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The paper presents an implementation and the performance of several preconditioners for the discontin-
uous Galerkin approximation of diffusion dominated and pure diffusion problems. The preconditioners
are applied for the restarted GMRES method and test problems are taken mainly from subsurface flow
modeling. Discontinuous Galerkin: approximation is implemented within an hp-adaptive finite element
code that uses hierarchical 3D meshes. The hierarchy of meshes is utilized for multi-level (multigrid)
preconditioning. The results of numerical computations show the necessity of using multi-level precon-
ditioning and insufficiency of simple stationary preconditioners, like Jacobi or Gauss—Seidel. Successful
preconditioners comprise a multi-level block ILU algorithm and a special multi-level block Gauss-Seidel
method.

1. INTRODUCTION

In recent years the range of application of the discontinuous Galerkin method has been extended to
diffusion dominated and pure diffusion problems. Several formulations have been proposed (see the
comparison in [1]). All of them lead to the solution of a large, sparse system of linear equations, with
special structure and properties. Efficient solution techniques have to be designed and implemented
for these systems to make the application of discontinuous Galerkin approximations feasible in
practice (see e.g. [2, 3]).

In the present article formulations developed in [4] and [5] are considered, both related to the
interior penalty methods from the 80’s [6, 7]. The formulations lead to non-symmetric systems
of linear equations, hence the GMRES method is chosen as a solver, due to its popularity and
robustness for flow problems. The main subject of the paper is the comparison of the performance
of several well known preconditioners adapted to discontinuous Galerkin approximation.

The paper is organized as follows. First, discontinuous Galerkin formulations for diffu-
sion equations are presented in Sec. 2. In Sec. 3 a general setting for the restarted GM-
RES method with multi-level (multigrid) preconditioning is described. Implementations of dif-
ferent preconditioners are presented in Sec. 4. Section 5 consist of the description of numer-
ical examples and the performance of preconditioners. Several remarks conclude the paper
in Sec. 6.
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2. DISCONTINUOUS GALERKIN FORMULATIONS

The following notation is used for a model problem, diffusion equations for a vector variable u = ;"
[ul, U2,y .-y uNu]:

Ny N,

i 7.
> Au;| =0. (1) §
i=1 \j=1 ' 3

"3

All coefficients are assumed to be functions, possibly discontinuous, of space coordinates z;, within
a domain £2 € RN, The coefficients A% have the form of matrices of dimension N,,. The summation
extends over the number of space dimensions Ny, with ¢ ;” indicating differentiation with respect to
the i-th space coordinate. In the rest of the chapter the summation signs will be dropped, assuming
Einstein’s summation convention.

The system (1) is completed with Dirichlet, Neumann or mixed (Robin) boundary conditions.
For the Dirichlet boundary, I'p, essential boundary conditions are specified:

u = fp(x,1)

for the Neumann boundary, Iy, natural conditions hold:
Ay jnt = g(x,t)

and for the Robin boundary, I'g, mixed boundary conditions are given:
AYun' = (u - fr(x,t)) Kg(x,t).

Above, n = [n',..,n™4] is an outward unit vector, normal to domain boundary I' = 912 and fp, g,
fr and Kp are problem dependent data.

For the purpose of discontinuous Galerkin approximations the computational domain §2 is divided
into finite elements §2,. For all inter-element boundaries, I, §F=002:N002; (UIef = Int), a unique
normal vector n is specified (for external boundaries n coincides with the outward normal introduced
earlier, hence the same notation). The jump and average operators are defined for any function v
on [y

Vvl =vF —=vE =vlsanr, = Vlea,nr., ,

<v>=0.5% (vL -+ VR) =0.5* (v|age,~,ple + V|3_Qfm[‘ef) .

A finite dimensional space V' of element-wise polynomial functions is introduced.
The first presented formulation is the one developed in [4], called here the non-symmetric dis-
continuous Galerkin (NDG) formulation:

Find u € V such that for all test functions w € V.

anpG(u, w) = Inpa (W) (2)
where
anpG(u, w) =
/ Aijw,iu,jd.Q
0

+/ (<AYn'w ;> [u] — [w] <AYniu;>)dl
Fint

+ / (AYn'wju— AYniwu;)dl' — | Kpwudl’
I'p FR
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INpc (V) =

/ Aijniw,ijdF + wgdl — KrwfgdI.

I'p I'n I'r

At the infinite dimensional limit the formulation (2) is consistent with the original problem (1) in
the sense that the solutions to (1) are also solutions to (2), and that sufficiently smooth solutions
to (2) solve (1) as well.

Another consistent discontinuous Galerkin formulation is obtained by adding to the bilinear and
linear forms anpg and Inpg stabilizing terms that aim at directly enforcing the continuity of solution
across inter-element boundaries through penalties. The resulting formulation is the Non-symmetric
Interior Penalty Galerkin (NIPG) method [5] and reads as follows:

Find u € V such that for all test functions w € V'

antpc(u, w) = Intpa(W) (3)

where

antpc (U, w) = anpc(u, w) +/ g—[w][u]dl”%—/ 7 wudrl
h o h

int

and

g
INtPG (W) =lNDG(w)+/ —wipdl.
b

Above, o > 0 is a parameter, constant over each face, and h is a linear size of a face (the integrals
involving h should be understood as sums of integrals over element faces). The discussion on the
choice of o can be found in [8].

For all examples in this paper, o is taken as equal to the degree of approximation p, the value
suggested in [8] and found to be optimal for the convergence of the GMRES linear solver. For hp
approximations, neighboring elements can have different sizes, due to h-refinements. For such cases,
the face integrals are computed over the smaller faces (faces of more refined elements), using their
sizes for h.

REMARK. For pure diffusion problems the NDG formulation is theoretically proven and exper-
imentally confirmed to be stable only for higher order approximations [4] (in practice the degree
of approximation p has to be > 2). The NIPG formulation is stable also for piecewise linear ap-

proximation [5], however, the strict conservation property of the NDG formulation does not hold
for NIPG.

2.1. Implementation

Both discontinuous Galerkin formulations presented above are implemented in an hp-adaptive finite
element code. In all examples presented in Sec. 5 the code is used with 3D elements, obtained as
linear transformations of the master prismatic element shown in Fig. 1. There are two sets of element
shape functions, both defined for the master element. The functions from the first set, called “tensor”
shape functions, are tensor products of monomials in zy plane (1, z, v, =2, zy, y?, etc.), forming
a basis for complete polynomials, with standard monomials in z direction. The functions from the
second set, “complete” shape functions, form, for a given degree of approximation p, a basis for a
space of complete polynomials of degree p in 3D. The numerical comparison of both sets of shape
functions can be found in [9)].

The code implements h and p adaptivity. p adaptivity consists in specifying the order of approx-
imation separately for each element, an obvious solution for discontinuous Galerkin discretizations.
h adaptivity is implemented using uniform divisions of a “father” element into eight “son” elements.
The hierarchical character of meshes is exploited in multi-level preconditioning.
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Fig. 1. Master prismatic element
2.2. System of linear equations

The standard finite element procedures applied to the NDG or NIPG formulations lead to the
system of linear equations:

A-x=b _ (4)

where A denotes the global stiffness matrix, x is the vector of unknowns and b is the global right
hand side vector (load vector). The system matrix is semi-positive definite for the NDG formulation
and positive definite for the NIPG formulation.

Since supports of global basis functions are limited to single elements, each element in the mesh
possess a separate small vector of degrees of freedom (in contrast to classical linear continuous finite
elements where degrees of freedom are associated with nodes). This induces the splitting of the
global vector of unknowns into non-overlapping blocks x; and the corresponding splittings of the
right hand side vector b into blocks b; and the system matrix A into blocks Ay, according to the
formula:

Nii
by =) Apxg.
k=1

The diagonal blocks Ay, | = k contain entries obtained by integrating over elements’ interiors
and faces while the off-diagonal blocks Ak, k # [ are results of integration over elements’ faces
exclusively. The blocks Aj; are called the elementary blocks and are the basis for the storage
scheme of the stiffness matrix adopted in the code. The blocks are full, possibly not symmetric, but
positioned symmetrically within A. They are usually square, except for the case of different degrees
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compute the initial residual of the system: ro:= B~!(b - Ax?)
normalize the residual: Tp:=ro/||ro||
fori=1:2. .., N
compute preconditioned matrix-vector product: r; := B lAF,_;
orthonormalize r; wrt all previous Tj,j=1,.,i— 1 by the modified
Gram-Schmidt procedure obtaining T;
solve the GMRES minimization problem and check convergence
if convergence achieved form the approximate solution and leave GMRES
end for
form the approximate solution and substitute it for the initial guess x°
start from the beginning

Fig. 2. Restarted GMRES method

of approximation used in neighboring elements when the off-diagonal blocks are rectangular. The
whole matrix has symmetric non-zero structure but is non-symmetric.

To solve the system (4) the restarted preconditioned GMRES method [10], schematically pre-
sented in Fig. 2, is used. The first initial guess x° is zero for the considered elliptic problems and
Nisy is the number of Krylov space basis vectors of the Krylov space

span {ro, B‘lAro, (B—lA)er, - (B"lA)(NkSV‘l)rO}

in which the solution is sought. B~! represents the action of a preconditioner, the construction of
which will be the subject of the next section.

3. PRECONDITIONERS FOR THE GMRES METHOD

In general, the purpose of preconditioning is to make the product B™'A close to the identity
matrix, in order to speed up the convergence of an iterative solver [11]. Hence any approximate
solver, e.g. one or few iterations of another iterative solver, can be used as a preconditioner. In
practical implementations a preconditioner for the GMRES has to deliver either the solution to the
auxiliary system

Br; = z; (5)
or the product
BlAT;_;. (6)

In the following, both approaches will be considered and implementations for typical preconditioners
presented.

3.1. ILU(0)

Incomplete factorization preconditioners are very popular and several variations have been developed
[12]. The version adopted for discontinuous Galerkin approximations is the standard ILU(0) method
acting on elementary blocks of the stiffness matrix (see the definition in Sec. 2.2) instead of the
individual entries. In the implementation, the algorithm performs separately two operations: the
product with the stiffness matrix and the solution to the auxiliary system (5). Hence, it requires the
storage for two (equal size) matrices: the original matrix A and its incompletely factorized form.
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3.2. Stationary methods

One iteration of a stationary method can be formally written as [11]:
x™ =x""+ D7 (b— Ax™) (7)

with D~! denoting an operator, usually some approximation to the inverse A~!, implied by the
actual algorithm. Any algorithm of the form (7), with suitable choices for the initial guess and
the right hand side and followed by suitable subtractions, can be used to provide directly the
product (6) [13]. Block Jacobi and block Gauss—Seidel methods acting on elementary blocks of the
stiffness matrix have been adopted as preconditioners. For the block Jacobi method the explicit
formula for B~ reads [14]:

Ny,
Brr=D =% Bl Az 8)
=1

while for the block Gauss—Seidel:

Nit
Eel=DC = (I -1 - RfAl‘llRlA)) Al (9)
=1

The operators R; and R;‘r denote the restriction of the whole vector x to a single block x; and the
prolongation from x; to x, respectively. In practice, these operators are not formed explicitly. In the
code, restriction and prolongation are always performed using a special algorithm and the storage
based on elementary blocks.

The implementation consists of a loop over blocks (elements) and the solution of local problems,
with matrices Ay as system (stiffness) matrices. Each local problem corresponds to a small PDE,
with the same weak formulation as the global problem, the domain consisting of a single element
and the Dirichlet boundary conditions provided by the current values of solution in the neighboring
elements. Since the product B~!(b — Ax™~1) is obtained without the separate product Ax™ 1
the implementation uses only the storage for the stiffness matrix A. The blocks A;; are inverted
using a direct solver (e.g. a LAPACK library procedure). The inverted diagonal blocks Aﬁl replace
the original blocks Ay;.

Single element subdomains do not provide effective smoothing by stationary iterations, since the
error on the inter-element boundary is not sufficiently reduced [15]. The extension of stationary
methods is given by single level, overlapping Schwarz preconditioners [14]. If blocks in (8) and (9)
are larger than elementary blocks induced by the approximation (these larger, possibly overlapping
blocks will be denoted by X; and K”), than the implementation of (7) still produces a preconditioner,
with even stronger effect than the original stationary methods. However, now a separate storage is

required for the inverted blocks 2‘:1—11 and this storage is larger than for the blocks KU. Blocks K”

are sparse while their inverses 2‘:,;1 are full. The additional storage required depends upon the size
of blocks and will be the subject of investigations in the section concerned with numerical examples.

To fulfill the requirements of the domain decomposition theory, the larger blocks of unknowns
correspond to subdomains within the computational domain. Since blocks A are inverted by a
direct solver, the size of subdomains is limited to several elements. To remove errors on inter-element
boundaries, each face should be internal for at least one subdomain. One possibility is to create a
subdomain, comprised of two adjacent elements, for each face. Another is to create, for each element,
a subdomain consisting of the element and all its neighbors across faces (see Fig. 3). Both designs
lead to significantly increased storage. The solution adopted in the code, is to create, subsequently,
a subdomain for each element, but to add to it only those neighbors connected across the faces, that
are not yet inside any other subdomain. Such subdomains are called “large” subdomains, contrary
to “small”; single element, subdomains.
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Fig. 3. An example “large” subdomain, a prismatic element (thick lines) and all its neighbors across faces
(thin lines)

3.3. Multi-level preconditioning

Iteration (7) can be interpreted as a sequence of local projections of the error on the local spaces
related to the blocks x; [14]. Since projections are only local, stationary methods act mainly as a
smoother — an algorithm that reduces high frequency components of the error. In order to reduce
low frequency components, an additional coarse grid correction is introduced [16]. Algebraically, the
coarse grid correction has the same form as the correction on the fine level:

X=X+8c=%X+REAZ'Rc(b - AX) (10)

with X — the corrected solution, X — the current iterate and €c the approximation of the error on
the coarse grid. In our implementation, the definitions of the coarse space and the operators R¢
and A utilize the hierarchical structure of the meshes produced by adaptivity.

The computational mesh for which the solution to the problem is sought is considered as a fine
mesh with the corresponding fine space V. For every element active in the given mesh it is checked
whether it has resulted from a refinement of a father element or not. If the element does not result
from a refinement it is included in the coarse mesh as well, otherwise the father element is added
to the coarse mesh. This means, for example, that for uniform refinements of a prismatic mesh, the
coarse mesh has eight time less elements (and respectively degrees of freedom) than the fine mesh.

The coarse space V¢ is spanned by the basis functions corresponding to elements of the coarse
mesh. Given the spaces V' and V¢, the construction of the restriction and prolongation operators
follows from the variational statement of the coarse grid correction problem [14]:

Find ec € V¢ such that
ac(8c,ve) = a(u* - 4, vg) = f(ve) — (T, ve) Vuc € Ve (11)

with €¢ the approximation to the error on the coarse grid (corresponding to the vector €c), u* the
exact solution to the original problem, % the solution corresponding to the current iterate X, a(.,.)
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and f(.) the bilinear and linear forms from the formulation (2) or (3) and v, the extension of v¢
into V. The bilinear form ac(.,.) is obtained from the original form a(.,.) by changing properly the
respective domains of integration and shape functions.

Functions in the space V are expressed as

v=Y v
i
while functions in V¢ as
ve =) vbeh
i

where ¢* and qz% are fine and coarse basis functions respectively. Due to the fact that the coarse mesh
is embedded in the fine mesh, the space V¢ is embedded in V', provided the degree of approximation
for each coarse grid element is less or equal to the degrees for all the corresponding fine grid elements.
Hence, any coarse grid shape function can be expressed as a linear combination of fine grid shape
functions:

do = ri;¢’ .
J
Coarse grid correction problem (11) is transformed into

ac(€c,vc) = ZUCZTU - a(@,¢)) .

The stiffness matrix A¢ corresponding to the bilinear form ac(€c,vc) is obtained by integrating
over coarse elements. The term f(¢’) — a(tu,#’) corresponds to computing the residual of the fine
grid problem for the current iterate . The coefficients r;; are identified with the entries of restriction
operator R¢. Given R¢ and its transpose RZ, all the ingredients necessary for the implementation
of the coarse grid correction step (10) are then defined.

To obtain the coefficients r;; for each pair of father-son elements, a local Ly projection problem
is solved. Each father’s shape function is projected onto son’s local space. Since elements are ge-
ometrically linear the coefficients 7;; depend only on the degrees of approximation for the father
and for the son and on the refinement type of the father. For each combination of these parameters
appearing in the mesh, the coefficients are precomputed, stored and than used in actual operations.

REMARK. For higher orders of approximation, solving Ly projection problems for each shape func-
tion of the master element may involve substantial computational effort. For these cases different
shape functions can be considered, such as e.g. Ly orthogonal shape functions described in [15], that
make mass matrices for Ly problems diagonal and reduce the computational effort.

To fully exploit the hierarchical structure of adaptive meshes, the classical V-cycle multigrid
algorithm [16], presented in Fig. 4, has been implemented. R¢, and Rgi denote restriction and
prolongation operators for a given coarse grid, belonging to the hierarchy of grids, 2¢, C ¢, C ... C
2¢;... C ¢,y = §25, obtained by coarsening the finest grid 2. In a smoother algorithm y := y +
D(ji1 (d—Ag¢y), Da1 denotes a linear operator implied by the actual algorithm. Parameters Ny and
Npost are the numbers of pre-smoothing and post-smoothing steps. Coarse grid correction problems
are solved approximately, using, recursively, the V-cycle algorithm. The whole algorithm acts for
the finest grid as a multi-level smoother so when called w1th parameters MG(X, b, Crnax, Npre, Npost)
it returns a vector X := X + D}/ (b — Ax) when now Dj includes smoothing at all grid levels.
Similarly to the statlonary methods the V-cycle multigrid algorithm is used as a (multi-level)
preconditioner with B, G =Dy,
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V'CYCle (Ya d, Cia Npre> Npost)

begin
if (C; = Cy)
on the coarsest mesh solve the system exactly: y:= Aagd;
else

for j=1,2,..., Npre
perform pre-smoothing: y:=y + DE} (d—-Agy)

endfor

compute residual on fine grid and restrict it to the coarser grid:
g = RCi—l(d - ACiy)

set initial guess for coarse grid correction: z:=0

solve approximately coarse problem by one V-cycle of multigrid:
z := V-cycle(z,g,Ci_1, Npre, Npost)

correct the current iterate: y :=y+Ra_1z

for j=1,2,..., Npost
perform post-smoothing: y:=y + Da1 (d-Agy)

endfor

endif
end

Fig. 4. One V—cycle of the classical multigrid algorithm

3.4. ILU(0) as a smoother

Apart from the stationary methods — the most popular smoothers, represented in the code by
the block Gauss—Seidel algorithm - incomplete factorization can also be used within multigrid
algorithm [17]. If DI“LlU denotes an operator for solving system (4) using incompletely factorized
stiffness matrix A then ILU(0) algorithm can be made part of a smoother algorithm that produces:

X =X+ Dj}y(b — AX)
ILU smoothing is applied at each grid level within the multigrid V-cycle algorithm, forming a
multi-level block ILU(0) preconditioner.
4. NUMERICAL EXAMPLES

All computations in this section were performed on an SGI Origin 200 computer with MIPS R10000
(180 MHz) processor (~ 100MFLOPS, SPECfp base95 = 14.4).

4.1. An example with a smooth solution on a regular grid
The first example is Laplace’s equation

Dui=iNug:
where ue; is the known exact solution:

Ueg = exp (~a” ~y*~2?)
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The computational domain consist of the box [0,1] x [0,1] x [0,1] and boundary conditions are
chosen to match the exact solution. The initial mesh consist of two prismatic elements shown in
Fig. 5. The consecutive meshes are obtained by uniform refinements of the initial mesh and labeled
using the number of refinement levels (element generations).

The problem is solved using both formulations, NDG and NIPG, “complete” element shape
functions and the restarted GMRES method with 20 Krylov vectors. The following GMRES pre-
conditioners are compared: single level block Gauss-Seidel — SBGS, multi-level block Gauss-Seidel
~ MBGS (classical multigrid), single level block ILU(0) ~ SBILU and multi-level block ILU(0) -
MBILU (multigrid with block ILU(0) smoother). For stationary methods (Schwarz preconditioners)
two types of preconditioner blocks are considered: single element blocks (“s” after the precondi-
tioner symbol) and larger blocks, discussed above (“1” after the preconditioner symbol). For all
preconditioners only one smoothing iteration (preconditioner solve for single level preconditioners
and post-smoothing iteration for multigrid) is applied at the finest mesh level, to point out the
effect of the coarse grid correction. For multi-level preconditioners, one pre- and one post-smooth
iteration is applied at intermediate grid levels. The restarted GMRES is used to solve the problem
on the coarsest level. There is no special ordering of blocks applied. Additional experiments, not
reported here, revealed lack of strong dependence of the convergence rates on the ordering of blocks.

PeEaTrEEST

(a) initial mesh (b) first refined mesh

Fig. 5. Test example with smooth solution - initial mesh with 2 prismatic elements and first refined mesh
with 16 elements

The results are presented for NDG and NIPG discretizations and two degrees of approximation,
p=2and p =5. For p = 2 and five mesh levels (element generations) the number of degrees of
freedom Ngof = 81920 and the Lj norm of the error ||e||z, = 0.98 - 10~%, while the H! seminorm
of the error |e|z1 = 0.93 - 1073. The error norms are computed as the square root of the sum
of integrals over elements’ interiors of the square of the difference between the approximate and
the exact solution (or its derivative). For p = 5 and only two mesh levels the respective numbers
are: Ngof = 896, [le||, = 0.56 - 107>, |e|g1 = 0.13 - 1073, For p = 5 and three mesh levels with
Ndof = 7168 the results are: |le||z, = 0.93 - 1077, |e|z = 0.43 - 10~4.

The first three tables present, for each mesh and preconditioner, the number of GMRES iterations
to achieve the reduction of the initial residual by 1076, the necessary storage (the same for both
formulations) and the total CPU time for execution, including the creation of the stiffness matrix.
“NO” in the place “#iter” indicates that the convergence has not been obtained after 100 GMRES
iterations. The next two figures (Fig. 6 and Fig. 7) show graphically the dependence of the execution
time and the storage required by the solver on the number of degrees of freedom. NIPG formulation
and p = 2 are chosen for this comparison (the results for NDG formulation are qualitatively the
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Table 1. Test example with smooth solution — the number of GMRES iterations to reach convergence, the
necessary storage (in MBytes) and the total execution time (in seconds) for different preconditioners, NDG
discretization and the degree of approximation p = 2

Preconditioner Number of grid levels
2 3 4 5
SBGS-s #iter 17 40 91 NO
storage 0.09 | 0.81 | 6.87 | 56.57
CPU time | 0.041 | 0.49 | 7.89 o
SBGS-1 #iter 9 13 18 37
storage 0.19 | 1.94 | 17.01 | 142.98
CPU time | 0.044 | 0.51 | 5.29 | 69.71
SBILU #iter 10 15 25 57
storage 0.15 | 1.44 | 12.08 | 99.56
CPU time | 0.046 | 0.54 | 11.29 | 914.83
MBGS-s #iter 17 | NO NO NO
storage 0.20 | 1.22 | 9.58 | 77.77
CPU time | 0.075 e e —
MBGS-1 #iter 8 11 12 13
storage 0.27 | 2.19 | 19.00 | 160.45
CPU time | 0.067 | 0.65 | 6.12 | 54.09
MBILU #iter 8 10 12 13
storage 0.24 | 1.66 | 13.54 | 111.57
CPU time | 0.067 | 0.63 | 8.49 | 254.96

Table 2. Test example with smooth solution — the number of GMRES iterations to reach convergence and
the total execution time (in seconds) for different preconditioners, NIPG discretization and the degree of

approximation p = 2

Preconditioner Number of grid levels
2 3 4 5
SBGS-s #iter 12 19 39 81
CPU time | 0.040 | 0.38 | 4.88 | 67.86
SBGS-1 #iter 7 11 19 40
CPU time | 0.043 | 0.47 | 537 | 73.91
SBILU #iter 9 15 30 59
CPU time | 0.045 | 0.52 | 12.87 | 945.08
MBGS-s #iter 11 13 13 13
CPU time | 0.074 | 0.49 | 4.52 | 37.95
MBGS-1 #iter 6 8 8 7
CPU time | 0.052 | 0.56 | 5.14 | 42.25
MBILU #iter 7 8 9 9
CPU time | 0.054 | 0.55 | 7.18 | 190.83
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Table 3. Test example with smooth solution — the number of GMRES iterations to reach convergence, the
necessary storage (in MBytes) and the total execution time (in seconds) for different preconditioners, NDG
discretization and the degree of approximation p = 5

Preconditioner Number of grid levels
2 3

SBGS-s #iter 58 NO
storage 1.33 13.68

CPU time | 4.18 e

SBGS-1 #iter 9 15
storage 4.40 47.45

CPU time | 3.80 36.74

SBILU #iter 12 20
storage 3.24 32.09

CPU time | 3.95 37.70

MBGS-s #iter 24 94
storage 2.26 21.96

CPU time | 4.74 68.59

MBGS-1 #iter 7 9
storage 4.63 51.95

CPU time | 4.29 49.22

MBILU #iter 8 12
storage 3.46 35.48

CPU time | 4.50 43.02

same for the methods that converge in both cases). It can be observed that the storage grows
almost linearly for all considered methods while the CPU time for execution scales linearly with the
problem size only for multi-level methods with stationary iterations as preconditioners.

Several additional observations follow:
large blocks improve significantly the convergence of block Gauss—Seidel algorithm,

multilevel preconditioning reduces substantially the dependence of the convergence rates on the
mesh size h (this effect would be even greater if more smoothing steps were used at each level),

multilevel algorithms require only slightly more storage than single level algorithms; this fact
results from using the hierarchy of refined elements as a basis for multilevel preconditioners.
Since each divided element has eight “sons” the storage required for a next coarser grid is one
eights the storage on a fine level. Asymptotically (for infinite number of mesh levels), adding a
hierarchy of grids can increase the storage by no more than 15%,

the increase in storage and CPU time per iteration is the price paid for better convergence
properties of block Gauss—Seidel with larger blocks and ILU preconditioners,

using higher order approximation increases the size of elementary blocks but reduces the number
of mesh levels, elements and the degrees of freedom necessary to reach some assumed accuracy;
as a result the scaling properties of the preconditioners are less important giving an advantage
to single level and ILU preconditioners,

for smooth problems, NIPG formulation improves the convergence of GMRES with multi-level
preconditioners, especially for block Gauss—Seidel method with small blocks; for single level block
Gauss—Seidel with large blocks and ILU preconditioners, it has no evident positive effect,
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e two methods proving to be the best for this test example are MBGS-1 and MBILU, the first with
better scalability with respect to the number of degrees of freedom and larger required storage.

CPU time

Fig. 6. Test example with smooth solution — execution times versus the number of degrees of freedom for

Storage in MBytes
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4.2. An example with large jumps in coefficients and distorted elements with high
aspect ratios

The purpose of this test is to show how different preconditioners can deal with a difficult problem
when the coefficients in the equations change abruptly for different regions within the computational
domain and highly distorted (stretched) elements appear in the mesh. Such problems appear often
for subsurface flow simulations [9].

A pure diffusion problem with scalar element-wise constant coefficients and the mesh shown in
Fig. 8 are used for this test case. Two fracture zones appear within the computational domain, both
discretized with prismatic elements, having elongated triangular bases. For the purpose of testing
three cases are considered. In the first, the coefficient in fracture zones is one million times greater
than in the surrounding material (Jump = 1e6), in the second case the material is homogeneous
(Jump = 1) and in the third case it is one million times less than outside (Jump = le-6). The
NIPG discretization is used with linear (“complete”) shape functions. The results are reported for
all preconditioners and the second consecutive mesh with two element generations. The convergence
is more difficult in this case, so the number of Krylov vectors is increased to 100. To balance the
negative effect of elongated elements a special domain decomposition is designed, in which large
subdomains consisting of several elements possess regular shape [18]. For BILU preconditioners
these subdomains are non-overlapping, while for BGS preconditioners they have the same, one
element, overlap as standard large subdomains. The preconditioners using these decompositions are
denoted by “-sp” (“special”) symbol after the preconditioner name.

Similarly to the previous case the following data are reported: the number of GMRES iterations
(#iter) to reduce the initial residual by the factor 1072, the required storage in MBytes and the
total CPU time for execution.

It can be seen that the use of special subdomains improves the convergence and makes it less
sensitive to the variations of the diffusion coefficient.

Table 4. Test example with large jumps in coefficients and distorted elements: the required storage, the
number of GMRES iterations to reach convergence and the total execution time for different preconditioners
and linear NIPG discretization

Preconditioner | Storage | Jump | #iter | CPU time
MBGS-1 10.08 le-6 148 66.36
1 42 13.02
le6 NO e
MBGS-sp 18.96 le-6 32 13.18
1 32 11.37
le6 62 20.67
MBILU 9.08 le-6 229 288.78
1 40 41.75
le6 691 850.89
MBILU-sp 12.67 le-6 34 41.32
1 34 37.12
le6 36 35.86

REMARK

e strong dependence of the convergence rates on the ordering of blocks has been observed for the
case Jump = 1e6 and ILU preconditioners. The best results (reported in the table) have been ob-
tained when blocks are ordered according to the increasing values of the diffusion coefficient [15].
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Fig. 8. Mesh for the test example with jumps in coefficients and distorted elements
4.3. An example with layered medium

The last example has been chosen to show the robustness of MBILU preconditioner. The test
case comes from the suite of problems related to subsurface contaminant transport published at
www.andra.fr/couplex. The equation solved is a single phase flow equation, a pure diffusion prob-
lem, with a scalar diffusion coefficient (AY = kd;; in (1)). The domain consist of a thin strip
(692 x 250000) composed of four materials with radically different diffusion coefficients k: 25.2288,
3.1536-107°, 6.3072 and 3.1536 - 10~5. Materials form layers of comparable thickness. The Dirichlet
and Neumann boundary conditions are imposed.

The NDG discretization is used with the tensor product basis functions and linear approximation
in z direction and quadratic in zy planes. The computations are performed on once refined mesh
composed of 8000 elements and having 48000 degrees of freedom. The only successful preconditioner
in this case is MBILU, for which the following performance has been recorded: 17 iterations to reach
the reduction of the initial residual by 1079, the storage 193.35 MBytes and the total execution
time 691.27 seconds.

5. CONCLUSIONS

Several well known preconditioners have been tested for the GMRES solver and two non-symmetric
discontinuous Galerkin formulations of elliptic problems. Simple preconditioners, based on classical
standard iterations, proved to be inefficient, even for problems with smooth coefficients, posed in
regular domains. Due to discontinuities appearing on inter-element boundaries, special overlapping
domain decomposition (extensions of the block Gauss-Seidel algorithm) or incomplete factorization
preconditioners were necessary to guarantee convergence. For large scale problems, to overcome the
effect of deteriorating convergence of single level preconditioners, multi-level preconditioners, based
on the classical geometric multigrid method, have been implemented.
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The reported numerical experiments indicate that, from several tested algorithms, the most effi-
cient preconditioner for smooth problems is the multi-level (multigrid) overlapping domain decom-
position (block Gauss—Seidel) method. On the other hand, the most robust preconditioner turned
out to be the multi-level block ILU(0) method that works well also for problems with large jumps
in coefficients. Both methods can be combined with special domain decomposition strategies to
guarantee convergence for problems on irregular, anisotropic meshes.
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