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The paper presents the possibility of the limit stress state approximation of the reinforced concrete wall
structures by discontinuous stress fields with variable configuration. Heuristic optimization technique,
simulated annealing, is applied to determine optimal configuration for approximation of load carrying
capacity based on lower bound theorem of theory of plasticity. Model was tested by comparing with the
results of several experimental tested beams, as well as with other numerical models.
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1. INTRODUCTION

Wall structures are structural elements which significantly deviate from the basic assumptions per-
taining to beam structures and therefore they must be considered as elements with more complex
stress states which could be included in the so called in-plane stress. Non-homogeneity of reinforced
concrete as composite material makes the theory of elasticity inadequate in comprehension of stress
states in these elements, especially in the state of the limit equilibrium, which is analyzed in this
paper.

Limit states of the reinforced concrete wall structures have been less addressed in research from
experimental, theoretical and numerical aspect than limit states of beam and slab structures. In our
country, significant and comprehensive research in this area was done by Mirko A¢i¢ [1], as well as
several recent researches.

Development of numerical methods, primarily of FEM in 70s and 80s, which was following
development of computer technology, resulted in numerous applications of theory of plasticity for
analysis of the reinforced concrete structure behaviour. Various models of analysis of the reinforced
concrete structures in plane stress state which are implemented in contemporary computer programs
could be found in the monography Kostavos and Pavlovié¢ [5].

In recent decades, less complex models for analysis load carrying capacity of reinforced wall
structures have been developed and improved. Primarily, those models are based on the simple
stress fields with practically axially stress state inside particular areas. These stress fields, the so-
called Strut-and-Tie models, are based on Ritter’ s and Morsh’s models truss analogy of the inner
forces flow in reinforced concrete elements. Also, that models could be found in Schlaich’s and
Marti’s works [14, 6]. A complex stress state which is inherent in nodes of such truss models should
be treated, like in [13], as zones in the plane stress state.

Analysis of the load carrying capacity of the reinforced concrete elements in plane stress state
can also be carried out by the application of discontinuous stress fields based on the lower /static/
bound theorem of theory of plasticity. Those models are situated between the complex incremental
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models for FE applications and less complex Strut-and- Tie models, which have been widely applied
in engineering practice. Examples of those carrying capacity solutions, simple discontinuous stress
fields which express stress distribution in the limit state of reinforced concrete structures, can be
found in literature, Nielsen [11]. These solutions are based on the constant stress distribution along
discontinuity lines, which bound triangular continuous stress areas. Consequence of this assumption
is a constant stress state in triangular continuous areas between discontinuity lines. A computer-
based procedure for designing of such stress fields with application on determining ultimate carrying
capacity is developed in R. Hajdin’s dissertation [3].

It is well known that quality of the approximation load carrying capacity is conditioned by the
configuration of the discontinuous stress field, which expresses stress state in the limit equilibrium.
Application of the optimization of discontinuous stress field configuration with the aim to improve
approximation of limit stress state of reinforced concrete structures in plane stress state is the
subject of this work as well as of the investigation presented in [9)].

2. BASIC ASSUMPTIONS

Prediction of the load carrying capacity is based on bound theorems of theory of plasticity which are
established at the beginning of 20th century and strictly defined by Drucker in the 50’s. The theorems
imply rigid ideally plastic model of material behavior, whereby the share of elastic deformation in
total deformation is neglected, (1).

Eij =N el

i efj =~ 0. (1)

Following basic postulates of non-viscous plasticity (Drucker), the so-called associated flow law,
are defined, so that the flow law is independent of the level of plastic deformations in the case of
applied material model Efj. The suitable plasticity condition could be shown in the form (2).

@(O’ij) S 0. (2)

Bound theorems are defined for the case where all outside loads are proportional to one parameter,
multiplicator of outside load ),

=X (3)

whereby the so-called proportional load is defined. Also, stress surface conditions must be achieved
in the part of the body where external stresses are defined (4),

p} =oijn; on S, (4)

as well as local conditions of stress equilibrium with presence of the volume forces (5) and symmetry
of the stress tensor (6).

oijj +fi=0 4,7=1,2 (5)
eij3 Uij = 0. (6)

The stress distribution which may be assumed in the limit state induced by the plastic collapse,
the so called feasible stress state, must satisfy the plasticity conditions (2) and stress conditions

(4)-(6).

Lower /static/ bound theorem theory of plasticity /LBT/ points out that the load multiplicator
-A%, which corresponds to the previously defined feasible stress state, is always lower then or equal
to the real load multiplicator in the state of the limit equilibrium — Ai™, (7).

A8 > )\lim. (7)
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This fact implies that determined limit load is on the safety side, which results in the wide range
of applications in solving practical engineering tasks. Another convenient fact is that the theory of
plasticity also allows the so-called discontinuous stress fields at plastic collapse, which considerably
extends the range of feasible stress states. It means that a good enough approximation of limit stress
state may be found out easily.

Discontinuities in the stress field are represented by discontinuity surfaces in the body. Constant
stress distribution along elements’ thickness implies a possibility to accomplish consideration only
in the middle plane of the element. In the middle, plane discontinuity lines represent stress field
discontinuities, and stress field must be continuous between these lines. The only allowed disconti-
nuity is normal stress discontinuity for the plane with normal vector parallel to the discontinuity
line (8), Fig. 1.

Fig. 1. Allowed stress discontinuity at the limit state of the plane stress

of £l ' (8)

Normal and tangent stresses for the plane with the normal vector orthogonal upon the discontinuity
line must be continuous. This reflects continuity of transfer of normal and tangent stresses upon
the surface of discontinuity.

op = 02, Tnt = th 5 (9)
Surface conditions, upon the border continuous region rounded by discontinuity lines, expressed
by adequate stresses along discontinuity lines must be achieved, as well as equilibrium conditions (5)
and local moment equilibrium equations which express symmetry of stress tensors (6). Following
continuum mechanics postulates, integration of the equation (5), and application of the Gauss’
theorem on divergence, equations of global equilibrium of the forces of the whole region will be
obtained,

/Sp,-ds+/vfidv P29 (10)

i.e. the global moment equilibrium equation

/ €ij3 0ij ayv-=1. (11)
\%4

These equations must be satisfied for each continuous stress region of the whole field.

In the case of applied ideally rigid plastic model of material, limit state of plane stressed concrete
is most often represented by the Modified Mohr-Columb plasticity condition without tensile strength
[10,11]. It is has also, been applied in this research. This condition is defined by one parameter,
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pressure strength of concrete, fc, which is shown in the coordinate system of principal stresses,
Fig. 2. Practical reasons of problem solution require linearization of this condition. We assumed
linearization with small local violations, as one applied in the research [3], so that generalized
condition (2) would be defined by the system (12).
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Fig. 2. Modified Mohr-Columb’s plasticity condition of concrete without tensile strength

This plasticity condition assumed that the local buckling effects of the compressed reinforcement
bars are excluded during the solving procedure. In some cases, usage of the reduced yield strength
of the bars may be useful, [9].

The equivalent membrane in the middle plane is representing reinforcement with a possibility of
bearing stress upon the direction of reinforcement bars. According to this fact, yield limit parameter
of the reinforcing layer, with the bar of cross-sectional area Aj;, distance between the bars e;, yield
limit parameter fy and thickness of the element d, is defined by (13), while plasticity condition
becomes (14).

: A; fy
=5k (13
o3| < £ (14)

Modelling of the common action of concrete and reinforcement in RC as composite material
in the limit state problems according the LBT, is based on decomposition of the whole stress
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into separate material stresses, [3,10]. Here, taking into account the influence of volume forces, the
adopted decomposition of stresses is shown in Fig. 3. Applying load multiplicator only to the surface
load, the relations between the actual stress state and the stresses upon the concrete and layers of
reinforcement are expressed by the system (15).

m
2
A Oaz + 01y =05 + Zcrf (cosay)”,

i=1

m
A Ogy + 01y = 0y + Z o (sin og)?, (15)
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Fig. 3. Decomposition of total stresses upon the particular material stresses

If the stress vectors which proceed from active and volume load are defined with
Os = {Oaz Oay Tazy}T, and 05 = {0z Ofy szy}T and stress vector in concrete and reinforcement
= o® = \et Oy Tgy 01 05 A crfn}T, decomposition (15), in compact form, may be expressed in
the form (16).

¢cs(}\’ 0q,0Ff, Gcs) =0, (16)
P (05i07.75,) <0, (17)
o) S0 i=1, m: (18)

Following those definitions, concrete and reinforcement plasticity conditions (12) and (14) may
be represented in the form (17) and (18).

max \
9% (A, 04,07,0%) =0
d, (ag,o;,rgy) <0
®3(05) <0 i=1,..,m

Finally, relations (16) to (18) represent plasticity condition of reinforced concrete (2), and the
ultimate load task is defined by variational problem (19).

(19)

3. STRESS FIELD DEFINITION

The quality of approximation of the limit stress state in the reinforced concrete elements primarily
depends on supposed stress distribution along discontinuity lines. The known solutions of simple
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discontinuous stress fields, as well as their construction are shown in [3]. Those solutions are based
on the constant stress distribution along discontinuity lines. In some way, it reflects certain analogy
with the truss models but, as it is shown in [9], stress fields construction is very limited and not
suitable for application in the optimization methods of the field configuration. According to this
reason, linear stress distribution along discontinuity lines and border sides with unknown stresses
has been adopted.

a) b)

Fig. 4. Stress parameters along discontinuity lines and upon the border of the continuous stress region

As in (3], triangular form of the continuous stress regions edged by the discontinuity lines has been
adopted. Along discontinuity line defined by the vector aj, components of stress resultants in the
tangent and normal directions of a suitable discontinuity line have been adopted as stress parameters,
figure 4a. Local orientation of continuous stress region border vectors, stress field element sides
aj — &y — a3, has been adopted to be clockwise. So, the stress state in continuous triangular stress
region is defined by the stress resultant vector in the form (20).

P= { {FFuTeFie} (PP FeFye) {(FiFaFer)) 20)

Consistent stress state within each triangular region of the field requires that components of the
stress resultant vector f satisfy the local equilibrium conditions (5) and (6), as well as global con-
ditions (10) and (11).

In the corner, between the sides lengths’ I, and I, the stress state has been determined by the
edge stress vectors along the borders p, and py, Fig. 5.

side N
"H"

continuous
stress region

Fig. 5. Stress state in the corner of element



Model for the determination of the load carrying capacity of the RC walls 253
Pl L i ng
a2 = = E= )
P la | Foo
Po1 = Ph = Z _f—?l } 3
Pfﬂ b | F b1

For tangent and normal vectors of suitable border branches n,, ny, t, and t;, and the designation,

(21)

A(a,b) =aT [_01 (1)] b (22)

stress tensor in the corner is defined by (23).

Ty = d_/l(?a,—b)— ([na ta] { ..;_gz } B ke [nb tb] { ;gi }aT> 3 (23)

Consistent stress state within the continuous region of the field requires achieving of the symmetry
condition of stress tensor in all the three corners of the triangular element, which may be expressed
in form of (24),

(p2ath — P th) — (phats — phite) =0, (24)
or in a compact form by (25).
% (f,a;,3,,33) = 0. (25)

If all three conditions of the form (25) are satisfied, the global moment equilibrium condition is
satisfied too (11). Apart from these conditions, the conditions of global force equilibrium (10) must

also be satisfied, which, in the case of the presence of volume forces, may be expressed in form
of (26).

EX (?7 ap, ap, as, fz) =0, (26)
EY (?’ aj,ap, as, fy) =0.

The three conditions of the form (25) with the two conditions (26), consist the conditions of existence
of the continuous triangular region in stress field in the case of adopted linear distribution of stress
along discontinuity lines.

Bilinear stress state prevails inside continuous stress region, details of which are shown in [9].
Applying bilinear interpolation functions, the stress state in the point inside the region @, which is
determined by vector xqg (Fig. 6),

3
XQ = {1 zQ yQ} (27)
are defined according to the relation (28).
e (x@)T Ax
sg=9 0§ ¢=| (xQ)TAy | L. (28)
T é{ * (XQ)T A XY

Matrices Ax, Ay and Axy depend on geometry of triangular region, and their definitions are
shown in detail in [9].
Strict satisfaction of the yield conditions, expressed by system (16)—(18), is achieved in three
points inside the region Y;, Y2 and Y3, according to the disposition in Fig. 6. Stress states at these
points are defined by relation (28).
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Fig. 6. Local coordinate system and yield check points disposition
4. STRESS FIELD OPTIMIZATION

The number of free parameters, which can be varied during optimization process, influences the pos-
sibility of optimization of discontinuous stress field. Apart from static edge sides, bound conditions
may be set upon the bound parts according to displacements or in the mixed form, Fig. 7.

stat
Fig. 7. Types of the discontinuous field bound sides

Homogenous kinematical bound conditions are treated by adequate unknown stress parameters
of reactive stresses. For a field made up of ny; of triangular continuous regions, number of sides of
adequate type of the whole stress field will be designated with:

Ngtat — Set of static bound conditions,

® nyin — set of kinematics bound conditions,

® npnix — set of mixed bound conditions,

® Nyew — inner (new) sides, i.e. lines of discontinuity of stress field.

Number of unknown static parameters, which define discontinuous stress field including the outside
load parameter \&°Pal is defined by (29).

Nstat
s
Tunkn k1.n =4 (nnew o nkin) + 2 npix + 1. (29)
mix
TNnew

Consistency of the stress field requires satisfaction of three equations with the form (25) for each
continuous region, as well as two equations of region global force equilibrium in the form (26), i.e.
for the whole stress field is defined with equations (30).

Neq = 9 * Ngr. (30)
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The difference between the number of unknowns and the number of equations defines the number of
static free parameters — number of inside degrees of freedom of discontinuous stress field niny, (31).

Ninn =4 (nkin = nnew) + 2 Npix — 5 e + 1. (31)

Linearized yield conditions (19) must also be satisfied for each continuous region into the charac-
teristic checkpoints Y7, Y, and Y3, according to the layout in Fig. 6. Optimization related to the
inside degrees of freedom is defined by the linear programming (LP) problem (32)

max ),
> 7,7,7,)=0
' {4,7,8,)=0
%, £%,3,2,)=0
%, €3,7,3,)=0
z,, €7,7,%,)=0
I=1, A n, (32)

Dy (A, g, g, 6°)=0
(I);k (4, o, Oy T5)<0
Oy (0})  i=l,..m

Jj=1, A, n,
k=1) A: npoinll

with unknown variables:

=l
o vectors of the stress resultants f [ =1, A, ni and
e concrete and reinforcement stress vectors {o°} ik {0} s d =1, AP K =10A, Foooits:

A solution of such linear programming problem may be found out, beside the well known Simplez
algorithm, by the more efficient so called Interior-point methods, which have been developed during
the last decade. One of the most efficient and the most popular methods is the so-called Mehrotra’s
predictor-corrector method, whose implementation was developed by Vanderbei [16]. This LOQO
package is available for research purposes, and is applied for solving large dimension LP program
during this research.

Fig. 8. Variation of the stress field configuration

Apart from the optimization related to the inside degrees of freedom, in static sense, this research
takes into consideration the influence of the discontinuity line configuration on the quality of the
lower approzimation of stress state at the limit equilibrium of RC elements. Similar attempt is
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presented in the Sudermann’s and Mutscher’s paper [15], which presents the idea of the node
positions optimization while applying Strut-and-Tie method of the load carrying capacity analysis.

The possibility of variation of discontinuous stress field configuration is conditioned by the initial
configuration as well as by other factors such as reinforcement of RC elements, thickness and etc.

The number of parameters which determine configuration of discontinuous stress field is defined
as the number of outside /external/ degrees of freedom of discontinuous stress field, with the desig-
nation nex, As distinguished from the number of inside degrees of freedom which is unambiguously
determined by relation (31), the number of outside degrees of freedom of stress field, as mentioned, is
conditioned by different factors and it should be determined in accordance with the present bounds
of regions. Therefore, areas for variation of configuration parameters should be defined.

If coordinates of the discontinuity line node points are considerered as unknown, equations of
global force equilibrium of elements in the X and Y direction (26), as well as equations of local
moment equilibrium into the element’s corners (25) become nonlinear, which leads us into the
nonlinear programming (NP) area.

This problem may be solved by defining the objective function of the of nonlinear program related
to next outside degrees of freedom as an optimal solution of linear program related to niy, inside
degrees of freedom.

If we define vector of the configuration parameters, as

T
5X = {5)(1 §Xz A 5Xnm} (33)
the load factor objective function may be expressed in the form (34).

et (6K) =\ Bicbsl (ax, fg1°ba1') ~  max (,\sl°ba‘ (ax,fgbba’) . Rinn R) = (34)

inn i inn
fglobal €R™inn

The separation of the optimization process results in considerable reduction of the dimension
of nonlinear program. In spite of large dimension, the optimization problem related to the inside
degrees of freedom, remain linear, and may be solved efficiently. During nonlinear optimization, very
few informations of the objective function defined by (34) are known, i.e. only its value at actual
point i.e. in the actual configuration of discontinuity lines. This fact makes application of direct
methods in optimization process related to the outside degrees of freedom practically impossible,
and implies application of heuristic optimization methods. Besides, since global maximum should
be determined, direct methods based on the objective function gradients, cannot guarantee global
maximum, but only a local one [7]. It additionally justifies application of heuristic methods whose
behavior in this sense is considerably better.

Simulated annealing /SA/ method has been applied in this investigation for optimization related
to the outside degrees of freedom, and with the definition of the objective function (34), the method
practically leads to the global optimal value of load factor of the discontinuous stress field determined
by (Ninn + Next) degrees of freedom.

5. METHOD OF SA OPTIMIZATION

The method is based on Monte Carlo method which is used in statistical mechanics in simulation of
the body melting process, where is known as Metropolis algorithm [8]. During the cooling process,
if it is slow enough, the atoms will be arranged into the best order configuration, which results in
a minimum of the inner energy.

Starting from very high temperature, by slow cooling process, thermal balance is established at
every temperature, which is described by Boltzmann distribution,

e~E/(ks T)

Z(T) (35)

P(E:E‘):
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of the probability that the system is in a state with the level of inner energy E. In expression (35),
kg is Boltzmann’s constant, T is the present temperature, while the factor e=E/%57T is so-called
Bolzmann’s factor. Z(T') is the normalizing factor. While the temperature is falling, distribution (35)
concentrates around the state with the lowest inner energy, until the temperature finally reaches zero
value, where only the state with a minimum of inner energy has a probability different from zero.

Metropolis algorithm is used to establish thermal equilibrium at a particular temperature T,
while new sequential states generate Monte Carlo method during simulation of annealing process.

Kirkpatrik et al. [4], have noticed a connection between the processes in statistical mechanics
and the problem of combinatorial optimization expressed in necessity to establish a state with a
minimum of energy i.e. a global minimum in the optimization process. The original idea of the
application of SA algorithm to solve NP-complete discreet variables optimization problems [4], has
been extended and applied to find optimal value of the continuous variable function in different
areas of engineering, science and technology [12].

Specifications of the application of SA algorithm to the optimization continuous vector variable
function, as the details of the algorithm adaptation to the problem of discontinuous stress fields
configuration optimization are shown in [9]. Figure 9 presents an outline of the applied optimization

INITIALIZATION \
X=Xi & fi=f(Xi)
To & T=To
out=0

out = out+1
inn=0

O GENERATE
£ new position
@ Xi0 Xj ... fi=£(Xj)
-t a Afij = §- &
< °
: 5 PP
: Switch:Afi

g (g: case: Afyj £N
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o o Xi=Xj &fi=fj E
. qg case: Afi$ 0
@ —
i 35 & rnd = random €[0,1)
8 g é ;U); Switch: rnd

o o — X 3
< 2 3 - o A/ By eron
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- & & Xi=Xj & fi=f

78] s .

g § S | case: € AR /@ Dt rma €[0,1)
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STOP test
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Fig. 9. Simulated annealing optimization
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algorithm of real function of vector variable f(X). Details of each phase, initiation, generation
of a new configuration, checking of thermal equilibrium establishment, temperature reduction and
stopping criterion are shown in detail in [9]. It should be pointed out that the so-called homogenous
type of SA algorithm has been implemented.

6. APPLICATIONS IN DETERMINING ULTIMATE CARRYING CAPACITY

The discontinuous stress fields’ optimization procedure has been implemented in the program pack-
age D & OSF — Developer & Optimizer of the Stress Fields, developed under METLAB for Windows
surrounding. This package manages determination load carrying capacity of RC elements in plane
stress state.

The presence of reinforcement is defined by the ratio of limit stresses in tension and pressure, by
reinforcement degree {2 in the form

_Asky
i A

where the following designations are introduced:

(36)

e A, .... reinforcement surface, m?/m,
e f, ... yielding limit, kN/m?,
e t.... thickness of RC elements, m, and

e f. ... concrete strength kN/m?.

Example of the structure in Fig. 10 illustrates how ultimate carrying capacity is determined. Fol-
lowing the assumption that the collapse is caused by simultaneous failure in the symmetry axis
cross-section, discontinuous stress field shown in Fig. 11 may be expressed by that failure mecha-
nism, Nielsen [11]. Suitable value of the ultimate load according to (37) is p"* = 0.709 MN/m.

b 0L L
o (1+02)(L—c—0.5d)° -

P

e //‘\
/ f,= 400MPa
T $12/10 cm
g

As=11.3 cm?/

d=04m

|
| B==0y
;</ Q=(Asfy )/(tf)

{0 er < f,=20MPa, |\ Q=0226
050 \\t=10cm

ls———— h=]1m ——=

o Syl 2
ﬁﬁq q
: c=02m c=02m d
L=3m

Fig. 10. Isotropic wall structure
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Fig. 11. Stress field in the limit equilibrium

Discontinuous stress field has been developed by application of the program package D & OSF,
with the adopted next = 2 outside configuration parameters of its configuration and pg = 1.0 MN/m,

Fig. 12.
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Fig. 12.

Load parameter objective function A (dY7,dY2), in the space defined by (38),

—0.15 m < 6Y4; < 0.15 m,
—0.25 m < Y42 < 0.25 m

Stress field configuration parameters

(38)

is determined numerically [9], with extreme value of load multiplicator A\°P* = 0.706, at the
point where its derivates are not defined and which match simultaneous failure in concrete and

reinforcement.

Presented optimization algorithm of the inner stress parameters of the stress field is found out,

initial value, matches the initial configuration of the load carrying capacity given by (39).

pos = 0.537 MN/m.

(39)
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During optimization of the outside parameters of configuration by the package D & OSF limit load
value in optimal configuration with the best value of the load parameter of A* = 0.705 has been
determined. This optimal configuration is shown in Fig. 13, with a suitable ultimate load (40) is
determined.

Popt = 0.705 MN/m. (40)

et
L RN NNt \ % G e

Fig. 13. Stress resultants in optimal configuration of discontinuous stress field

It may be concluded that configuration of stress field has significant influence on the approximation
of stress distribution in the state of limit equilibrium, as well as that applied simulated annealing
algorithm is very efficient while determining optimal configuration.
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