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The paper is a continuation of [9], where new experimental data were analysed. The Multi-Layered Percep-
tron and Semi-Bayesian Neural Networks were used. The Bayesian methods were applied in Semi-Bayesian
NNs to the design and learning of the networks. Advantages of the application of the Principal Component
Analysis are also discussed. Two compaction characteristics, i.e. Optimum Water Content and Maximum
Dry Density of granular soils were identified. Moreover, two different networks with two and single outputs,
corresponding to the compaction characteristics, are analysed.
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1. INTRODUCTION

Engineering structures which involve earthwork such as roadway embankment, earth dams and soil
liners often require compaction to improve soil conditions. The Optimum Water Content (OWC)
and Maximum Dry Density (MDD) are essential characteristics for the design of compacted earth-
work. These characteristics depend on classification properties of soils. In case of granular soils
classification data can be reduced to parameters corresponding to soil grain-size distribution {D, },
see [8]. They can be used as input variables. The output variables { MDD, OWC'} can be obtained
experimentally by means of the laboratory Proctor’s Standard Test ASTM D558-57, cf. [5, 6].

Proctor’s Test is laborious and time consuming. That is why Artificial Neural Networks (ANNs)
have been used to predict compaction characteristics, cf. [4, 7-9]. The application of Standard
NNs was discussed in [4, 7] for synthetic soils consisting of four different components. In paper [7],
besides MDD and OWC, permeability of mixture soils was also analysed. In book [8] it was proved
that granular soils can be analysed by means of classification data {D,}. This idea was developed
in [9], where new measurement data were analysed.

In the papers mentioned above it was shown that the Multi-Layered Perceptrons (MLPs) are
much better than the statistical approach basing on the multiple regression method. Moreover, it
was shown in [8, 9] that correlation analysis is applied only a part of data, taken from grain-size
distribution, can be taken into account as the input data. Moreover, it was numerically proved
in [7] that instead of two output MPNs a good approximation could be given by two networks with
single outputs, corresponding to characteristics MDD and OWC. This approach was also partially
adopted in book [8] and paper [9].
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In the present paper, besides the standard MLP a more refined, Semi-Bayesian Neural Network
(SBNN) was applied. It is based on the extended error function and application of Bayesian methods
to the computation of hyperparameters in the error function. The Bayesian method was also applied
to the SBNN design instead of the cross-validation method commonly used.

Additionally, in case of SBNN the Principal Component Analysis (PCA) was applied for prepro-
cessing of input data. In the paper, the adoptions of two MPNs with single outputs are discussed.
The application of SBNN with the extended error function (with a penalty term) and application
of PCA enabled us to obtain satisfactory results for efficient networks without losing the approxi-
mation accuracy.

2. ADOPTED DATA

A set of pattern pairs P = {x?, tp};;:l was composed of P = 121 tests corresponding to the
application of Proctor’s Standard Test to the postglacial soils from the north of Poland, see [9].
In this paper MPLs were applied and the set of P measured patterns was randomly split into
sets of learning, testing and validation sets composed of L = 0.5P = 61, T =V = 0.25P = 30
patterns, respectively. In case of the SBNNs also the PCA transformation was used for the input
data preprocessing. Then only two sets of patterns were selected, i.e. the training and testing sets
composed of L = 0.7P = 85 and T' = 0.3P = 36 patterns. The PCA method was also applied for
input compression.

According to [8] the input data are related to grain-size distribution corresponding to a sequence
of nine grain diameters:

{D3} = {D10, D29, D30, Dao, D50, Deo, D70, Dso, Doo }, (1)

where x [%] is the percentage of grain diameters D [mm]| below which the soil mass is placed.
Besides diameters listed in (1), the tenth input data corresponds to the uniformity coefficient

~ Deo

Cy=—.
Y~ Du

(2)
Thus, the vector of input data has ten components
X(lOXl) = {CU, Dx ‘ xr = 10%, vy 90%} . (3)

An extensive correlation analysis was carried out in [8, 9], which enabled us to reduce the number
of important grain size diameters D,.. Due to the correlation analysis the following five input vectors
were adopted:

X(5x1) = {Cu, D10, Dao, D70, Dso}- (4)

The output variables correspond to two compaction characteristics, i.e.
Yex1) = {OWC, MDD}. (5)

Obviously, the measurements by Proctor’s Test were used as the components of the target vector
tx)-

When the Principal Component Transformation (PCT) was applied, the covariance matrix of
size (10 x 10) was computed, cf. [10]. Then PCA (PCT analysis) method was also applied for input
data compression. It is shown in Point 3.2.4 that the input space can be decreased to a 4D space.
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3. NEURAL NETWORK ANALYSIS
3.1. Application of MLP

Standard neural network analysis is related to the networks in which the Least Square method is
applied with the Eg error function (for the sake of clarity only a single output is considered):

S
1 » . 2
ELSi - 5 I; {tz - yl(xp7w)} 3 (6)

where p — numbers of patterns, ¥, y;(x”; w) — target and computed outputs for pattern p and sub-
script 4 corresponds to compaction characteristics OWC, MDD, xP € RP — input vector, w € RW
— weight vector, S = L, V, T — numbers of patterns in the learning, validation and testing sets,
respectively.

From among many standard neural networks we adopted the feed-forward layerd, error
back propagation network which in [10] was called Multi Laeyred Perceptron (MLP). The tgh
sigmoid activation functions were applied in H hidden neurons and linear outputs were as-
sumed.

The MATLAB neural toolbox [1] was used. MLPs were trained by means of the Levenberg-
Marquardt learning method. In Table 1, values of the Root Mean Square Errors RMSE;9 and
determination (RY)? are listed:

S
1 52 SSE?
RMSE; = | = (= )%, (RFP =1- g (7)
p=1 Yy
where
S S 1 S
S 2 S —\2 _
SSEF =Y (7 —y)?, S5 = —7m), inEny’-
p=1 p=1 p=1
Table 1. Network learning and testing errors.
ANN No | Architecture NNP Outputs RMSEF RMSET (RF)? (RT)?
1* 10-4-1 49 owc 0.121 0.159 0.75 0.65
2% 5-4-1 29 MDD 0.077 0.085 0.91 0.89
owc 0.118 0.142 0.85 0.62
’ 10-3-2 A MDD 0.063 0.074 0.95 0.85
owc 0.112 0.141 0.82 0.65
1 b2 12 MDD 0.061 0.074 0.93 0.85
5 10-4-2 54 owc 0.098 0.112 0.89 0.79
PCA MDD 0.055 0.065 0.96 0.90
6 4-5-2 37 owc 0.110 0.139 0.78 0.60
PCA MDD 0.070 0.081 0.87 0.80
7 10-2-1 PCA 25 owc 0.095 0.123 0.88 0.77
8 10-4-1 PCA 49 MDD 0.025 0.055 0.98 0.93
9 4-2-1 PCA 13 owc 0.096 0.159 0.86 0.55
10 4-2-1 PCA 13 MDD 0.030 0.063 0.90 0.85

*L=05P,T=025P
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The optimum number of hidden neurons H,,; for the families of neural networks MLP: N-H-M
with N inputs and M = 1 or 2 outputs were analysed in [9] applying the cross validation method.
The number of learning, validation and testing patterns was L = 61, V =T = 30, respectively.

The computations carried out in [9] confirmed the conclusions from [7, 8] that the ANN of
different size could be recommended for prediction of compaction characteristics. That is why
from many results discussed in [9], we quote in Table 1 the errors obtained for the best net-
works with single outputs, i.e. the networks No 1* and No 2*. For these networks the optimum
number of hidden neurons H,, = 4 was adopted for both the compaction characteristics OWC
and MDD.

Looking at Table 1 it can be concluded that the errors RMSEYand determination (R?)? are
higher for i = OWC than for i = MDD, both for the learning S = L and training .S = T" numbers
of patterns. These results are related to different physical phenomena related to OWC and MDD,
cf. 5, §].

3.2. Application of SBNN and PCA
3.2.1. Extended error function

In the presented paper the extended error measure Epyg; is investigated, corresponding to adding
the penalty term Eyy; . These terms are weighted by hyperparameters «; and f;:

Eprsi(w) = Fi(w) = Ersi(w) + Bwi(w 5’2{#’—% x?w)) + & Zw (8)

for i = OWC, MDD, where the same notation as that in formula (6) was used.
In (8) hyperparameters «; and f; are introduced as assumed in the Bayesian NNs.

3.2.2. Learning of SBNN

The formulas presented in the Appendix are the basis on which the Bayesian procedures were
written in book [3] by Nabney. The weight vector wyzap (the subscript MAP corresponds to the
Bayesian approach Maximum A Posteriori) was computed by the conjugate gradient method joined
with computing of hyperparameters «; and ; by means of iterative formulas, Appendix formulas
(A7, A9). It was stated that the of hyperparameter can be well estimated within 3-7 iterations
starting from the initial values of «y, =~ 0.01 and 5;, ~ 50.

3.2.3. Design of SBNN

In the paper only design of two networks with single outputs and architecture SBNN: D-H-1 are
shown in Fig. 1. The number of hidden neurons was computed by means of procedure EVIDENCE
from [3] adopting only the learning set composed of L = 86 patterns, see Appendix formula (A6).
The Bayesian method MML and the commonly used cross-validation method were applied. In order
to compare the estimated number of hidden neurons H,,; the testing set with 7" = 35 patterns was
used as the validation set. The example graphics of functions In ML(H; L) and RMSE" (H; T)
are shown in Fig. 1 for the network with ten and four compressed inputs, respectively. As can be
seen, for the family of networks SBNN: D-H-1 the optimal value of the hidden neuron numbers is
H,y =4 for D =10 and H,y; = 2 for D = 4.

The same number of optimal hidden neurons is given by the cross-validation method. What is
worth emphasising again is that the curve marked as In ML was obtained for the learning set of
input data set. In case of the cross-validation method, the curve RMSET corresponds to a randomly
selected validation (testing) set of patterns.
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Fig. 1. Curves log ML(H; L) and RMSE™ (H; T) for design of neural networks by means of MNN and
cross-validation method for network 10-H-1, PCA.

3.2.4. Application of PCA method

In the present paper the PCA (Principal Component Analysis) was applied. Following the PCA
algorithm, cf. [2, 10], the covariance matrix C(10x10), computed for the input data set of L = 85
learning patterns with components (3), was formulated. Proncipal eigenvalues of this matrix have
the following values:

{)‘j}(10><1) = {20.7105, 4.6436, 0.4818,0.0744,0.0070, 0.0035, 0.0007, 0.0006, 0.0005, 0.0000}.  (9)

The PCA bases on linear transformation of input patterns to the principal coordinates &; € RO,
corresponding to the eigenvectors q;. This transformation can be treated as preprocessing of input
data.

Looking at the eigenvalues (9) it is evident that the first four eigenvalues dominate so the inputs

can be compressed to four principal components which can be adopted for the network family of
architecture SBNN: 4-H-1.
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3.3. Comparison of compaction parameters identification by SBNNs

Networks with two outputs. The SBNN networks with and without PCA were applied to iden-
tification of compaction characteristics. In networks Nos 3 and 4, shown in Table 1, the input data
were assumed according to formulas (3) and (4), adopting two outputs, i.e. networks of architecture
SBNN: D-H-2, where D = 10, 5 and H = 3, 5. The application of Bayesian methods for the design
and learning gave the networks which helped overcome the difficulties mentioned in [8, 9] concern-
ing the learning networks with two outputs. It is visible that identification by means of reducing
the number of inputs from ten to five gave results comparable to those without data compressing.
This was caused by the application of networks of nearly the same number of network parameters
(i.e. number of synaptic weights and biases) NNP = 42 and 41 for the networks Nos 3 and 4,
respectively.

Networks with single output. The standard networks of architectures MLP: D-H-1 Nos 1*
and 2* were applied in [9]. They were learned and tested by a different number of patterns L =
0.5x 121 =61 and T = 0.25 x 121 = 30, respectively, than other networks listed in Table 1. In case
of SBNNs the corresponding sets were composed of L = 86 and T' = 35 patterns. The networks
were designed and learned by Baysian methods. The corresponding errors are shown in Table 1
for the networks Nos 7-10. Both in ten principal components and four compressed components the
PCA method was applied.

As indicated by Table 1, for the networks mentioned above the errors RMSE are nearly the
same. In order to compare the errors obtained for four compressed inputs (networks SBNN: 4-2-1,
PCA) the computations were also carried out for the transformed data, but without the input
compression (networks SBNN: 10-H-1, PCA). An advantage of the input data compression lies in
decreasing the networks Nos 9 and 10 sizes to NNP = 13, vs. NNP = 25 and 49 for the networks
Nos 7 and 8 in which the input data were not compressed.

4. PREDICTION PROPERTIES OF NETWORKS WITH APPLIED PCA

The distributions of points (yP, tP); are shown in Fig. 2, separately for i = OWC and ¢ = MDD.
The points related to the target values, taken from Proctor’s Standard Test, are distributed around
the diagonals y? = ¢

For the prediction purposes the relative error Re; [%] is introduced:

Rei = (/2 — 1) x 100%, (5 = 1), {10)

where coordinates y?, t¥ determine pattern points p on the planes i = OWC, MCC. In Fig. 2 the
lines Re = £C% bound the area in which prediction points with the relative errors |Re| < C' are
placed.

The bounded area corresponds to the cumulative parameter SR [%], called Success Ratio, defined
in [2] as:

SR = % x 100% for S=L,T, (11)
where: SRe — number of prediction points in the Re area, S — total number of points of the
data sets S = L, T. In Fig. 3 the cumulative curves SRS (Ref) are shown for the learning and
testing sets computed by the networks 10-4-1, PCA and 4-2-1, PCA. It is evident that the PCA
transformation improves the accuracy of neural approximation. The network SBNN: 10-4-1, PCA
gives the best results from all the networks presented in Table 1. This also concerns the testing
determination (RT)2.

The network SBNN: 4-2-1 PCA with compressed inputs gives slightly higher values of errors,
than the network of architecture 10-4-1, see Table 1. The Success Ratio curves SC(Re) shown in
Fig. 3 are close to each other for the networks discussed above both for the training and testing
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Fig. 2. Areas of SR = 80% with error bounds Re shown for networks ANN: 10-4-1 and 4-2-1 , PCA and
compaction parameters OWC and MDD.

100 OwWC,PCA i MDD,PCA
80 1021 _s2” gocmo=c=== 80
'S_Q' 60 '3_9~| 60
o o
W) 40 W) 40
20 : 20} - 4
— testing — testing
16%  23% --learning .3'5% 5.5% -=---|earning
10 20 30 40 2 s ' s 8 10
Re[%] Re[%]

Fig. 3. Cumulative curves of Success Ratios SR (Re) for the Re percent of correctly predicted compaction
characteristics OWC and MDD and networks ANN: 10-4-1. 4-2-1, PCA.

patterns. If we assume that about 80% of testing patterns are correctly predicted with SR = 80%,
then the error area bounds are | Re| ~16-23% and | Re| ~3.5-5.3% for the compaction characteristics
OWC and MDD, respectively.

5. FINAL REMARKS

1. The application of the penalised network error function (8) enables formulation of efficient
networks with two outputs for the compaction characteristics OWC (Optimum Water Content)
and MDD (Maximum Dry Density) prediction.
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2. The compressed input vector (4), corresponding to four selected components of Proctor’s Test,
enables formulation of a small network 4-2-1 of accuracy comparable with the network 10-4-1
with the non-compressed number of inputs.

3. The application of PCA (Principal Component Analysis) and MML (Maximum Marginal Like-
lihood) criterion makes it possible to formulate the PCA networks 10-4-1 and 4-2-1 with a high
accuracy of approximation. The PCA approach, mathematically well grounded, seems to be
simpler than selection of inputs on the basis of the correlation analysis.

Appendix
MML, design of SBNN, computation of o and

The criterion of Maximum Marginal Likelihood (MML) is supported on the Bayes’ theorem, which
is written with respect to conditional probabilities p(A|B), where A and B are specified to variables
used in the present paper:

p (t|w, B) p(w]e)
wlt, o, 3) = , Al
p(wlt, o, 5) (el B) (A1)
where p (t|a, §) is the Marginal Likelihood ML (also called Evidence).
p(tla, B) = / p(t|w, B)p(w|a)dw. (A2)
RW

In the theorem (A1) the neural weight vector w = {w; }!V, is used, where W is the number
of weights. This number is linearly related to the number of hidden neurons H in feed-forward,
single layer network of structure D-H-M with D inputs and M outputs. The number of weights is
W =(D+M+1)x H+ M sowe have H= (W — M)/(D+ M +1).

Applying Gaussian approximation of Marginal Likelihood function ML = p(t|a, ) the following
equation for In ML can be derived, cf. [10, 11]

~ 1 N
In ML = lnp (t|o, B) = —E(wynap) — 3 In|A|+ % Ina+ E(lnﬁ —In27) |, (A3)
where
~ ~ 1
E(w) = E(wuap) + (W — wiap) A(W — wyiap),
R 3 N , o g (A4)
E(wyap) = BEp(wuap) + aBw(wiyap) = 5 > ot —yx"w) + 5 WMAPWMAP,
n=1

A=al+BH, H=V.VeEp. (A5)

A data set of patterns, applied in (A4), corresponds to the pairs {x", t”}gzl. The subscript
Map means Maximum ‘A Posterior’, related to the left-hand side of the Bayes’ theorem (1). Matrix
A is expressed by the Hessian matrix H.

Thus, criterion MML (Maximum Marginal Likelihood) corresponds to:

max In ML — Wy ~ Hopt | - (A6)
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The hyperparameters o and (3 are used in the extended neural network error (A4). These hy-
perparameters can be computed iteratively using the following formulas derived on the basis of
minimisation of the function In ML with respect to either « and £, see [11]:

ot 1 1

e = (A7)
Wiiap WMAP Bin N —v

Qjn =

N
> "=y (x"; waiap) )
n=1

where parameter ~ is related to the eigenvalues \; of the Hessian matrix H:

’Y:;Wr)\i. (A8)

Updated values of the hyperparameters are estimated by the following formulas:

gl N —~
W = a = 7 old W = T ad N ) Ag
o B Wi T 2By, (49

where the weight vector Wf\’}[ip is computed for the networks investigated.

The formulas presented above are the basis of an algorithm called in [3], pp. 341-349, the
EVIDENCE procedure.
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