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In this paper Trefftz polynomials are used for the BEM (Boundary Element Method) based on the reci-
procity relations. BEM provides a powerful tool for the calculation of dynamic structural response in the
frequency and time domains. Field equations of motion and boundary conditions are cast into boundary
integral equations (BIE), which are discretized only on the boundary [1]. Trefftz polynomials or other
non-singular (e.g. harmonic), Trefftz functions [2] (i.e. functions satisfying all governing differential equa-
tions but not the boundary conditions) used in the Betti’s reciprocity relations lead to corresponding BIE
that do not contain any (weak, strong, hyper) singularities. Fundamental solutions are not needed and
evaluation of the field variables inside the domain is simpler.

1. INTRODUCTION

Trefftz was the first person who performed a BEM calculation (in 1917 he calculated numerically
the value of the contraction coefficient of a round jet issuing from an infinite tank, i.e., he solved
a nonlinear free surface problem). His method is based on the use of a complete set of solutions
instead of using a fundamental solution [3].

The equivalent procedure in elasticity is to express u (e.g. the displacement field) as a series
of complete functions satisfying Lame-Navier’s equation (1) with coefficients which need to be
numerically or analytically determined through utilization of the boundary conditions. The functions
satisfying the Lame-Navier’s equations are called Trefftz functions (3].

Our formulation rests on Betti’s reciprocity theorem and the Trefftz (T-)functions present the
reciprocal states of the body. As it is well known in the BEM formulations the reciprocity theorem
is used to relate the displacements and tractions of the known (Trefftz) states of the body to its
unknown states (which we seek).

2. GENERATION OF TREFFTZ POLYNOMIAL FUNCTIONS

In this part we will describe how the 4-th order Trefftz polynomials can be obtained analytically or
numerically in the frequency domain for 2D isotropic solids as an example. The Einstein notation is
used below: with summation on repeated indices, and partial derivatives with respect to Cartesian
coordinates defined by indices after the comma. Using the kinematic relations, equilibrium equations
and Hooke’s law [1] one can obtain a complete system of governing equations of motions for isotropic,
homogeneous linear elastic bodies in terms of displacements as
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where A and p are the two material parameters known as Lamé’s constants, p is the material
density and b; are components of prescribed body forces. The displacement field u; can be written
in exponential form [1]

— = —twt
U; = u4€ y (2)
where the time derivative is

2, .
——aasz = wli;e ™, (3)

w is the circular frequency and %; is the approximated displacement field evaluated using the
T-functions. 4 in the exponent denotes the imaginary unit.
For time harmonic problems the Eq. (1) without body forces becomes

piti j; + (X + p) Gjij — pwt; = 0. (4)

The T-functions defining the reciprocal state of the body have to satisfy static equilibrium in the
absence of body forces. For 2D isotropic solids they have the form

(A +2p)ug 11 + p (w122 + ug21) + Aug 21 =0,
(A + 2p)ug.22 + p (ug,11 + u1,12) + Aug,12 = 0. (5)

In order to explain the derivation of T-polynomials, we will suppose the displacement field so to be
in the form of polynomials containing 4-th order terms only, e.g.

4

p=[at 2%y o =P ¢t ]. (6)

The displacement field can be written in the form
4, 4 3 3.2 3
oot Al Yool of) oYy 0 0 0
{ i }— [ 0° 0yt ] {a}‘*‘[ 0 0 0 #P 22 oy {b}, (7)
or, in matrix notation
{u} = [A(z,y)]{a} + [B(z,y)] {b}, (8)

where a and b are vectors of unknown coefficients. The second derivatives of the displacement field
are

U111 121‘2 0 o ny 2y2 0 b1
Uy ¢ = 0 0 { al }+ 322 4zy 3y? by 7, (9)
U122 0 122 2 0 222 6ay bs

and
u2,11 0 122 3 0 2% 6zy by
Hais = 0 0 { a3 }+ 3y? 4ry 322 bs . (10)
2,99 1222 0 X 6zy 222 0 be

The derivatives obtained are set into equilibrium equations (5) and the following relation between
the coefficients a and b is obtained

[M(z,y] {b} + [N(z,y] {a} = {0}, (11)

from which the coefficients b are to be evaluated analytically or numerically. Thus the dimensions
of the matrices M and N are (2 x 6) and (2 x 4), respectively. For the numerical evaluation, Eq. (11)
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has to be expressed at three different points, which do not lie on a line (in order to get a non-singular
matrix M) and one obtains

{b} = - [M] ™" [N] {a}. (12)

The bar denotes the matrices at the 3 different points, thus having 6 rows now. The T-polynomial
displacements of the 4-th order are defined using Eqgs. (12) and (8)

{u} = (|A (@,9)) - B(z,v)) [M] ™" [N]) {a} = [U (=,9)] {a}. (13)

Each column of [U] introduces a T-displacement function. In 2D problems we obtain (2n + 1) and
for 3D (n + 1) T-functions where n is the polynomial order [2]. This means that, if we assume to
use T-polynomials of 4-th order (n = 4) we will have 9 T-functions for each displacement component
in 2D. We remark that it is necessary to use a series of complete polynomials involving each from
the order zero up to order n.

If the problem (4) has to be solved, then the displacements @; (z) and tractions t; (z) will be
related by Betti’s reciprocity equations.

3. MULTI-DOMAIN RECIPROCITY BASED FORMULATION

With increasing complexity of the problem to be solved, it is necessary to use higher orders of
T-polynomials, and both their complexity and computation time increases. For this reason, it is
more efficient to decompose the whole domain into sub-domains.

The T-tractions on the boundaries with the outer normal n corresponding to T-displacements
are

where T-stresses S;; can be found from the T-displacements by
Sij = (Ui,j += Uj,i) + )\(SijUk’k : (15)

If the problem (4) has to be solved, then the displacements @; (z) and tractions #; () will be related
by Betti’s reciprocity equations for each sub-domain (element).

/reTz(w) / Ui () (z)dT (x) — / pw?U, (z)dR2 (x). (16)

where I'e and f2e denote the sub-domain boundaries and volume, respectively. This equation is
known also as the dual reciprocity approach and was first presented by Nardini and Brebia [4].

The boundary displacements and tractions can be expressed by their nodal values and the cor-
responding shape functions

u; (€) = N9 (¢)d?, (17)
t; (€) = N9 (¢) ¢ (18)

N; and N, are the shape functions well known from FEM theory. The upper index (j) denotes the
element nodal points. This leads to the matrix form of Eq. (16)

(T + w?F)d® = Uqg®. (19)
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Elements of matrices T, F and U are obtained by numerical integration using the Gauss quadra-
ture nodal points £ on the element boundaries and the quadrature nodal points 7 in the element
volume as in Eqgs. (20) to (22), where w denotes corresponding weights.

Tu= | T®) (z (€)) NO (€)dI = E,: (k) (m (5(:'))) N® (gw) : (§<j>) wi | (20)
. ® i M) \N® (el )Y 40
Uu= | U® @) N @ar= ; U® (z (¢9))NO (€9) 7 (€9) w, (21)
Fu=p / VB @m)NP md2 = pY " UB @) Ny@)J(n®)u® . (22)
fe i

We assume that the whole domain will be decomposed into sub-domains (elements) and dis-
placements between sub-domains will be compatible. The tractions, however, will not be codiffusive
between the elements, and inter-element equilibrium and natural boundary conditions will be sat-
isfied only in a weak (integral) sense using a variational formulation:

suf (¢t —t)dr+ [ ou” (tA-tB)dr= / sutdr— [ suTtdr=o, (23)
I Ii T I't

where I'i denotes inter-element and I't denotes the element boundary with prescribed tractions
denoted by a bar, respectively. u and t are displacement and traction vectors, respectively. Variables
t4 and t? denote traction vectors on neighbouring elements.

Equation (23) in the discretized form is

NE (€DVND (@) J (¢0)) @) g)
ST ()0 () 1 ()
. N (D) (e0)) J (@) @ (24)
S 3 ()i (€)1 ()
with summation over all elements e. And the matrix form of Eq. (24) is
S Heqe = 3t (25)

where q and p denote nodal tractions and equivalent surface loads, respectively. Substituting the
boundary nodal displacements for the nodal tractions of a sub-domain from Eq. (19) into Eq. (25)
one can write

Y HU T +u’F)d°* =) p° (26)

e

or
(K +w’M)d = p, (27)

where K and M are global stiffness and mass matrices, respectively.
We have to note that in Eq. (26), there is the inverse of matrix U, which is not square, in the
general case. And so, the solution of (19) is performed in the least squares sense.

If the boundary tractions are zero, we have to solve the free vibration problem (24) as is known
from FEM.
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4. NUMERICAL EXAMPLE

Two cantilevers of 1 m and 4 m height and 20 m length were examined for this well known free
vibration problem with modulus of elasticity £ = 2.1ell Pa, Poisson ratio . = 0.3, and density
p = 7800 kg/m?3. In the first part the free vibration problem for the Free-Free case was computed.
In the second part the solution of the cantilever with Clamped-Free supports for both cases is given.
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Fig. 1. First three mode shapes (from top to bottom) for the vibration modes of the 1m high cantilever
with Free-Free (on the left), and Clamped-Free (on the right).

The domain was decomposed into five sub-domains with four quadratic boundary elements
(5 quadratic T-elements) for each sub-domain. According to the number of degrees of freedom
per sub-domain in this computation the Trefftz polynomials of 6-th order were used. The same
problem was solved by FEM using the Ansys software with second degree two-dimensional elements
(eight-node PLANE183 element) with 10 x 5 and 5 x 1 elements for comparison each problem, see
Fig. 2.
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Fig. 2. Domain description of the cantilevers analyzed by shape and sub-elements (on the left) and FEM
elements (on the right).

Results for the free vibration problem of the cantilever with 1 m height are given in Table 1 for the
Clamped-Free support and in Table 2 for the Free-Free support. The results obtained correspond well
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with analytical solutions obtained by simplified 1D solutions based on Euler’s differential equation,
which excludes the shear deformation and hence tends to give greater frequences particularly for
the deeper beams.

Table 1. Comparison of first three eigenfrequences the free vibration modes of 1 m height cantilever with
Clamped-Free support (in both the circular frequency and the frequency in Hz).

283.556 / 13.2984

239.99 / 38.1969

81.9578 / 13.044
249.392 / 39.962

82.5108 / 13.132
229.575 / 36.538

No. | BEM - (Trefftz) FEM - (Ansys) FEM - (Ansys) Analytical
5 x 1 sub-el. [s™!/Hz] | 10 x 5 elem. [s™!/Hz] | 5 x 1 elem. [s~!/Hz| | solution [s~'/Hz]
1]13.149 / 2.09280 13.2122 / 2.1028 13.2827 / 2.1140 13.8005 / 2.1964

86.4923 / 13.765
242.192 / 38.546

Table 2. Comparison of first three eigenfrequences for the free vibration modes of 1 m height cantilever
with Free-Free support.

2 [231.53 / 36.849

452.74 / 72.055

225.832 / 35.944
434.646 / 69.176

228.249 / 36.327
451.189/ 71.809

No. | BEM — (Trefftz) FEM - (Ansys) FEM - (Ansys) Analytical
5 x 1 sub-el. [s™!/Hz] | 10 x 5 elem. [s™!/Hz] | 5 x 1 elem. [s~!/Hz] | solution [s~!/Hz]
1|83.778 / 13.333 83.0888 / 13.224 83.2145 / 13.244 83.6340 / 13.310

243.691 / 38.784
476.608 / 75.854

Table 3. Comparison of first four eigenfrequences for the free vibration modes of 4 m height cantilever with
Clamped-Free support.

No. | BEM — (Trefftz) FEM - (Ansys) FEM - (Ansys) Analytical
5 x 1 sub-el. [s™!/Hz] | 10 x 5 elem. [s7!/Hz| | 5 x 1 elem. [s~!/Hz] | solution [s~!/Hz]
1]51.0370 / 8.1228 51.2494 / 8.1566 51.7860 / 8.2420 55.2018 / 8.7856
2277.011 / 44.087 277.013 / 44.088 283.026 / 45.045 345.969 / 55.065
3|406.640 / 64.718 408.495 / 65.014 408.696 / 65.046 -/ -
4 1669.450 / 106.54 661.996 / 105.36 684.490 / 108.94 968.771/ 154.184

Table 4. Comparison of first four eigenfrequences for the free vibration modes of 4 m height cantilever with
Free-Free support.

No. | BEM — (Trefftz) FEM - (Ansys) FEM - (Ansys) Analytical
5 x 1 sub-el. [s™!/Hz] | 10 x 5 elem. [s™!/Hz] | 5 x 1 elem. [s~!/Hz] | solution [s~!/Hz]
1]297.184 / 47.2984 297.144 / 47.292 299.186 / 47.6170 351.296 / 55.9110
2(706.625 / 112.463 697.245 / 110.97 713.732 / 113.594 970.844 / 154.514

3(810.174 / 128.943 813.798 / 129.52 813.879 / 129.533 -/ -
411203.30 / 191.511 1164.71 / 185.37 1223.30 / 194.692 1898.40 / 302.139

5. CONCLUSION

The T-polynomial reciprocity based FE formulation is a very efficient method for the solution of
dynamic problems. The stiffness matrix is formulated by solving non-singular integral equations over
the element boundaries. The mass matrix in the present formulation is computed by integration over
the element volume using the same reciprocal field variables as those used for the stiffnes matrix.
The numerical examples show good acuracy of the models. The Trefftz elements get comparable
accuracy to displacement FEM with a lower number of elements.
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