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Shape and non-shape optimization is carried out for metal forming processes. This means a unified treat-
ment of both shape parameters and other process parameters which are assumed to be design variables.
An optimization algorithm makes use of the results of the analysis problem and of the sensitivity param-
eters obtained as a byproduct of the basic solution, in the context of the direct differentiation method.
The shape sensitivity stage is formulated within the domain parametrization approach. Two alternative
mappings are proposed to obtain the required derivatives with respect to the shape parameters. The be-
haviour of different functionals considered and the effect of the boundary conditions on the optimal design
are discussed.

1. INTRODUCTORY COMMENTS

For many years, optimization and numerical simulation of engineering problems were two inde-
pendent disciplines. As it is well known, the potential of analysis offered by numerical simulation
techniques drew design tasks into a new era. Research effort was then largely devoted to produce
reliable tools for analysis, which in turn involved several scientific areas. But still the optimal design
was for long time searched for by trial and error, making good use of the engineer’s experience and
intuition. A real hint towards a more automatized optimization appeared with the development of
the so-called analytical methods for sensitivity analysis, from which the derivatives of given func-
tionals involving the problem variables were available at a relatively low computational cost, as a
byproduct of the solution of the analysis problem. The way for gradient-based optimization was,
then, open.

Indeed, even if it is true that non-gradient-based optimization procedures are sometimes used,
it is also obvious that their applicability is largely limited by the cost of each functional evaluation.
When such functional evaluation involves the solution by finite elements of a nonlinear problem, such
methods may be simply discouraging. Their lack of effectiveness is very clearly seen here in compar-
ison with their gradient-based counterpart. For this reason shape optimization was practically not
undertaken until the concept of sensitivity analysis — in particular to shape parameters — , became
more popular. Some attempts were carried out when the repetitive solution of engineering problems
within an acceptable accuracy began to be affordable. The first works on optimization combined
with numerical modelling concern mainly structural analysis [1, 2] and thermal problems [3]. In the
field of metal forming, one of the first works can be found in [4, 5], where both non-gradient and
gradient-based optimization was performed, the latter using finite differences (FDM) to calculate
the numerical derivatives. In a similar context, that is, without using analytical shape sensitivity,
optimal design of forging die shapes was presented in [6], which obviously involves a higher degree
of complexity due to the transient nature of this process.

The importance of these results is out of discussion. If numerical simulation means a dramatic
reduction in the number of necessary prototypes, now the use of optimization algorithms may lead
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to a sensible reduction in the number of necessary numerical simulations in order to obtain the
optimal design. In addition, it provides a rigorous methodology to perform this task. A certain
degree of automation and generality is required if the procedure aims to have practical applications.
Besides, for such tool to be effective a series of conditions must still be fulfilled. First, the numerical
model must reflect the key features of the process. Second, a complete sensitivity analysis must be
carried out, which requires a proper description of the discretized domain in terms of (as few as
possible) design parameters, and this in turn implies the definition of the functions by which the
nodal coordinates depend on those design parameters. Next, the design functional and its gradient
in the design space must be evaluated. The optimization algorithm will make use of these quantities
to find a new trial for the optimal shape until the functional is minimized subject to some necessary
design constraints which limit the trials of design sets. Let us notice that the proper definition of the
design criterion and constraints still requires the advice of an expert. But now different functionals
may be easily tested and minimized, compared their respective optima and their values and their
behaviour at the optima of other functionals.

The lack of some of the above mentioned elements will probably deteriorate the performance of
the optimization procedure. For this reason it is crucial to have a complete and consistent treatment
of the whole problem. However, the idea of optimization is not new and does not involve special
theoretical difficulties. Instead, once the analysis and the sensitivity stages are available, its appli-
cation to optimization is straightforward. But the main difficulty may have been to achieve those
tools. In the last years some works concerning shape optimization of metal forming processes have
been presented, assuming the usage of advanced techniques for sensitivity analysis. In [7] the shape
optimization of a 3D extrusion die is presented. Even if the tangent matrix is used to evaluate the
sensitivity coefficients, the explicit derivatives with respect to the design variables are calculated
by FDM, using the so-called ‘discrete semi-analytical direct differentiation approach to sensitivity
evaluation’. The authors analyze the effect of the perturbation size which, as expected, deserves
special attention. In the reported work, after analyzing perturbations ranging from 1072 to 10712,
an area was found were apparently similar results are obtained for either backward, centered and
forward differences. However, the optimum size of the perturbation seems to be different for each
design variable. This fact further complicates the problem, and supports the use of analytical evalu-
ation of the explicit derivatives, using one of the available approaches, e.g. domain parameterization
(DPA) [8-10], material derivative (MDA) [11, 12], etc. Moreover, it is clear that the FDM implies
more calculation time and results in an awkward code as compared with the analytical version.
Concerning again forging, matrix shape optimization was presented in [13-15], and more recently
in [16-18]. Other recent works have also considered a more elaborate (e.g. elastoplastic) material
model or motion description [19-22] or by alternative analysis methods [23]. Again the merits of
such approaches are evident, even if they did not get rid of finite difference-based explicit deriva-
tives. Let us add that up to now, very rarely a full analytical sensitivity based optimization (i.e.
without any FDM approximation) has been carried out. Among such works, preform and die design
shapes have been optimized in [24] and [25], respectively.

In this paper, some results concerning optimization within extrusion processes are shown. They
are based on previous work [8, 26-29, 36] concerning sensitivity analysis to different parameters of
a given problem such as material properties, friction coefficients, ram velocity, etc. (i.e. non-shape
variables), and to other parameters used to define the problem geometry (i.e. shape variables).
A brief outline of the formalism is given (Sec. 2). The above distinction on the design variables
justifies the expression “shape and non-shape” sensitivity [30], sometimes used. In a rather abstract
context both kind of variables allow a unified treatment. However, specific implementations give
rise to their own terms which make clear the need of a separate treatment for them. In partic-
ular, shape sensitivity requires further assumptions to express the derivatives of every geometric
quantity of the problem in terms of the shape parameters. In other words, a mapping scheme is
needed to establish the required dependence between them. Two such mappings are presented in
Sec. 2.3. Special attention should be paid to what we called bispline mapping, which allows for the
use of angles as design variables, which, combined with the traditional set of spacial coordinates,
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improves the efficiency of solution. After this, the optimization procedure is schematized and finally
illustrated by carrying out the shape optimization of a die for direct extrusion and the simultaneous
optimization of shape and non-shape variables within a combined direct-inverse extrusion process.
Two available optimization procedures [31, 32] are used to this purpose. The performance of both
proposed methods for mapping is shown. Some remarks are made, concerning the behaviour of the
investigated functionals and the effect on the optimal shape of boundary conditions, as it came out
along the numerical illustrations.

2. NUMERICAL MODEL AND SENSITIVITY ANALYSIS

2.1. Outline of the flow approach

The flow of metal under forming conditions is described by the equilibrium equation in rate-form,
where usually convective (i.e. dynamic) terms are neglected
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A fluid-type constitutive equation of a non-Newtonian kind is assumed
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with the incompressibility condition additionally imposed. After discretization, the above system
yields, in residual form

_ = _ [Kw Ki][a] [Q
R KOG =[ (1) (p)] [_]_[ }:0 4
= K, 0]|pl |o @
where
K(#) = /,uko dQ=/2uBTB d.Q,
(7] 9]
o S /k"{p) d(2=—/BTI‘BdQ, (5)
2 P}
0o /¢?dﬁ+ ¢t d(60) + P,
n 002,

while q and P are, respectively, the discretized velocity and pressure vectors, ¢ the array of shape
functions for velocity, B the standard strain rate-velocity matrix and P the vector of concentrated
loads applied at the nodes. B (analogous to B) coincides with the array of shape functions for
pressure, and the column vector I" converts the total strain into its volumetric components.

Out from Eq. (4), the tangent matrix is obtained as
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(where ko = [15 g] ) , which is used for Newton-Raphson solution of Eq. (4) and for the sensitivity

stage.
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2.2. Material parameter sensitivity (DDM)

Without going into further details already discussed (e.g. [28]), calculation of the sensitivity of
a given functional to a design parameter h requires (in terms of the direct differentiation method,
DDM) the sensitivity of the problem unknowns, i.e. dq/dh, which results from differentiating Eq. (4)
with respect to the design parameter h. Since the vector q has been solved for from the equilibrium
problem, we have

T dq op + 86
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whenever h is a design parameter not involved in the shape description. But if, instead, h is a shape
parameter, a number of new terms appear from the differentiation of the particular quantities
appearing in Eq. (4). All of them may be routinely computed from the already defined model,
provided a law relating coordinates of a generic point to the design parameters is established. This
is discussed in the next subsection, 2.3.

2.3. Mapping for shape sensitivity (DPA)

To define such dependence, sometimes a problem dependent parameterization has been preferred,
e.g. [7]. Here, instead, a more flexible approach is searched for, as used in [8-10, 33, 34]. It consists
in a new discretization, usually much coarser than the one used to solve the equilibrium problem.
The only condition required from it is an accurate description of the domain. We have thus design
nodes, which are connected by design elements. Now a given mapping is specified once these design
elements are defined. After that, we will be able to calculate the derivatives dz;/0X J‘-", where X]‘?‘ is
the j-th coordinate of the design node «, with a = 1, ..., Ny, where Npy is the number of design
nodes. This derivative is required to differentiate each of the quantities of Eq. (4) by application of
the chain rule. Within this formalism, a generic scalar quantity a, for example, is differentiated as

da _ da Oz; 0X]

oh ~ dx; 0Xg oh
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where X7 is the j-th coordinate of the a-th design node and z; are the spatial coordinates. Ex-
pressions for other quantities (vectors, tensors, differential operators, etc.) are developed as well
([8, 11, 28, 33]). Equation (8) and analogous expressions for other quantities present the explicit
derivatives with respect to the design variables and thus will be grouped on the right-hand side of
Eq. (7). However, the total derivatives with respect to the design variables may also include terms
that are implicitly dependent on design, i.e. through the sensitivities. But these terms, by definition
of the tangent stiffness matrix, enter the left-hand side of Eq. (7).

The following mapping schemes are thought of for 2D. Nevertheless, their extension to 3D is
straightforward.

2.3.1. Bilinear design elements

We first consider bilinear elements, using the known shape functions used in finite elements, or
a similar procedure to obtain the local (i.e. within the design elements) coordinates of the points
laying inside the element. We can thus obtain the derivatives dz;/0X ;' as is usually done within
isoparametric elements. Then, assuming that our design variables are some of the design-node
coordinates, h = X ?, we have 0.X7 o= 6ag_6jl- . Both quantities are then replaced in expressions

like Eq. (8) or similar.
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2.3.2. Domain parameterization with bispline design elements

Within bilinear elements, the boundary of the discretized domain is described by linear interpolation
between design nodes. Aiming at a more elaborate boundary description, the design-discretization
is now considered in two steps (this procedure is similar to that considered in [3]).

1) Spline interpolation of the contour subject to design. The boundary of the discretized domain
must be described as a combination of straight lines and some higher order curves. To define each
of them, the coordinates and possibly the angle with respect to a selected coordinate axis of a
set of nodes is used. For such purpose cubic splines (which may be reduced trivially to a straight
line segment) are very commonly used and defined by an appropriate set of nodal coordinates
and angles with respect to a reference direction. These nodal coordinates and angles are thus the
(natural) design variables. However, it may be sometimes useful to take the spline coefficients
instead.

2) Double-spline-interpolated 4x 4-node design elements, in terms of which it is possible to find the
derivative of the coordinates of any point (finite element discretization node) with respect to
the nodal coordinates of the design element. It should be noticed that these nodal coordinates
of the design element may not be independent. In fact, in order to get a smooth field of local
coordinates the nodes which do not define a border may be calculated as linearly interpolated
from the corner nodes.

The procedure is similar to that considered in [3]) and it is used to construct bispline design
elements (by bispline we mean a two-variable function resulting as the product of two one-variable
spline functions).

1) Spline interpolation of the boundary subject to design

The basic shape optimization problem may be formulated as that of obtaining the shape that
minimizes a given cost functional. For different reasons, not all the boundary may be subject to
optimization: most frequently some design constrains have to be met. On the other hand, we have
the problem of choosing the geometric variables that can describe the boundary upon design. In
principle, it is not a good choice to use as design variables the coordinates of each of the boundary
nodes arising from the finite element discretization. It is well known that optimization algorithms
may become very slow and even have convergence problems for a large number of design variables.
Moreover, such a large number may be not necessary if, additionally, the nodes on the border subject
to optimal design are interpolated with sufficiently smooth functions which, in turn, are defined in
terms of a few master nodes.

Any cubic spline segment involves the evaluation of four coefficients resulting from the fulfillment
by the function of four conditions on its value or its derivatives at given points. Let us divide (part
of) a boundary to be optimized into a number of segments, and let us define a spline in each of them.
Neighbouring segments must satisfy the continuity condition of the curve and of its first derivative.
As a required additional assumption to find the optimal shape, the design nodes and, thus, all the
other nodes laying in between may be allowed to move according to a specified direction, typically
holding one of the spatial coordinates fixed, i.e. making them depend linearly on the internal spline
variable. So, the other spatial coordinates of the design nodes and the slope of the boundary on them
with respect to a reference direction constitute the design variables and both are functions of the
spline internal variable. Within such parameterization technique, the conditions between segments
are easily assured and the addition of more segments to describe the boundary under design is
automatized. Hence, when the boundary under design is described with only one spline segment,
four design variables appear (some of which may be fixed by a design constraint). However, for
every new added segment, although four more parameters enter, only two more design variables
are added, because of the continuity conditions between spline segments. In addition, this set of
variables allows us to find out the spline coefficients separately for each segment.
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For a generic segment k& we have thus a vector of design variables

Bt = { R, 2, RpH, Tk (9)

1

where )?f,)?f“ are the (variable) coordinates of the end-of-spline-segment design nodes and the
primed quantities mean derivatives with respect to the spline variable. The slope of the design
contour and, further, its angle with respect to a reference axis will be associated to them. We find

the coefficients of the spline
X(€)=eo+erf +ext®+esg®; -1<€<1 (10)

by requiring that

Xb=x(-1); XF=x(-1); XF'=x1); X**'=xq) (11)

2) Interpolation inside the design element
In terms of the internal coordinates &, 7 we define the double spline functions, for i = 1,2

Wi = a + a€ + ajn + as€” + afén + agn’ + a5€® + agl®n + abén’® + ajon’

+a$16%n + a1,8%0” + alatn® + al, 0% + als€n® + ol (12)
where —1 < &, < 1, and the sixteen coefficients of each function are determined by the nodal
1k

Chit
independent or, better, those which are unnecessary to describe the geometry may be calculated
in terms of the other nodes. In this case the local coordinate field will be smoother and the finite
element mesh will conserve its regular aspect.

The whole shape that is being optimized may be piece-wise described by spline lines, as seen
above. Each of these spline segments may correspond to one side of the design elements in which
the whole domain can be subdivided. Then, the number of design elements is roughly determined
by the number of segments needed to define the geometry with a given accuracy (plus a few more
elements for those areas not subject to design). Most frequently, only one side (or none) of the
design element will be a spline segment. The remaining three sides can be straight lines. In such an
element we have to define the above ¥; functions in order to relate the coordinates of each point
contained in the element with the design variables via the nodal coordinates of the design element
and the spline coefficients of the design-boundary segment corresponding to the design element.
Having defined this mapping, the way the nodes change their position with design variations is
uniquely determined, and we can calculate the derivatives dz;/dhy, which are needed to obtain the
global sensitivity coefficients and, with them, the gradient of the objective function.

To specifically obtain these derivatives we proceed design-element-wise as follows:

coordinates at £, = < —1, 1}. For practical purposes the nodal coordinates may be mutually

1) Define a spline for the design element side subject to design in terms of the design variables
connected by the design element, as shown above. The other coordinate (y in this case) is
linearly interpolated within the internal variable ¢ and does not enter the design variables. The
other three sides of the design element are straight lines.

2) Define a double-spline in the design element. We need a set of sixteen points (z and y coordinates)
from which we obtain two sets of sixteen constants. We take as reference points those located

gl |

at (67,'7) 55 {_17_§: '3'7

9, 8,9 and 12 as linearly interpolated from the corner nodes. Points 14 and 15 are obtained by

1} (Fig. 1). Points 1, 4, 13 and 16 are known. We obtain points 2, 3,

! | 1 ¢ :
evaluating x at £ = —= and £ = 3 respectively, and finally, points 6 and 10, and 7 and 11, by
linear interpolation on the 7 direction between points 2 and 14, and 3 and 15 respectively.
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Fig. 1. Design element

If we arrange the local coordinates and the interpolating functions in the vectors (see Fig. 1)

1 1 y BN | 1 5l 1L =5
=¢-1,-=, = 1,-1,—=, =, 1,-1,—= = 1, -1, —=, =, 1 13
E’ { ) 3’ 37 ) ) 3’ 3’ ) ) 3 3 3 3 } ( )
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=¢-1,-1,-1, -1, — =, —=, ==, —=, =, =, =, =, 1,1 1,1 14
Tl { ) ) ¥ p; 3, 3) 3) 3’ 37 3? 3’ 3 } ( )
P = {1, & 1, €, &n, v*, &8, &, £, €, En®, 5P, 07, 63773} (15)
we can rewrite the double splines as
¥; = al, r=1,..,16, i=1,2. : (16)

Arranging accordingly the global coordinates in vectors )~(i by evaluating the functions i, at the
points (€s,7s) we have

~

Xis = cora®., rs=1,..16, i=1,2 (17)

with csr = ¥r(€s,7ms), from which

at'= (6:) "1 Xy, rs=1,..16, i=1,2. (18)
Now we can calculate the derivative

Qﬂ__a_aﬁaai 3)?; ox Oem r,s=1,..,16 nosumoni¢=1,2
Ohg  dal pXi OX Oem Ohg’ m=0,.,3 d=1,..,D

(19)

where da;/ 80Xy = (ch) jk- We may notice that the derivative d)?; /dx = 0 for those i not used in
the definition of x, Egs. (9) to (11).

It is worth to point out that for elements having all four sides straight, the above mapping
reduces to the bilinear one referred to in Sec. 2.3.1.

3. OPTIMIZATION ALGORITHM

Having a reliable numerical simulation of the problem at hand and of its sensitivity to a set of
design parameters, the optimization problem can be faced. The previously obtained results are used
to evaluate a given response functional

9=/0 [L(%(apﬁ;h) dr2+/m€(ﬁnt;h) d(emv)+/6 (@, tz, h) d(862,)|dT (20)

(h) $25(h)
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which may involve volume and boundary terms, and among the latter, those corresponding to
imposed either velocity or tractions on the boundary, and its gradient in the design space. £2(h),
012,(h), 002,(h), denote the domain and its boundary with both types of imposed conditions. The
optimization algorithm makes use of these quantities to find the optimal set of design parameters, i.e.
that for which the response functional is minimized. To this aim, the problem is sequentially solved at
each trial set of design parameters (the analysis and sensitivity module is called by the optimization
procedure) until a given convergence condition for design is met. In this work, two optimization
algorithms have been employed: the first one is based on the conjugate gradient method [31] and
the second is the Schittkowski’s algorithm [32] and both gave the same results.
The optimization problem we are to solve is stated mathematically as follows:

Find the vector of design variables h = {hy,...,hp} € RP that minimizes the objective func-
tional (20) subject to

Tale®,Gh) =0 a=1,..4,
Lilo”, g <'0 =108,
B Sha<hit =110,
Equilibrium equations

(21)

where h, h;i" are lower and upper bounds imposed on the design basis hg, d = 1,2, ..., D. Objective
and constraint (referred to as performance) functionals in the above optimization formulation call
for design sensitivity analysis.
The optimization algorithm can be summarized as follows:
0. initial estimate for h,

: d§
1. evaluation of § and an

. 145 .
: — <
2. if H dh' E tol exit,
3. calculation of Ah,
4. update h: h®") = h©9 4 Ah,
5. go to 1.

The set of design variables need not to have the same units. We have seen in Sec. 2.3.2 that some
of the shape variables may be angles. Moreover, we can include some material parameters such as
the yield stress, as it will be shown in Sec. 4.2, or even of another kind like ram velocity, friction
coefficient, etc.

4. COMPUTATIONAL ILLUSTRATIONS

The model for optimization presented here has been tested on direct and direct-inverse extrusion
problems. Several examples in which shape and non-shape variables were used to minimize different
functionals — some of the obtained results are discussed below. First, optimization regarding only
shape variables is considered, to better show the performance of the bispline design elements. Af-
terwards, combined shape and non-shape optimization is considered. Two non-shape variables are
analized (i.e. yield stress and the ratio of direct and inverse flows), mainly to test the algorithm.
Both types of variables — shape and non shape — thus enter together in the optimization procedure.
Results agree with intuitive expectations, and show besides that, regarding the non-shape variables
analized, shape variables are more important to reduce the cost functional.

4.1. Direct extrusion — shape optimization

The shape optimization procedure is first illustrated by finding the optimal design of a direct extru-
sion matrix, where the extrusion ratio is fixed. Optimization criteria of minimizing the deformation
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energy, the maximum strain rate and uniform rate of deformation are investigated. A layout of the
problem is shown in Fig. 2, together with its discretization into finite elements. A constant velocity
is imposed on the left boundary. The design variables are the x coordinates of some nodal points
defining the matrix shape (marked A-E in the figure) and the slope on the die boundary at them.
The shape sensitivity analysis of such problem within bilinear design elements has been presented
in [8]. In that paper the die profile was supposed to be a straight line, so that only one design
parameter (the horizontal coordinate of the upper die corner, point A in Fig. 2) was sufficient to
define any geometry variation.

>

/

LT
L[/

Fig. 2. Layout of the extrusion process

Using the flow approach we obtain the velocity, strain and stress solution. Further, for any given
configuration the shape sensitivities may be obtained by application of the procedure presented in
Sec. 2 for appropriately defined shape parameters.

On this basis, optimum shapes resulting from different design functionals and obtained using the
bilinear design elements are first shown. Then, taking one design functional, the effect of friction
boundary conditions on the optimum shape is analyzed. Finally, optimum shapes are obtained with
different number of design variables using both bilinear and bispline design elements.

4.1.1. Design functionals

The following functionals have been employed:
energy rate

SE = / O'ijéij d.Q, (22)
n
maximum local energy rate
Ge = max (30iéij) (23)

averaged effective strain rate deviation

1 Vi maN2 syl :
90é=§/9(5—5) an, E:b—/ngd(), (24)
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maximum effective strain rate

overall distortion rate
1 4
9p = 5 | €12 ds, (26)
I7)
maximum distortion rate
Je1o = max(é1z) -

The corresponding optimized die profiles are shown in Figs. 3 to 5.

(a) (b)

I
|
I
I
|
|
|
|
|
1

Fig. 3. Optimal shape — Minimization criteria: (a) energy rate, (b) maximum local energy rate

(a) (b)

Fig. 4. Optimal shape — Minimization criteria: (a) averaged effective strain rate deviation, (b) maximum
local effective strain rate

Since, within bilinear design elements, the profile to be optimized is defined by a polygonal
line joining the design points, we impose restrictions on the coordinates of every two neighbouring
design points in order to avoid unrealistic situations which may appear during the optimization
iterations and disturb the convergence of the optimization process. Numbering the design nodes
from left to right and taking only the horizontal components X{ as design variables, we should
have X! > X¢.

Table 1 shows the reduction in the value of all the considered functionals achieved after opti-
mization with respect to the x coordinate of the four nodes defining the die profile (A-D, cf. Fig. 2).
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(a) (b)

Fig. 5. Optimal shape — Minimization criteria: (a) overall distortion rate, (b) maximum local distortion rate

Table 1. Initial and optimal values of the design functionals

Functional Se Ge 5.5 S, So -1 D
Initial value 0.8658E+5 | 0.3684E+6 | 4.802 | 6.8844 | 7.119 | 5.068
Optimal value | 0.7922E+5 | 0.2686E+6 | 2.913 | 5.3424 | 6.358 | 3.997

We can see in Figs. 3 to 5 two different families of optimal shapes corresponding to either local or
global functional character.

For the specific case of the overall deformation energy (Fig. 3) the global functional presents
a slightly curved optimal die profile while the corresponding local criterion (i.e. minimization
of the maximum local plastic deformation energy rate) exhibits a strongly concave profile. It
is interesting to notice, however, that both give approximately the same angle between the die
and the material outlet, which is the most critical zone, for its strain rate and stress concentra-
tion.

Comparative plots of the energy rate are shown for the initial (Fig. 6), and modified (Fig. 7(a) and
(b)) configurations, optimized with respect to both globally and locally defined cost functionals. It
can be seen that the last plot shows visible differences with respect to the original and the globally-
optimized ones, which suggests that the minimum for both the criteria (local and global) are very
different. On the other hand, the isocurves of the energy rate have a similar pattern in both the
initial and the global-optimized configurations: in the latter, smoother energy gradients and the
deformation zone more spread throughout the domain, can be seen.

Fig. 6. Energy rate isocurves for the initial die
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=

Fig. 7. Energy rate isocurves for (a) global- and (b) local-energy-rate optimized die

4.1.2. Effect of boundary conditions

The optimal solution also depends strongly on the boundary conditions. In contrast with the so-

lutions already shown, where no friction conditions have been assumed, Fig. 8 shows the optimal

solution with respect to the deformation energy rate criterion (22) for a problem modeled with

sticking (i.e. no slip) condition. Now the design variable is the y-coordinate of the central node
of the die profile. A different optimal shape is obtained, as compared to the case with frictionless
boundaries. But, as before, the die shape is mainly characterized by the die angle at the outlet,
which now is much larger. Besides, a much less significant reduction of the cost functional has been
achieved: from Gy = 0.1552E + 6 down to Gz; = 0.1530E + 6. This behaviour results from the
effect of the boundary conditions: a zone is developed where the material remains attached to the
boundary thus, roughly speaking, design variations only change the size of this zone, which however

has a small contribution to the energy integral.

NS S

L//

Fig. 8. Optimal shape with sticking condition; energy rate minimization

Next, the same problem of minimizing the global energy rate when the sticking condition is
assumed is solved using the bispline design elements presented in Sec. 2.3.2. Figure 9 shows the
optimal shapes of the extrusion die for such boundary condition assumed along the whole boundary.
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In the first case the x coordinate of the upper edge of the die profile and the slope at both profile ends
(z4,04,0F, see Fig. 2) have been taken as design variables. In the second case, also the z-coordinate

and the slope at the middle point of the profile are used.
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Fig. 9. Optimal shape — (a) three and (b) five design variables

We can see that the solution with more design variables approximates better a “square”’ profile
at the die corner, with a transition at the die exit. The angle at the die exit is very similar in both
cases, as results from Table 2. The solution is in agreement with the empirically optimized dies for
such boundary conditions, where the dead zone forms a kind of internal optimal die. However, we
can see also from Table 2 that the cost functional is roughly the same for both solutions, which
means that it may not be worth to reach an exact optimum if this involves some technological
difficulties. Moreover, the same example using only one degree of freedom (the y-coordinate of
the middle point, y¢) already shown, see Fig. 8, solved using bilinear design elements, yields a
functional value of G5r=0.153E+6 with, again, a similar die angle at the exit [29], which shows
to be the most critical variable for optimization. In the present discussion, however, it should
be noticed that the constitutive model used here fails to model the real material behaviour at
the shear band that develops within the dead-zone formation. The extrusion force drops when
the dead zone arises, as it comes out from experiments, but this fact is not reflected within this

model.

Table 2. Initial and optimal values of the design functionals and of the design variables

Sk Sef TA 04 O
D=3 | 0.1563E+6 | 0.1511E+6 | 3.50 | 93.76° | 121.38°
D=5 | 0.1563E+6 | 0.1507E+6 | 3.65 | 94.89° | 122.05°

4.1.3. Design elements

Finally, to further investigate the performance of the design elements with different design variables,
the problem of finding the optimal shape, which minimizes the overall deformation energy rate has
been solved using both bilinear and bispline design elements and different sets of design parameters.
Again, the initial shape is that given in Fig. 2. The initial value of the design functional is given as
reference to be compared with the optimized results. The optimal shapes arrived at are shown in
Figs. 10 and 11 for the frictionless and sticking-condition cases, respectively. Whenever only spatial
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Fig. 10. Shape optimization for frictionless boundary. Bilinear and bispline elements

coordinates are considered as design variables (i.e. no rotation angles of the design border at the
design node), the bispline elements reduce to bilinear. All the results are summarized in Table 3. It
can be seen that the relative reduction in the cost functional is better noticeable in the frictionless
case than with sticking-condition boundaries. As said earlier, this behaviour obeys to a physical
fact. From the numerical side, the bispline elements show to be very effective: whenever the cost
functional value may be lowered by design, for the frictionless case, with the same number of degrees
of freedom (that is, design parameters), a more important reduction in the design functional is
obtained. The case with sticking friction shows, as before, a non-significant gain. As already argued,
in such case a dead zone develops with which the material itself finds its own optimal internal die,
since our numerical solution minimizes the same energy functional. Besides, it is even noticed that
increasing the number of design parameters the optimized functional is higher than with less design
parameters. This fact suggests the presence of local minima which are probably connected with
the material model in the & — 0 limit, in which, a cutoff value is applied for the viscosity p [8, 28].
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Fig. 11. Shape optimization for sticking condition. Bilinear and bispline elements

Table 3. Initial and optimal values of the design functionals

Frictionless boundaries | Sticking friction

Init. Value: | G, =86343 | §/G, |G, =156282] G/S,
bilinear elements:

3X +00 § =67667 0.784 § =152120 0.973
4X + 06 § =67388 0.780 § = 152461 0.976
5X + 06 G = 64618 0.748 G =152522 0.976

bispline elements:
1X + 260 § = 63408 0.734 9
2X + 36 G = 60903 0.705 S

152609 0.976
152575 0.976
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4.2. Direct-inverse extrusion — shape and non-shape optimization

Next, a combined direct-inverse extrusion process is considered. In this case shape and non-shape
variables are used to optimize two proposed functionals. This process is characterized by the de-
velopment of two flows, directed forward and backwards with respect to the movement of the ram.
Their respective proportion results from the combined effect of the die shape, ram velocity, material
parameters (usually affected by the temperature), boundary friction, etc. A practical application
would require a more complex analysis and is beyond the scope of this paper. (Sensitivity analysis
regarding frictional contact and thermo-mechanical coupling have been studied in [27, 35]). A sim-
plified analysis is applied here to just illustrate the method of optimization with both types of
variables.

() | | (b) M
! - BEE

AEERE
L

A
I //4
Wz

Fig. 12. Direct-inverse extrusion: a) layout and initial shape, b) final shape after minimization of the
deformation energy w.r.t. shape and non-shape variables

Figure 12(a) presents a scheme of the process. An axisymmetric billet is placed on a die in which,
by the action of a mandrel part of the metal is extruded downwards, but since there is some space
between the mandrel and the die, a counterflow is formed upwards. The process is considered in a
quasi-steady state. The diameters at both outlets are considered fixed, but the actual shape of the
die is subject to design. To this aim, the vertical coordinate of point A (X1 in Fig. 13 and 15), and
the die angle at points A and B (6; and 62 in Fig. 13 and 15) are subject to design. The shape
sensitivity analysis is performed with the aid of the design elements with bispline interpolation.
Additionally, the material yield stress og (cf. Eq. (3)) is also taken as a design variable. The rate
of energy insumed in the process of plastic deformation is taken as the first cost functional to
be minimized, Eq. (22). The final shape arrived at shows that point A (X1) has moved upward
taking a die-profile angle as large as possible with respect to the overall flow direction, which is
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Fig. 13. Minimization of the deformation energy w.r.t. shape and non-shape variables: a) evolution of
design variables, b) cost functional

reflected by the tangent value of —0.1, (measured in a cylindrical coordinate system r,z, with z
directed downwards), that equals the upper bound imposed to meet desing restrictions. The other
two geometric variables, R1 and R2 are not at their extreme allowed values. The overall shape is
quite concave.

The history of the optimization process is shown in Fig. 13(a). On the left axis geometric variables
are represented (where the numerical values have different meaning according to the character of
the variable: length units -cm- or tangent of angle). The three shape variables fall very close to
their optimal value already in the second design iteration. In this first period the cost functional
also takes a value very close to the optimum. Small changes are still applied to the shape variables
before the non-shape variable begins to change, because the response functional is much more
sensitive to the former than to the latter. This is especially true regarding the set of material
variables assumed, which are those of a highly rate-sensitive material, from which the static yield
stress plays a secondary role. But, finally, also the yield stress falls to its minimum allowed value in
order to further reduce the cost functional value.

Another functional can be thought of that may show useful to design processes of this type. If
the keypoint of the combined direct-inverse extrusion is to keep a desired proportion between both
flows, then the optimization problem can be posed as that of minimizing the functional

9=9d—f9i:/ v-nd(arz)—f/ R dlID (28)
90d 902
where 02, and 0f2; are the outlets for the direct and inverse flows, respectively, and f is a real
number that determinates the required proportion between both flows. Here f = 1 has been as-
sumed, meaning the condition that the forward and backward flows should be equal. Additional
restrictions that would obey e.g. to some constructive criteria are imposed as usual. The final shape
after optimization is shown in Fig. 14(a). Using again the same variables as before, minimization of
the above functional yields a practically straight die profile with the die corner displaced down to
it design bound. Fig. 14(b) presents the velocity field. After the uniform velocity imposed by the
ram, a flow bifurcation is observed. This zone begins right after the right corner of the ram. The
particles flowing downwards (direct flow) show a sensible increase of the velocity module, fulfilling
the incompressibility condition. Both flows become practically uniform right after leaving the die.
The optimization process also in this case leads to a design close to the optimum after two design
iterations. This can be clearly appreciated in Fig. 15(a) and (b), where the values the design pa-
rameters take and that of the response functional are shown. It is also evident that the actual value
of the yield stress does not affect the relative flows, thus its value remains constant.

The computations presented in this Section were carried out using Schittkowski’s algorithm [32].
The case shown in Fig. 8 (like many others not presented here) was also solved using the Conjugate
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Fig. 14. Minimization of the difference direct-inverse flow w.r.t. shape and non-shape variables: (a) final
mesh, (b) velocity field
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Fig. 15. Minimization of the difference direct-inverse flow w.r.t. shape and non-shape variables:
a) evolution of design variables, b) cost functional
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Gradient Method. The same results were obtained in both cases; the number of iterations was also
similar. However, the implementation of [32] available to the authors had better possibilities for
imposing constraints and for this reason was preferred.

5. CONCLUDING REMARKS

In the present application of shape and material parameter sensitivity to optimize different response
functionals, the design elements interpolated with bispline functions have shown to be very effective
in comparison with the bilinear ones, regarding the reduction obtained with a given number of
design parameters. Besides, to have angles directly available as design variables makes easier the
application of design constraints and shows to be useful for the design process. The procedure is
able to combine in a same optimization process shape and other type of design parameters and
shows a certain degree of generality for its application to other geometries and processes.
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