form in terms of special functions.

By virtue of these features our method proves most effective for precise computation of the
solution and its derivatives up to the conical surfaces of the boundary, in spite of the singularities
mentioned above. An important advantage of our method is that it yields values of intensity factors
at the vertex and edges of polyhedral corner along with the solution itself.

The solution of the BVP is represented as an expansion in terms of the above basic system.
Unlike the finite element method, in our method the basic functions are defined on the domain as
a whole, so they are global rather than local. That is why our method does not need any mesh.

Due to the analytic representation of the solution, our method proves favourable for qualitative
analysis of the solution and its characteristics; in particular, we have found an asymptotic expansion
of the solution near the edges of polyhedral corner.
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2. STATEMENT OF THE PROBLEM. SOLVABILITY AND REGULARITY

2.1. Domains K and {2

Let (z1, 2, z3) be Cartesian and (r, 6, ) spherical coordinates of a point z in space R?. Coor-

dinates of those systems are related by well-known formulas.

Denote by 2 % {(r,6,0): 7 =1, 6 € [0,7], € [0,2m)} the unit sphere and by B® the unit

ball in R? (evidently B3 = S?). Points # = 0 and 6 = = on S? are called the North Pole Py
and the South Pole Pg, respectively.
Consider a Lipschitz piecewise smooth contour £ on the sphere S? with no self-crossing points,

dividing S? into two domains, one of which contains Ps and another Py. The domain containing
Pn and bounded by L is denoted by §.
f

The domain K C R3 defined by the formula K % {(r,0,p) : T € (0,00), (8, ¢) € 8}
is an (infinite) cone with base 8, its boundary being the conical surface K = {(r,0,9) : 7€

(0,00), (6, p) € L}.

Consider an important instance of the cone K when it presents a trihedral corner with its three
faces being plane angles with common vertex {0} and with values of the angles being equal to
ma,where o € (0, 2/3]. Denote by K* this trihedral corner, by 8% its base, and by L2 the
contour of this base. In this instance, the equation of contour £ is written in the form

T(p+2n/3); ¢e€[-m —7/3],
LY ={(8,9):0 =0(p), pe0,2m)},  6(p) =< T(p); p € [-7/3, /3], (1)
T(p—2n/3); ¢e€[n/3, ],

with function T (y) defined by the formula

CoS ¢ i 1 — cosma )
/g + cos2yp |’ S 2(1 + 2cosmar)

Then base 8% is given as follows

8 = {(8,9):0 €[0, 6(p)), pe|o, 2m) }.

Remark 4. For all a € (0, 2/3), the function 6(p) presenting in the Eq. (1) of contour L°

satisfies the inequality Vo : 0(p) > /2, so that cone K* always contains the half-space R?I_ W
{(r,0,¢) : 7 € (0,00), 8 € [0,7/2), p € [0, 2m)}. If @ =2/3, then 6(p) = /2, and K?3 = R}.

T (p) = arccos | —

It worth to be mentioned that values 3 of dihedral angles between faces of cone K® are related
to the quantity ma by the formula

cosmf = cosma /(1 + cosma), a € (0, 2/3]. (3)

In accordance with Remark 1, if & € (0, 2/3), then 8> 1, and if o = 2/3, then 3= 1.

The BVP is being solved in a domain {2 C K homeomorphic to B3 with Lipschitz piecewise
smooth boundary 02. By definition, boundary 842 consists of the two disjoint parts: v and T,
where <y is a closure of a simply-connected domain of the conical surface with the vertex of 0K
being an interior point of v, and I' C K is a simply-connected domain on a certain piecewise
smooth surface. Note that K is an extension of {2 through I

Let the surface I" be divided by a Lipschitz piecewise smooth curve or contour into two domains:

D and N; the boundary condition of the Dirichlet type is to be set on D and the Neumann type
on N.
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2.2. The formulation of the BVP with mixed Dirichlet—Neumann boundary conditions
Consider the following BVP for the Laplace equation in the domain 2 :

AYy=0 in 02, 4)
with mixed Dirichlet—-Neumann type conditions

" i | _
’()b 7_0: "’b ‘D— hCD, -y :N'_ hN (5)

on the boundary 02 = yUI", where 0/0v is a normal derivative. We shall use the notation h(z)
defined by equalities

h(z) = hp(z), z € D; h(z) = hn(z), z € N, (6)

In order to formulate a generalized statement of the BVP (4), (5), appropriate Sobolev spaces are
[e]
introduced. Denote by W} (£2, ) a subspace of W (£2) consisting of functions having zero trace
o

on 7. Similarly, define the space Wy (£2, v U D) as a subspace of W} (§2) consisting of functions
with zero trace on yU D.

Let A be a subdomain of the boundary 052, and let a be a subdomain of A. Denote by W21/ %4, a)
a subspace of the Sobolev—Slobodetskii space W21 s (A) consisting of functions vanishing a.e. on a.

Only the particular cases of the latter spaces Wz}/ ’ (’y uD, 'y) and W21/ 8 (8.(2, YU D) are to be

employed below. The so called negative space W /2= (6.(2, YU ‘D) is defined as a conjugate space

to Wi/2 (802, yU D).
The boundary data hp and hyy in conditions (5) are required to belong to the spaces

hp € W3?(yUD, ),  hy € Wg2(82,yUD). (7)

A generalized solution of BVP (4), (5) is understood to be a function ¢ € W} (£2, v) satisfying
boundary condition ¢|D = hp and the integral identity

/Q(Vd), Vn)d:c=/NhN17ds

for all test-functions 7 € Vf/'% (£2, v U D), where the notation (., .) stands for the inner product in
Euclidean space R3.
Solvability of the formulated BVP is guaranteed by the following

Theorem 1. For any hp and hy satisfying (7) there exists a unique generalized solution v €W}
(82, v) of the problem (4), (5).

It is clear that Theorem 1 admits a standard proof which reduces to the Riesz representation
theorem and follows well-known patterns (see e.g. [28]). Outside the boundary’s singularities, reg-
ularity of the generalized solution of (4), (5) is covered by the standard theory of elliptic BVPs.
Namely, the generalized solution is infinitely differentiable at any interior point z € 2. At any
interior point of v the generalized solution is differentiable as many times as the smoothness of v at
this point allows. Omitting the details, we just mention that regularity of the generalized solution
at boundary points z € D and z € N depends on the smoothness of boundary surface I" and
boundary data hqp, hy.
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3. CONSTRUCTION OF THE SYSTEM OF BASIC FUNCTIONS (THE MULTIPOLES)

3.1. Reduction to a spectral problem for the Beltrami-Laplace operator in the
domain § on the sphere.

Our goal consists in constructing a system of functions ¥ (the Multipoles) that possess good
approximation properties and conform to the structure of the solution near the conical surfaces,
which contain singularities (the vertex and edges). The basic functions are defined on the whole
cone domain K. The desired properties of these functions require the following conditions to be
met:

e functions ¥ identically satisfy the Laplace equation in K;
e they identically meet the homogeneous Dirichlet condition ¥ = 0 on 0K;
e they constitute an orthogonal basis in Ly(8).

The Multipoles are represented in the form
Up(r, 0,0) = U(; 0,9), p=pk); k=12 ... (8)

Thus U(u(k); 6, ¢) = Uy are eigenfunctions with eigenvalues p(k) for the Laplace-Beltrami op-
erator in the domain 8 on the unit sphere

179 ou i @A
e L 5l e e S ;} = in §
sind .00 (Sm 6’9)+sin20 T, it S vam S ©)
with homogeneous Dirichlet condition on L:
b= (10)
L

Denote by W3(8) a subspace of W3 (8) consisting of functions having zero trace on L. A gener-
alized solution of BVP (9), (10) is understood to be a function U € W3 (8) satisfying the integral
identity

/(VSU, VSV)ds=u(u+1)/UVds YV eW;(8), (11)
8 8

where Vg stands for a tangential component to 8 of the gradient V. Note that an inner product

U, Vs & [(VsU, VsV )ds
8

o
induces an equivalent norm on W3 (8).

Theorem 2. For a spectral problem (9), (10) there exists a denumerable set of generalized solutions
U=U, €eWs(8), u=puk), k=12,.... The eigenvalues pu(k) have no finite limit points, and
wu(k) — oo as k — oo. To each eigenvalue there corresponds at most a finite number of generalized
eigenfunctions Uy € W1 (8). The eigenfunctions {Ux} form a basis in La(8) and Wy (8), which is
orthonormal in L2(8) and orthogonal with respect to the inner product [., .]s .

It is clear that Theorem 2 admits a standard proof which follows the pattern of [29].

Remark 5. In accordance with Theorem 2, all eigenvalues p(k), k = 1, 2, ... can be enumerated
in order of their nondecreasing; each multiple eigenvalue should be counted according to its multi-
plicity. Such renumbering establishes a one-to-one correspondence between eigenvalues (k) and
eigenfunctions Uy, .
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3.2. Solution of the spectral problem

In what follows, we restrict ourselves to the case of contours £ being star-shaped on S? when £
can be represented in the form

b= {(0’ @)+ 0 =0(p), 0(p) € C(—00, +o0), 0(p) = 0(p + 277)}'

The eigenfunctions of the problem (9), (10) are constructed using the system of complex-valued
functions: {u™(u; 6, @) }5°_, defined by the formula:

u™(; 9, ¢) & P"(cos 0) €', (12)

where P[(t) are associated Legendre functions on the cut [30]. For short, in complicated expressions
we reduce the relations (12) to u™ ().
Note that if K is a circular cone, i.e. L is a circumference {6 = 6y = const }, then

um™ % Re u™(; 0, ) and o™ ¥ Im u™ (156, 0)

n n

are eigenfunctions of the problem (9), (10) with eigenvalue p = p;' being the root of number
n(n =1,2,...) of the equation P} (cosflp) = 0. Taking this fact into account, we rename and
renumber eigenvalues u(k) as u and eigenfunctions Uy = U(pu(k); 0, ¢) as U™ * (0, ¢) and
Un" (0, 9)-

Let us represent the desired eigenfunctions in the form of expansions in terms of functions (12):

o0
e S e, A L o ha s —h (13)
1=0
Observe that functions (13) with any coefficients identically satisfy the Eq. (9). Unknown eigen-
values u™ and coefficients Ap ''% in representation (13) should be found from the boundary
condition (10) on the contour L.
We shall make it in the following way. Functions U™ % (6, ) are sought as a limit

U= (6, ¢) = lim U= (M; 6, 9)

of consequent approximations U™* (M; 6, @) written in the form of finite sums (13), with coeffi-
cients depending on the length M of approximation, i.e.

: M
Um*(M;0,9) =Re Y Ap':(M)u™F,  APOYM) =1, AP°T(M) =i. (19
=0

Coefficients A '*(M) and approximate eigenvalues ™% (M) are determined by substitut-

ing UM% (M) into the boundary condition (10) and by projecting the result onto the system of
trigonometric functions exp (i q ) :

(UZZ,‘éi (M), exp (iqso))L =0, (15)

where ¢ = m, ..., m + M, and (f1, f2)g is the inner product in Ly(L). Substituting repre-
sentation (14) into relation (15) we obtain a system of linear equations with respect to coefficients
A E(M):

D™ (W) 2 = O, (16)
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where
2= (APOE (M), AR EM), ., A M (M) T

is a vector of the coefficients. Elements of matrix D™ (u) of system (16) are expressed as integrals
over contour £ of products of functions (12) and trigonometric functions exp (i q ).

In order to find a nontrivial solutions of homogeneous system (16) we equate the determinant of
its matrix to zero

detD™(u) = 0. (17)

Then eigenvalue pu,* (M) is a root of number n (n = 1,2, ...) of Eq. (17).

The performed numerical experiments showed that the approximate eigenvalues and eigenfunc-
tions converge to the exact ones. Namely, there hold the relations:

1) for any compact E C § it holds

U™ (M; 0,0) = Up*(6,9) for {8, ¢} € E;
2) for all coefficients in (14) and all eigenvalues it holds

ADIE(M) — AP and pl (M) — uT e M - oo

3.3. Computation of integrals of frequently oscillating functions

One of important computational problems arising in the described algorithm is the calculation of
elements of matrix D™ (i) of system (16); those elements are expressed in the form of integrals of
the following type:

/L g (cos 6((,0)) exp (ibp ) dy, (18)

where 6(yp) is an equation of the contour; a and b are nonnegative integers, possibly very large.
So, (18) are integrals with frequently oscillating integrand; effective computation of those integrals
is a well-known challenging problem. A special analytic-numerical method has been developed for
computation of such integrals. This method represents integrals (18) as exponentially convergent

series involving integrals fow/ % cos®t cos Bt dt and related ones, which we have computed explicitly.
For instance,

/W/2 cos®tcosfBtdt = w(l + a)27 1@ [B(1+(a+ﬁ)/2, 1+(a—,3)/2)]_1,
0

where B(z, y) is Beta—function [30].

3.4. The Multipoles ¥

In accordance with Theorem 2 and Remark 2, all eigenvalues p™ (M) can be enumerated
as u(k),k = 1,2,..., in order of their nondecreasing; each multiple eigenvalue should be
counted according to its multiplicity. Thus, there arises respective numeration of the eigenfunc-
tions U™ (0, ¢)) as U (u(k); 6, @) = Uk (8, ) and, as a consequence, respective numeration of
the Multipoles

Ui (r, 0, p) = r*® UL, ¢); (19)
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this manner of their numeration had already appeared in (8). Remind that in line with Remark 2,
each eigenfunction U} (and, consequently, each Multipole ¥ ) corresponds to one and only one
eigenvalue p(k).

Along with (19) it will be useful other representation for the Multipoles ¥} = ¥™* in the
following form:

!pnm:h(r’ 0, 90) = Unmi(e’ (P)' (20)

3.5. Numerical results

The method for solving the spectral problem (9), (10) described in Sec. 3.2 has been numerically
realized for the case, when the domain 8 on the sphere S? presents 8% with its boundary contour
L* defined by the relations (1), (2). In example in numerical realization we considered the case of
the trihedral corner K whose faces’ plane angles at the vertex {0} are equal to ma, and dihedral
angles between faces of K are equal to 7( related to 7o by (3). Particular attention must be given
to the case of cone K /2 being the space R? with cutted out octant because of its importance, note
that 3 = 3/2 for this cone. Cone K /2 was considered in many works (see, for example, [2, 4, 9-11]
and references herein).

In implementation of the method described in Sec. 3.2 we used the Gauss elimination method
for solving the system (16). Numerous computational experiments have been performed. The ex-
periments showed that the method for solving the problem (9), (10) has the first order rate of
convergence in the following sense. Denote variations of eigenvalues and coefficients A™ i(M ) on
Mth step of the algorithm as follows

Apg(M) = \pp (M +1) = (M), AAEM) = [APHEM +1) - A1)
From our experiments we obtained

pp(M) ~ pt+aM™  and  ATEM) ~ A™E L dMTT as Mo oo (21)
with some factors a, a’. This result is well illustrated by Fig. 1, where the graph of the dependence
In A p (M) versus In M is given. Straight-line shape of this graph just corresponds to the asymptotic

(21). The numerical data for this graph were obtained for o = 1/2; numerical experiments for other
values of o have given the same result.

In A pi(M)
15

16 A8 T -pa— -2 "08- 28 9 32 %4 3B
: InM
Fig. 1
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Let present now the first 14 eigenvalues for 7o = /2.

u(1) = pd = 0.454167; u(14) = p(15) = p3 = 3.33241;

u(2) = p(3) = pi = 1.23021; u(16) = u(17) = p3 = 3.79278;
u(4) = u(5) = p9 = 1.78349; 1(18) = u(19) = uf = 4.03836;
w(6) = u(7) = p? = 2.12039; 1(20) = p(21) = p3 = 4.24952;
w(8) = u(9) = uj = 2.51627; 1(22) = p(23) = p = 4.47577;
1(10) = p(11) = ud = 3.07781; 1(24) = p(25) = p3 = 4.57123;
1(12) = p(13) = u3 = 3.16648; 1(26) = w(27) = pd = 5.02247.

We must note that for the case under consideration (o = 1/2) the first eigenvalue (1) has been
computed in the work [9] with an accuracy of four decimal places: u(1) = 0.4542.

And now let us turn to eigenfunctions corresponding to some of the above eigenvalues. A repre-
sentation for these functions is given in the form of distribution of their level lines in stereographic
projection; we mean the projection of the sphere S? from its South pole Pg onto the plane (z1, z2)-
Note that co-ordinates (1, 2) introduced in the beginning of Sec. 2.1 are related to spherical angles
(6, ) by the well-known formulas:

z1 = ctg(6/2) cosp, zg = ctg(6/2) sin .

Some eigenfunctions for the case @ = 1/2 are shown in the above representation in Fig. 2-6. Notice
that our eigenfunctions Uy are even with respect to co-ordinate zo for odd k, and conversely,
eigenfunctions Uy, are odd for even k. The function Uy = UP™" with u(1) = ud = 0.454167 is
shown in Fig. 2. The function Us = U2~ with u(6) = p? = 2.12039 is shown in Flg 3 The
function U7 Uy 2+ with wu(7) = ul = 2.12039 is shown in Fig. 4. The function Uy; = U with
1) = g3 '3, 07781 is shown in Fig. 5. The function U3 = * with p(13) = p§ = 3.16648
is shown in Fig. 6.

Fig. 2
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Fig. 3

Fig. 4

Fig. 5
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Fig. 6

For the domain § the dependence of the first eigenvalue u(1) = u? versus o € [0, 2/3] is
presented as a graph in Fig. 7 (the solid line). An appropriate asymptotic relation for small o has
the form

1
) = 2In [8/(7r\/§a)]

+ o(1), a — 0.

Its graph is given in Fig. 7 as a dotted line. A comparison of numerical results (solid line) and the
asymptotics (dotted line) demonstrates their good accordance.

¥ H?
0.9
0.8
0.7
0.6
0.5-
0.4+
0.3-
0.2-

0.1

Fig. 7
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4. THE SOLUTION OF THE BVP IN DOMAIN (2
4.1. A representation of the Multipoles V) near an edge

If our cone K is in fact a polyhedral corner, then a suitable representation for the Multipoles (19)
near the edges can be given. In order to formulate this representation, let us introduce a new system
of spherical co-ordinates (r, ©, ) related to an edge of the polyhedral angle.

Let us select a particular dihedral angle formed by two adjacent faces and corresponding edge.
The value of the dihedral angle is 73, 8 > 1. Let us define new Cartesian co-ordinates X, Y, Z with
their origin at the vertex {0} of the polyhedral angle disposed in such a way that the selected edge
lies on axis Z, axis X lies on one of the selected faces (or its extension), and axis Y is perpendicular to
this face and is directed inside domain K. Radial co-ordinate in the new system (r, ©, ®) coincides
with the same one of the system (7,6, ) introduced in Sec. 2.1, and angle co—ordinates are defined
by the standard formulas

X
® = arctan—, O = arccosg.
X T

Denote the relation between old and new spherical co-ordinates by 8 = 6(©, &), ¢ = (O, D).
Then the desired representation for Uy (0, ) = Vi (©, @) has the form

% (0, ®) = Z D' P m/ﬂ (cos ©) sin —n}; (22)
Coefficients D} in (22) can be computed as an integral over any curve {© = 6y = const} C §:
w3
Dr = — /2ﬂ / B0 alein 5
T B8P, (cos ) Jo B

where 0 = 0 (6, @), ¢ = ¢ (69, D).

4.2. The method for solving BVP

Now we turn to the BVP (4)—(6) in domain {2 with cones of arbitrary base as described in Sec. 2.
Note that 92 may have at most a finite number of edges and conical points. Since the boundary
012 is Lipschitz, a Sobolev space W}(D) is defined habitually as a subspace of W} (D) consisting of

[e]
functions having zero trace on 8D. Obviously, the space Wi (D) is a Hilbert space with the inner
product

[u, v]v%%w) = /Duvds—}—/D(Vpu, Vrv)ds,

where V stands for a tangential component to I'" of the gradient V. In the following theorem,
notation W23/ . (£2) stands for the Sobolev—Slobodetskii space with the norm

D2 ¥(a) — D2 Y(y)P
906320, = Wl + 3 / forerr

=1 1% lz — yl*

dzdy.

Theorem 3. Let hp EV;/} (D) and hyy € La(N). Then the generalized solution 1 er/Zl(.Q, v) in
Theorem 1 belongs to W2/ (2), and

Wolly 2 gy < C (Inll g+ Indlzan )

Wi(D)

with constant C' > 0 depending only on f2.
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Due to the embedding W, i (2) into W3 (0 12), the trace on 012 of the generalized solution ¢ €
W23/ g (2) in Theorem 3 belongs to W,! (8 £2). Denote by H(I') a space of all generalized solutions
Y EWHR2,v) N 3/ . (£2) in Theorem 3 with boundary data hp €W2(’D) and hyy € Lo(N). Clearly,
Theorem 3 imphes that H (I") is a Hilbert space with the inner product

[u, 'U]H=/ uvds+/ (Vru, Vrv)ds + a—u?—vd
D D ov Ov
N

Foru € W, s (£2), existence of the trace Vu € Ly(D) is guaranteed by the embedding of W3/ (2)
into W, (8 £2). Notice that existence of the trace du/dv € Ly(N) is guaranteed only for the functlons
u € H (I') by virtue of Theorem 3.

For basic functions {¥} constructed in Sec. 3 holds

Theorem 4. The traces on I' of the basic functions {¥;} form a complete system in H (I") which
s minimal.

Proof of the completeness in Theorem 4 is based on the approximation theorems by F. Browder

[31] for solutions of elliptic PDEs. Theorems [31] can be readily modified to include homogeneous
boundary conditions on some part of the boundary.

A Cartesian product H (D, N) = o W2(D) X Lg(N) consisting of ordered pairs {a,,, a, }, a, erle
(D), ay € La(N), is a Hilbert space with the inner product

[{a"D’a’N}’ {b'wa}]}c: /ﬂ;anDds-i-/D(VpaD, Vfbcv)ds'i'/wawbnds

which induces the norm

lag axlise = [ lapPs + [ [VrapPds+ [ falas.
D D N

Let L: H(I') — H(D, N) be a linear operator defined as

{¢|D v

From Theorem 3 follows

} Vo € H(I).

Corollary 1. The linear operator L is an isometry of H (I') onto H (D, N).
For the basic functions {¥}, from Corollary 1 and Theorem 4 follows
Corollary 2. The system {L ¥} is complete and minimal in H (D, N).

Applying Corollary 2, we approximate the solution ¥(r, 8, ) of the BVP (4)-(6) by a sequence
{y™)(r,0,¢)} of linear combinations with respect to the first N basic functions

N
e (r, 0, 9) = lim $M(r, 6, 0),  $M(r,6,0) = Y QY B, 6, ). (23)
k=1

Here coefficients QgN) are to be found using the condition of the least square deviation of the
approximate solution () from the boundary function h = {h,, h} € H (D, N) corresponding
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to (6) on I': |L9™) — h|ls¢ — min. This condition leads to the following system of linear
equations with respect to the unknown coefficients Qch) -

ZQ(N) = 1=1,2,...iN,

with elements of this linear system defined as
Gt = [LW, LY))g, Al = [h, L]y

The method of least squares guarantees the convergence of the sequence L (M) in the Hilbert
space H (D, N), whence, by Corollary 1, follows the convergence of the sequence 1 (N) in the Hilbert
space H (I'). Now for the sequence of approximate solutions {1 (")}, reference to Theorem 3 com-

pletes the proof of its convergence in W23/ ¢ (£2) to the exact solution ¢ € I/f/?l(ﬂ, ) N W23/ d ().

4.3. Asymptotics near the edges

Turn again to the selected edge mentioned in Sec. 4.1. Introduce a cylindrical system of co-ordinates
related to this edge by the use of the Cartesian X, Y, Z and the spherical (r, ©, &) co-ordinate
systems defined in Sec. 4.1. Namely, let Z be the coordinate from the above Cartesian system, @ the
co-ordinate from the above spherical system, and p be defined by the formula p = v/r?2 — Z2. Then
the desired cylindrical co-ordinate system is (p, Z, ®).

Starting from the view (23) of the solution and using representation (22) for the Multipoles, we
derive an asymptotics for the solution of the BVP near the edge with dihedral angle of value 7 3

U~ pl/ﬂsin% D4l Zaril 0 p2/ﬁsin% [Jo1 Z82~VR 4 Y.,

p— 0, Z — 0. (24)

Quantities J; 1 and J5 1 appearing here can be expressed via coefficients of expansions (22), (23),
in particular

Jin =27V [F(1+1/8)] ' Q. D},

where I'(z) is Gamma-function [30].

Note that coefficients Q} in expansion (23) are named intensity factors at the vertex of the cone
(polyhedral angle) and quantities J1 1, J2 1 the intensity factors at its edge. From what was said
it follows that our method provides computation of all mentioned intensity factors along with the
solution itself.

4.4. Numerical solution of BVPs for “Cube in Cube” and the Fichera corner

Let Cartesian co-ordinates of a point y in R? be (y1,y2,y3). Denote by Gas a cube with edge length
25 > 0: G2, = {(y1,92,¥3) : ¥i € (—s,8)}. Let § = G4 \9—2 be a domain, which is a cube of edge
length 4 with cut out cube of edge length 2. We call this domain (shown in Fig. 8) “Cube in Cube”,
and pose in it the following Dirichlet problem:

AYp=0 in G, =0 on 09, W =1 on 89, (25)

This BVP is related, in particular, to computation of the electrical capacity C of a condenser, whose
plates are 392 and 094. Quantity C is expressed by means of the solution of (25) as follows:

pech 2
= 47r/9 lgrad ¥|* dw, (26)

where dw is an element of volume.
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Fig. 8

Observe that domain § has a symmetry with respect to each of three planes {z = 0},
{y = 0}, {z = 0}. If we split this domain along those planes, we find that it is broken down
into eight pieces, being congruent each to other. Let us denote one of them by 2 = { (y1,92,93) :
i €(0,2)} \ { (1,%2,53) : v € [0,1] }.

This domain {2 (shown in Fig. 9) is known as “the Fichera corner” [2]. Its boundary can be
presented as a union of three parts, 2 = yUD UN. Here v and D are common parts of 912
with 0G, and 09G4, respectively, and N is the rest of it.

Just defined domain §2 is a particular case of the domain with the same designation introduced in
Sec. 2. Here, the roles of surfaces v, D and N are played by the surfaces with the same designations.
The role of a cone K is played by the trihedral corner K® with o = 1/2; obviously K is an
extension of §2 through I' = D U N likewise to Sec. 2; v is also a closure of a simply connected
domain on 0K®, containing its vertex as an interior point.

In order to reduce this geometry to definitions accepted in Sec. 2.1, let us replace the origin of
co-ordinates at the vertex of the trihedral corner, dispose axis z3 so that it is inclined at equal angles
(more then 7/2) to each of edge of the trihedral corner, and introduce the spherical co-ordinates
(1,0, ) so that angle 6 is reckoned from 3. Then contour £ presents £* described by the relations
(1), (2). It is evident that BVP (4) in § is equivalent to BVP (4), (5) in the Fichera corner {2 with
hp=1and hy=0.

The method related in Sec. 4.2 was applied to this BVP. Note that in the sum (23) the represen-
tation of the Multipoles will be more convenient in the form (20) than (19). Taking into account the
symmetry of the solution ¥, we emphasize that nonzero coefficients in the sum (23) will have Multi-

Ly

Fig. 9
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poles ¥+ only with first upper index divisible by 3 and second upper index “+”. For instance, the
representation (23) for an approximate solution ¥ (®) containing only nonzero terms has the form:

W(Q) o Q1(9) !P10+ & Q2(9) W20+ o Qég) !713+ + Q}g) W30+ - Q5(9) W23+

+ QO wd+ + QP wit + QP WO+ + Q¥ wft. (27)

Numerical experiments proved that the method possesses high effectiveness. It has exponential
rate of its convergence and ensures precise computation of the solution and its derivatives up to the
surface of the trihedral corner by virtue of only few numbers of degrees of freedom. In particular,
by means of only 9 Multipoles ¥ like in (27) we obtained the solution ¥ for the considered problem
and its gradient with accuracy 107 or better near the surface of the trihedral corner. This result
is well illustrated by Fig. 10, where the level surface ¢ = 0.1 is presented. Solid lines correspond
to edges of the cube Gs.

Fig. 10

Besides, a value of capacity (26) of “Cube in Cube” was computed: C = 2.6696. It is worth to
note that this value is 7.5% greater than the capacity of a condenser of two concentric balls with
the same volumes as G4 and Gs.

In addition, intensity coefficient in formula (24) was computed: J; 1 = 0.987741. So, asymptotic
relation (24) for this solution near an edge of the trihedral corner looks like

U~ p3 sin¥ [0:087741 Z =031 L 1 4 .
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