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Equations of motion of serial chains in spatial motion
using a recursive algorithm
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In the present study, a recursive algorithm for generating the equations of motion of serial chains that
undergo spatial motion is presented. The method is based on treating each rigid body as a collection of
constrained particles. Then, the force and moment equations are used to generate the rigid body equations
of motion in terms of the Cartesian coordinates of the dynamically equivalent constrained system of
particles, without introducing any rotational coordinates and the corresponding rotation matrices. For
the open loop case, the equations of motion are generated recursively along the serial chains. Closed loop
systems are transformed to open loop systems by cutting suitable kinematic joints and introducing cut-
joint constraints. The method is simple and suitable for computer implementation. An example is chosen
to demonstrate the generality and simplicity of the developed formulation.
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distance between points ¢ and 7,

vector sum of the moments of the external forces and force couples acting on the body
with respect to particle 1,

moments of inertia of the body with respect to the body attached coordinate frame,
products of inertia of the body with respect to the body attached coordinate frame,
mass of the body,

mass of particle 1,

mass of the secondary particle that is located between the primary particles ¢ and j
(ml,g =mg1 = Ms,... etc.),

the position vector of the centre of mass of the body with respect to the body attached
coordinate frame,

position, velocity, and acceleration vectors of particle ¢ with respect to the body
attached coordinate frame respectively,

relative position, velocity, and acceleration vectors between particles i and j,
algebraic notation denotes the dot product operation (r;, r;),

algebraic notation denotes the cross product operation (r; x r;),

vector sum of the external forces acting on the rigid body,

coordinates of particle i with respect to the body attached coordinate frame.
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1. INTRODUCTION

There are different formulations for the dynamic analysis of spatial mechanisms which vary in the
system of coordinates used and in the way they introduce kinematic constraint equations [1-4].
Each formulation has its own advantages and disadvantages depending on the application and the
needs. Some formulations are developed using a two-step transformation in which one system of
coordinates is used in the first step and, consequently, a transformation to another system of coor-
dinates is carried out in the second step. Such a transformation process is expected to help gaining
advantages of both systems of coordinates. One method [5, 6] uses initially the absolute coordinate
formulation where the location of each rigid body in the system is described in terms of a set of
translational and rotational coordinates. However, this formulation has the disadvantage of the large
number of coordinates defined. Then, the equations of motion are expressed in terms of the relative
joint variables which determine the location of each body with respect to the adjacent body and
they depend on the type of the kinematic joint connecting the two bodies. Another method uses ini-
tially the point coordinate formulation which is originated from the natural coordinates formulation
developed by Garcia de Jalon et al. [7-9]. In the point coordinate formulation a dynamically equiv-
alent constrained system of particles replaces the rigid bodies [10-12] and the global motion of the
constrained system of particles together with the constraints imposed upon them represent both the
translational and rotational motions of the rigid body. The external forces and couples acting on the
body are distributed over the system of particles. Then, the equations of motion that are expressed
in terms of the Cartesian coordinates of the particles are transformed in terms of relative joint vari-
ables [10-12]. The main disadvantage of these two-step transformation is the necessity to transform
at every time step from the joint variables to the original system which is computationally inefficient.

A recursive dynamical formulation for the dynamic analysis of planar mechanisms with only
revolute joints is presented [13]. The method rests upon the idea of replacing the rigid body with
a dynamically equivalent constrained system of particles and then uses the concepts of linear and
angular momentum to write the rigid body dynamical equations. The method has many advantages
such as the absence of the rotational coordinates, the elimination of the necessity to redistribute
the external forces and couples over the particles, and the reduced system of differential-algebraic
equations. The method can be applied to recursively generate the equations of motion for open
and/or closed loop systems.

In this paper, a recursive method for the dynamic analysis of mechanical systems that undergo
spatial motion and constitute of open and/or closed loop systems is presented. The method is
based upon the idea of treating each rigid body as a collection of constrained particles discussed
in [10-12] with essential modifications and improvements. The force and moment equations are
used to formulate the rigid body dynamical equations. However, they are expressed in terms of
the rectangular Cartesian coordinates of the equivalent constrained system of particles. Some useful
geometrical relationships are used to obtain a reduced dynamically equivalent constrained system of
particles. This groups the advantages of the automatic elimination of the unknown internal forces as
in Newton-Euler formulation which results in a reduced system of differential-algebraic equations.
In addition to that, it expresses the general motion of the rigid body in terms of a set of Cartesian
coordinates without introducing any rotational coordinates and the corresponding rotation matrices.
Also, it eliminates the necessity of distributing the external forces and couples over the particles.
Geometric constraints that fix the distances between the particles are introduced while the kinematic
constraints and the associated constraint forces are automatically eliminated by properly selecting
the locations of the particles.

For the open loop case, the equations of motion are generated recursively along the open chains
instead of the matrix formulation derived in [10-11]. Most of the kinematic constraints due to the
kinematic joints are automatically eliminated by properly locating the equivalent particles. For the
closed loop case, the system is transformed to open loops by cutting suitable kinematic joints and
introducing the cut-joint kinematic constraints. An example is chosen to demonstrate the generality
and simplicity of the proposed method.
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2. THE DYNAMIC FORMULATION
2.1. Construction of the equivalent system of particles

The rigid body and its dynamically equivalent constrained system of particles should have the
same mass, the same position of the centre of mass and the same inertia tensor with respect to
a body attached coordinate frame which results in ten conditions. A system of ten particles is
chosen to replace the rigid body with spatial mass distribution, as shown in Fig. 1. It should be
pointed out that only four particles 1, ..., 4, which are denoted as primary particles, can dynamically
replace the spatial rigid body [10]. However, additional six particles 5,...,10, which are denoted
as the secondary particles, each is located at the midpoint between a pair of primary particles.

Fig. 1. The rigid body with the equivalent system of 10 particles

The reason for introducing the secondary particles is to allow the solution of ten linear algebraic
equations in ten unknown masses for the particles and avoid the solution of nonlinear equations due
to the quadratic form of the second moments in the coordinates of the particles. Also, it gives the
freedom of possitioning the primary particles on the bodies in accordance with the joints that connect
the bodies in order to reduce the number of the primary particles and eliminate some geometric
and kinematic constriants. The mass distributions to points must satisfy the following conditions

m = Zmi) (1)

mrg = Zmiri, (2)

10
By o=y il (7)
i=1
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10
Iy =Y miGim. (8)

i=1

Equations (1)—(8) represent 10 linear algebraic equations in 10 unknown masses of the primary
and secondary particles. At the same time, the coordinates of the particles can be chosen arbitrary
which gives the advantage of the automatic elimination of the kinematic constraints due to some
mechanical joints and allows for the two adjacent rigid bodies to contribute to the mass concentrated
at the joint connecting them which reduces the total number of particles replacing the whole system.

It should be pointed out that, in the case of spatial motion of a body with planar mass dis-
tribution, particle 4 can be conveniently chosen to coincide with particle 3 and consequently the
associated secondary particles 8, 9, and 10 can be eliminated. Therefore in this case, we have three
prlmary particles and three secondary particles each of which is located at the mid-point of every
pair of primary particles. Moreover, in the case of a rigid rod, particle 3 may be located at the
center of the rod while two primary particles 1 and 2 are located at both ends of the rod.

2.2. Equations of motion of a single rigid body in spatial motion

Consider a rigid body which is acted upon by external forces and force couples. The rigid body
is replaced by an equivalent system of ten particles. The distances between the ten particles are
invariants as a result of the internal forces existing between them. The vector sum of these unknown
internal forces or also the vector sum of their moments about any point equals zero by the law of
action and reaction [14]. Then, the force equation for the whole system of particles yields,

10
R= Zmzrz (9)
i=1

Also, the moment equation for the whole system of particles with respect to particle 1 results
in [14]

10 10

=) mrig x =Y miFiafi. (10)

i=2 i=2

The distance constraints between the ten particles are given as
ryra1—d3; =0, (11)
rjrs—d3; =0, (12)
r§2r3,2 = dg,z = 0, (13)
r4T,1r4,1 - dz21,1 =0, (14)
riorsa—di, =0, (15)
rigrsa—di, =0, (16)
rs —(ry +1r3)/2 =0, (17)
r¢ — (r; +r3)/2 =0, (18)
r7 — (rg+r3)/2 =0, (19)
rg—(r1+r4)/2 =0, (20)
rg — (rg+r4)/2 =0, (21)
rio—(r3s+ry4)/2 =0. (22)
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The equations of motion (9), (10) and (11)-(22) represent a system of differential-algebraic
equations that can be solved to determine the unknown acceleration vectors of the particles at any
instant of time.

It should be noted that, in the case of a spatial rigid body with planar mass distribution, the
summation in Eqgs. (9) and (10) is up to 6 instead of 10 and the geometric constraint Eqgs. (14)-(16)
and (20)-(22) are eliminated. While secondary particles 4, 5, and 6 replace 5, 6, and 7 in Egs. (17)-
(19). In the case of a rigid rod, the geometric constraint Eqgs. (12)-(16) and (18)—(22) are eliminated
and the summation in Eqs. (9) and (10) is up to 3 instead of 10. Also, secondary particle 3 replaces 5
in Eq. (17).

2.3. The reduced form of the equations of motion of a single rigid body

The secondary particles and their unknown accelerations can be easily eliminated by substituting
the constraint Eqgs. (17)—(22) into Egs. (9) and (10) to obtain the following reduced form for the
equations of motion

4
R, = ) ik, (23)
P
4
G1 = ) Al (24)
i=1
where
i
m; = m; + Z 5 Mig> (25)
=1
J#i
. 1
A; =miTi1+ Z Zmi,ﬁj,l, (26)
j=2
J#i
X!
m; = m;+ Z 1M (27)
Tl
J#i

mi,; — mass of the secondary particle that is located between the primary particles i and j (m; 2 =
mg1 = ms... etc.), ry1,T;1,¥; 1 — relative position, velocity, and acceleration vectors between
particles ¢ and 1.

Then, Egs. (23) and (24) in addition to the remaining constraint Eqs. (11)-(16) represent the
equations of motion for a single floating rigid body in spatial motion where only the primary particles
stay. They can be solved at every time step to determine the unknown acceleration components of
the primary particles 1, 2, 3, and 4. The acceleration components of the particles are integrated
numerically knowing their Cartesian coordinates and velocities at a certain time to determine the
positions and velocities for the next time step. Gear’s method [15] for the numerical integration
of differential-algebraic equations is used to overcome the instability problem resulting during the
modelling process of constraint mechanical systems due to the constraint violation problem. The
rectilinear motion of the particles determines completely the translational and rotational motion of
the rigid body. If the rigid body is rotating about a fixed point, then particle 1 may be located at
the centre of this joint. In this case, Eq. (24) and Egs. (11)-(16) are used to solve for the unknown
Cartesian accelerations of particles 2, 3, and 4. Therefore, Eq. (23) can be solved to determine the
unknown reaction forces at the joint /Nj as,
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4
Ny =) mi—R. (28)
§=]

If the rigid body is rotating about a fixed axis, then particles 1 and 2 can be located along the
axis of the joint to define its direction. To solve for the unknown acceleration vectors of particles
3 and 4, the constraint Eqgs. (12)—(16) can be used in addition to one scalar moment equation that
is generated by taking the projection of the vectors in Eq. (24) along the direction of the axis of
the revolute joint. Then, Eq. (28) may be used to get the reactions at the axis of the revolute
joint.

2.4. Equations of motion of a serial chain of rigid bodies

Figure 2 shows a serial chain of N rigid bodies connected by spherical joints with the equiv-
alent system of (3N + 1) particles where connected particles are unified from both bodies.

3. o \
—\3j+L— 7 3N
.A/ | v
3j-2
e N

. 3j-1

J

Fig. 2. Serial chain of N rigid bodies with the equivalent system of primary particles

For the last body “N” in the chain, the equations of motion are derived in a similar way as
Eq. (24) and Eqgs. (11)-(16) of a single rigid body. The moment equation takes the form

3N+1
Gsva= Y A (29)
i=3N -2
where
3N+1
A3n = M3NTaN3N—2 + Z Zm3N,iFi,3N—2,
i=3N-1
i#£3N
3NH1
m3N = m3N + E 27BN
i=3N -2
i£3N

where Gan_2 is the sum of the moments of the external forces and force couples acting on body N
with respect to the location of particle 3N —2. The acceleration equations of the distance constraints
between primary particles belonging to body NV are given as
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rgN—2,3N—1i:3N—2 + I':5,F1\1—1,3N—2'1:3N—1 = —fsTN—1,3N—2f3N—1,3N—2a (30)
riy_gantaN—2 + r3n 3N_oF3N = —F3n an_of3N,3N—2, (31)
3N _2aN1183N—2 + TN L1 sn_oFaNt1 = —T3N113N—2F3N+1,3N—2, (32)
rin_13nFaN_1 + Tay an_1Fan = —Finanv_1F3N3N-1, (33)
TIN_1,3N+1 53N -1+ Ton 1 av—1F3N+1 = —Fay 11 sy 1T3N41,3N-1 (34)
TN an 1PN + Tyt snFan = —3n413NE3N+1,3N- (35)

Addition of one more body in the chain leads to the inclusion of an angular momentum vector
equation that takes into consideration the contributions of all the ascending bodies in the chain
together with three distance constraint equations between the particles belonging to this body.
These six scalar equations are appended to the equations of motion derived for the leading bodies
in the chain. For body 7, the appended equations of motion take the form

3k+1
GS] 2 = Z Z A r’L) (36)
k=j 1=3k—2
where
3k+1
Asi, = MigTaegj—2 + ) 13kTi3j-2,
i=3k—1
i#3k
3E41 4
mgr = mag + —M3 i
i=3k—2
i#3k
T - T o LT . .
35_9,3j-173j~2 + T3j_13j 2T3j—1 = —T3;_1 3;_oF3j—13;-2, (37)
T . T 5 i o
Ir3;_23jT3j—2 1+ I3;3; oI3; = —T3; 3273532, (38)
T i T o " . '
r3j-2,3j+173j—2 T 3541 35 oT3j+1 = —T3;413; ol3j41,3j-2, (39)
T . T i L 3
r3;_13;Y3j—1 + r3;3;_173; = —T3;3; 173531, (40)
T 5 T & R . o - ;
r3j-1,3j+173j—1 + T3541,3j-173j41 = —T3541 3;_1735+1,3j—1, (41)
T . T 2 T . - _
r3;3j+173j T I3541,3;T3j+1 = —I3541,3T35+1,35, (42)

and where Gg;_2 is the sum of the moments of the external forces and force couples acting on the
chain starting from body j up till the last body N with respect to the location of particle 35 — 2.
Equations (36) and (37)-(42) represent 9 linear algebraic equations that can be solved for the
accelerations of particles 35 — 1,37, and 3j + 1. For the unknown accelerations of particle 35 — 2, if
body “;” is the floating base body in the chain then, three force equations, similar to Eq. (23), are
requlred to solve for the unknown acceleration components of particle 35 — 2. These force equations
equate the sum of the external forces acting on all the bodies in the chain to the time rate of change

of the vectors of linear momentum of all the equivalent particles that replace the chain which take
the form

ZRk = Z Z mit's + Man41¥38 41, (43)

k=j 1=3k-2
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where
3k+1
m3g = M3k + Z 5 M3k
i=3k—2
i#3k

If body j is connected to body j — 1 by a revolute joint, then we take the projection of all the
moment vectors in Eq. (36) along the axis of the joint which is defined by two particles from both
bodies that are commonly located on it. Five additional distance constraints, that fix the distances
between the third and fourth particles and between each of them and the other two particles along
the axis of the joint, together with the moment equation can be used to solve for the acceleration
vectors of the third and fourth particles on body j.

In general, for a serial chain of N bodies, an equivalent system of 3N + 1 primary particles and
6N secondary particles is first constructed. Then, by eliminating all the secondary particles, we are
left with 3N + 1 particles and consequently, 9N + 3 unknown acceleration components. To solve
for these unknowns, 3N moment equations can be generated recursively along the chain together
with 6 N distance constraints between the particles located on each body, in case of all are spherical
joints. In the case of a revolute joint, one scalar moment equation and five distance constraints are
used. Finally, three force equations can be used to solve for the unknown acceleration components
of particle 1 if body 1 is floating or for the unknown reaction forces if there is a fixation at point 1.

If bodies “;5” and “j — 1” in a serial chain are connected by a prismatic joint, then particles
3j—5,37—4 3] — 3, and 35 — 2 are located on body “j — 1” while particles 3j — 1,35,37 + 1, and
3j + 2 are assigned to body “j’. Particles 3j — 5 and 35 — 2 on body “j — 1” and particles 35 — 1
and 3j + 2 on body “j” are arbltrarily located along the axis of the prismatic joint. To obtain the
equations of motion for body “5”, one force equation can be written by taking the projection of all
the vectors in Eq. (36) along the axis of the prismatic joint together with the distance constraint Egs.
(37)—(42). Moreover, five independent kinematic constraint equations associated with the prismatic
joint are included and take the form,

(r3j—5 — raj—2) X (r3j—1 — raj+2) =0, (44a)
(r3j—s — T3j—2) X (r3;-1 — r3j—2) =0, (44b)
T
rgj~4,3j—5 r3j-2,3j-5 rg:j,gjq r3j+2,3j—1\| 0 14
r35—4,3j—5 — s r35,3j—1 — = =u. (44c)
|r3;j—2,3j-s] |r3;j42,3j-1]

Therefore, for a preceeding body “A” in the chain the moment equation is generated recursively
along the serial chain as addressed above which take the form,

j—1 3k+1 3k+2
Gap2 = Z Z A;ri+ Z Z A;v;, (45)
k=h i=3k-2 k=j 1=3k—-1

where G3j,_o is the sum of the moments of the external forces and force couples acting on the chain
starting from body h up till the last body N with respect to the location of particle 3h — 2.

If body “h” is the floating base body in the chain, then a force equation, similar to Eq. (43), is
written to solve for the unknown acceleration of particle 1 in the form,

N i-1 3k N 3kt
YRe=) Y miFi+Y. > Wl +Msjofsja+ ManyaFania: ‘ (46)
k=h k=h i=3k—2 k=j i=3k—1

Similar treatment can be used in dealing with all other kinds of lower or higher-pair kinematic
joints.
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In the case of a multi-branch open and/or closed loop system, it can be transformed to a system
of serial chains by cutting suitable joints and consequently cut-joint constraints are introduced.
Equivalent particles are conveniently chosen to locate at the positions of the connection joints and in
terms of their Cartesian coordinates the cut-joint constraint equations are easily formulated. These
kinematic constraints substitute for the unknown constraint reaction forces that appear explicitly
in the force and moment equations.

3. DYNAMIC ANALYSIS OF THE DOUBLE WISHBONE SUSPENSION

Figure 3 presents a quarter car with the double wishbone suspension system. The system is an
example of a closed-chain with revolute and spherical joints exist. The mechanical system consists of
a main chassis, a double wishbone suspension sub-system, a steering rod, and a wheel. A suspension
spring and a shock absorber are included in the suspension sub-system. The system constitutes two
closed loops, one due to the four-bar linkage, and the other due to the steering rod. The chassis is
constrained to move vertically upward or downward, which can be modelled as a translational joint
with axis vertical. The wheel is analytically modelled as a linear translational spring with damping
characteristics. The system has three degrees of freedom: the chassis has one degree of freedom
due to the vertical motion, the double A-arm suspension has only one degree of freedom due to
the steering rod constraint, and the wheel has one degree of freedom corresponding to the rolling
motion. The inertia characteristics of the rigid bodies are presented in Table 1. The characteristics
of the suspension springs and dampers, and the wheel are presented in Tables 2 and 3 respectively.

Main chassis

Fig. 3. Schematic diagram of the double A-arm suspension with the primary particles and the body
attached coordinate frames

Each rigid body is replaced by an equivalent system of particles. The chassis is replaced by the
four primary particles representation. The knuckle and the A-arms each is replaced by the three pri-
mary particles representation. The steering rod is modelled with a system of two primary particles.
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Table 1. Description of the rigid bodies

Body # Description Mass Interia (Kg - m?)
(Kg) €€, mm, ¢¢, G, £C, €n
1 Main chassis 300.0 130, 250, 200, 0, 0, 0
2 Lower A-arm 1.0 0.028, 0.002, 0.03, 0, 0, 0
3 Upper A-arm 1.0 0.028, 0.002, 0.03, 0, 0,0
4 Knuckle 8.0 136, 116 160,010
5 Wheel 22.0 2.0, 1235, 2.0, 0,°0.:0
Table 2. The characteristics of the suspension springs and dampers
No. Connected K D lo
bodies (N/m) (N sec/m) (m)
1 (1,2) 5.11E+04 1.44E+04 0.345

Table 3. The characteristics of the wheels

Radius 0.35 m
Stiffness 0.3E+06 N/m
Damping Coefficient 0.1E+04 N sec/m

Locating the particles belonging to adjacent bodies together at the connection joints reduces
the total number of particles replacing the whole system and leads to the automatic elimination of
the kinematic constraints at these joints. An overall equivalent system of 11 primary particles is
constructed as shown in Fig. 3. The global coordinates of the particles are presented in Table 4.
The mechanism is divided into three independent serial branches by cutting the joints at points 7
and 8. Additional particles 10 and 11 are used to describe the joints connecting separated branches.

Table 4. Global coordinates of the particles

(1, Y1, 21) (—-1,0.2,-0.24) (z6, Y6, 26) (—0.2,0.61,—0.26)
(1)2, Y2, 22) (—0.2,0.19, —0.26) (337, Y7, 27) (—0.2,0.62, —0.24)
(1133, Y3, 23) (—0.3,0.19, —0.26) (1‘8, ys, 28) (-O.2,0.58, —-0.1)
(x4, Ya, 24) (—0.2,0.32,-0.1) (z9, Yo, 29) (—0.2,0.58,—-0.1)
(£L‘5, Ys, 25) (—0.3,0.32, —0.1) (.’L‘lo, Y10, 210) (—0.2,0.67, —0.24)

The equations of motion are generated recursively along every branch as discussed in Sec. 4
with the introduction of the constraint equations due to cut-joints in the form,

r7 —ry0 =0, rg —ry; =0.

The above equations of motion are used to simulate the free response of the system from the rest
position. Figures 4 and 5 present the time variations of the vertical displacement and acceleration
of the center of the chassis respectively. Initially, the chassis is subjected to impulsive forces which
result in sudden changes in the acceleration of its center. During time progression, due to the motion
of the elements of the system, the variable force elements start imposing constraint forces. Then,
the chassis undergoes damped oscillations up to the steady state. The comparison with DAP-3D
program, which is based on the absolute coordinates [4], shows a complete agreement with the
results of the simulation.
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CONCLUSION

In the present work, a new recursive algorithm for generating the equations of motion of serial
chains of rigid bodies in spatial motion is presented. The force and moment equations are used
to formulate the rigid body dynamical equations of motion which are expressed in terms of the
rectangular Cartesian coordinates of a dynamically equivalent constrained system of particles. This
groups the advantages of the automatic elimination of the unknown internal constraint forces,
the absence of any rotational coordinates and the corresponding transformation matrices, and the
elimination of the necessity to distribute the external forces and force couples over the particles.
Some useful geometric relations are used which result in a reduced system of differential-algebraic
equations without introducing any rotational coordinates. The formulation can be applied to open
and/or closed loop systems with the common types of kinematic joints.
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