
Computer Assisted Mechanics and Engineering Sciences, 18: 275–282, 2011.
Copyright c© 2011 by Institute of Fundamental Technological Research, Polish Academy of Sciences

An improved Neural Kalman Filtering Algorithm
in the analysis of cyclic behaviour
of concrete specimens

Agnieszka Krok
Cracow University of Technology

Institute of Computer Methods in Civil Engineering

Warszawska 24, 31-155 Cracov, Poland

e-mail: agakrok@poczta.fm

The article is related to the results of research on Node Decoupled Extended Kalman Filtering (NDEKF)
as a learning method for the training of Multilayer Perceptron (MPL). Developments of this method made
by the author are presented. The application of NDEKF and MPL and other methods (pruning of MLP,
Gauss Process model calibrated by Genetic Algorithm and Bayesian learning methods) are discussed on
the problem of hysteresis loop simulations for tests of compressed concrete specimens subjected to cyclic
loading.

Keywords: Artificial Neural Networks (ANN), Kalman Filter (KF), Node Decoupled Extended Kalman
Filtering (NDEKF), Multilayer Perceptron (MPL), Genetic Algorithm (AG), Bayesian methods, concrete
specimens, cyclic loading, hysteresis loops.

1. INTRODUCTION

Kalman filtering is a mathematical method suitable for simulation of test measured values by their
prediction, estimating their uncertainty and computing a weighted average of the predicted and
measured values. The aim of the research presented in the paper is to simulate noisy measurements
observed over time and predict values which are supposed to be close to such measurements, see [3].
The Kalman filter approach was adopted in ANN nonlinear models as a new learning technique,
see [2]. Selected node learning and pruning of ANN are discussed, see [9]. Statistically grounded
ANN learning methods, related to the Gaussian Process model and Bayesian Methods, see [8], are
also applied.

2. KALMAN FILTERING AS AN ANN LEARNING METHOD

The basic KF learning method, supported on Decoupled Extended Kalman Filtering (NDEKF), is
based on two equations, called (1) process equation and (2) measurement equation. These equations
are modified into a form which can be adopted to learn standard Multilayer Perceptron (MLP),
see [2]:

wi
k+1 = w

i
k + ωi

k, (1)

yk = h(wk,xk) + νk, (2)

where: k – discrete pseudo-time parameter; i – neuron index in ANN; wi
k+1 for i = 1, 2, ...,W –

state vector components corresponding to the set of synaptic weights and biases; h – vector-function

276 A. Krok

marking a non-linear input-output relation x/y, ωi
k, νk – Gaussian process and measurement noises

with mean and covariance matrices defined by:

E(νk) = E(ω
i
k) = 0, (3)

E(ωi
kω

i
lT) = Q

i
kδkl, (4)

E(νkν
T
l) = Rkδkl. (5)

The NDEKF algorithm induces decoupling state vector into groups. The decoupling level related
to neurons (nodes i = 1, 2, ..., N) is performed. The change of wi during the presentation of the
k -th learning pattern takes the following form:

Ki
k = PkHk

g∑

j=1

(Hj)TkP
j
kH

j
k +Rk

−1

, (6)

ŵi
k+1 = ŵ

i
k +K

i
kξk, (7)

Pi
k+1 = (I−Ki

k(H
i
k)

T)Pi
k +Q

i
k, (8)

where: Ki
k – Kalman gain matrix; P

i
k – approximate error covariance matrix; g – the number of

FLNN nodes (groups of decoupling); ξk = yk − ŷk – error vector, with the target vector yk for
the kth presentation of a training pattern; ŷk – output vector computed by MPL, H – matrix of
current linearization of Eq. (2):

Hi
k =

∂h

∂wi
. (9)

The analyzed parameters corresponding to the Gaussian noise were adopted in the following
form:

Qi
k = 0.001 exp((s− 1)/50)I, (10)

Rk = 7 ∗ exp((s− 1)/50)I, (11)

where I – identity matrix whose dimension depends on the state vector dimension in MLP, s – the
number of learning epoch.

2.1. Development of KF algorithm

It was numerically proved that the KF algorithm is time consuming in comparison with the tradi-
tional Resilient Propagation or Levenberg-Marquardt learning algorithm implemented in the Neural
Networks Toolbox for use with MATLAB, see [1, 12]. In order to reduce the computational time
some changes were introduced into the original NDEKF. Implementation of separate models for
ANN nodes leads to different levels of estimation due to the diversity of initially chosen values and
the non symmetric input vector. Higher values of the approximate error covariance matrix P for a
particular node gave better filtering algorithm performance for this node:

P i
k+1 ≈ E(wi − ŵi

k+)(w
i − ŵi

k+1)
T , (12)

where ŵi
k+1 – the estimator for the w

i, found after presenting k + 1-th learning pattern. Wi is the

dimension of P i matrix. The following values are at the main diagonal of this matrix:

P i
k+1(m) ≈ E(wi(m)− ŵi

k+1(m))(wi(m)− ŵi
k+1(m))T (13)

An improved Neural Kalman Filtering Algorithm in the analysis of cyclic behaviour. . . 277

for m = 1, 2, ..,Wi, where Wi is an approximated mean square error of the estimation process for
the i -th neuron of the network.
There is a significant difference of performance of the filtering algorithm if the ANN is learned

up to an admissible MSE error level. The proposed algorithm is based on a dynamic change of the
region of the network that is learned. After the initial learning of the whole network, nodes for
which the filtering performance is weaker can be selected. Then they are and learned until the level
of filtering for theses nodes reaches the average level of the whole network. During this procedure
the rest of neurons are frozen. The procedure is repeated. The level of filtering performance is
estimated for each of the network layers separately. The proposed algorithm has the following
form:

1. Initial learning during s = 1, 2, .., S0 epochs, then for the each of the network layers separately,
computing the average estimation errors in the layer:

M = mean{m=1,..,ni,i=1,..,I(1)}P
i
k+1(m).

2. Computation the average estimation errors in the nodes:

M(i) = mean{m=1,..,Wi}P
i
k+1(m)

for i = 1, 2, ..I(1).

3. Selection the neurons for learning, i.e. finding i such that M(i) < αM where α – the fixed
parameter.

4. Learning only the selected up to Sstep epochs. For the rest of neurons values of weights were
unchanged.

5. Computing M , M(i).

6. Repeating the above steps until a stop criterion is reached.

2.1.1. Pruning of MLP learned by KF algorithm

In order to prevent applying the MLP with too many connections, the number of neurons should
be reduced, which can shorten computational time. From among different possibilities of automatic
improving of ANN architecture the pruning method was applied, cf. [1]. At the beginning, a large
ANN is learned and during the learning process some of the connections are cut. Thus the network
changes its architecture into a smaller one. The connections are removed after checking their poor
influence onto the input-output relations or decreasing of the MSE error. The basis of the proposed
algorithm is the ‘lprune’ algorithm changed into the KF learning, cf. [11]. Let us adopt the vector
of weights parameters (synaptic weights and biases of ANN):

w = {wj}Wj=1 ∈ R
W . (14)

For each weight wj the value of the statistics Λ as calculated:

Λ(wj) = ln

∣∣∣∣
∑L

p=1w
j − η

∂E(p)

∂wj

∣∣∣∣

η

√
∑L

p=1

(
∂E(p)

∂wj
−mean{p=1,2,..,L}

∂E(p)

∂wj

)2

, (15)

278 A. Krok

where L – number of patterns in the learning set of data, η – the percentage parameter,
mean{p=1,2,..,L} – arithmetic mean in the learning set, E(p) – error for L learning patters given
by the known formula:

E(p) = (h(xp,w)− yp)2, (16)

where (xp, yp) – target input/output pair for the p-th pattern, h – marking of ANN.
The large values of Λ for the particular weight means that this weight has a significant influence

on the learning process. The weight with the smallest values of Λ are removed.
The following algorithm was proposed:

1. Choosing initial architecture.

2. Learning initial architecture for S epochs in order to find the number Sstart epochs after which
the ANN is pruned the first time.

3. In order to make possible changes of weights after cutting of the connection in the KF, a model
of noise matrixes is applied for the number of learning epochs Sreset <= Sstart.

4. Choosing the time between the consecutive cuts. After the number of the current epoch is
divided by selected parameter k, the pruning is made.

5. Choosing the threshold Λprog. The weights for which values of Λ are smaller then Λprog are
removed. The threshold is changed my means of the following product:

Λprog = αmean(Λ), (17)

where α – percentage element, mean(Λ) – average arithmetical value of Λ(wj) for j = 1, 2, ...,W .

6. Removed connections equal zero for the learning process.

3. SIMULATION AND PREDICTION OF CONCRETE HYSTERESIS LOOPS BY MEANS OF
MODIFIED KL LEARNING

The main results obtained by the method presented above and its extension were discussed in [4–7].
The investigated problems were analyzed by means of the neural simulation applied to prediction
of data sets corresponding to mining tremors, concrete, steel and superconductor hysteresis loops
as well as other data time series analysis, see [7]. Now let us consider the numerical results obtained
for the simulation related to computer simulations of concrete hysteresis loops. Some graphics for
the accuracy comparison is shown to deduce some general conclusions.

3.1. Experimental data

Tests on 12 concrete cylindrical compressed samples 3x6 [in.] were discussed in [12] with respect to
the following cyclic loading programs:

1. Monotonic of the load increase to the maximal value.

2. Decrease of the load to zero value.

3. Subsequent repetition of the load programs (cycles) 1 and 2, see Fig. 1.

An improved Neural Kalman Filtering Algorithm in the analysis of cyclic behaviour. . . 279

Fig. 1. Experimental data.

3.2. Application of MLP with KF learning

Data for the MLP learning and testing, i.e. the neural simulation and prediction, were adopted as
discrete points at the stress-strain dimensionless relations σ − ε ∈ [0, 0.9]. The measurement data
set was randomly split into the learning and testing sets. The testing set was composed of points
corresponding to three last hysteresis loops. The properly learned ANN was able to simulate the
behavior of the material both in the first and the final parts of the hysteresis loops. Numerical
experiments showed that sequential components of input vectors could be written with respect to
the following process:

• Progress of the experiment (tests on concrete samples) in time k/P for marker k = 1, 2, ..., P ,
where P – the number of data points according to the experiment scheme.

• Progress of the experiment in time for each loop is analyzed by means of the marker. It is a
parameter of numbering patterns for the network learning and testing inside each loop. The
numbering is made for each loop independent of other loops, normalizing the intervals to the
range [0,1]:

marker = [1/N1, .., N1/N1, ..., 1/Ni, .., Ni/Ni, ..., 1/N9, .., N9/N9], (18)

where Ni – the number of data points in i-th hysteresis loop.

• For the control of load increase and decrease the marker1 was adopted. Inside i-th hysteresis
loop the following parameters turned out to be the most numerically efficient:

marker1,i = [1/Mi, 2/Mi, ..,Mi/Mi, (Mi − 1)/Mi, (Mi − 2)/Mi, ..., (Mi −Ni)/Mi], (19)

whereMi – the number of experimental points for which the material is loaded, Ni – the number
of experimental points whose material is unloaded inside the i -th hysteresis loop. marker1,i was
scaled to the interval [0,0.9].

• value of σ predicted by ANN in the previous step computation was written as: σANN(k − 1).

The network MLP: 3-6-3-1 was applied. The output of neural network, predicted by the network
in the current step of computation, was written in figures as Ksi or σ, corresponding to the pressure-
dependent stress σ.
The learning set for this experiment consist of first six hysteresis loops, which gave L = 273

data points. The testing set were selected as the following three loops, which gives T = 132 data
points.

280 A. Krok

From among many input vectors the most efficient was input vector, composed in the form:

x(k) = [σ(ssn)(k − 1), k/(273 + 132),marker1], (20)

where k – the number of current pattern, k = 1, .., 405, see, [11].
The improved curves σ − ε for the MLP learning and testing by means of Kalman filtering are

shown in Fig. 2.

Fig. 2. ANN and KF learning method for 1000 learning epochs.

4. BAYESIAN APPROACH TO SIMULATION OF HYSTERESIS LOOPS

4.1. Gaussian process modelling calibrated by Genetic Algorithm

Let us consider the stochastic process Y, generated by the set of fixed basis functions with random
weights:

Y (X) =

M∑

j=1

Wjφj(X), (21)

where X – input random variable, [3], fulfilling the following relation: if Wj ∼ N(0, Σ) then
EW [Y (X)] = 0 and EW [Y (X)Y ′(X)] = φT (X)Σφ(X).
Two covariance functions were considered, see [11], i.e. squared exponential and rational

quadratic functions. The non-linear optimizer is used to find the maximum likelihood values of
the parameters. The starting parameters for the algorithm were found by Genetic Algorithm (GA)
for the fitness functionMSE(k,m, σ). The results of simulation are shown in Fig. 3 with parameters
obtained by the genetic algorithm and maximum number of iterations of 35.

Fig. 3. Gaussian process modelling for squared exponential function.

An improved Neural Kalman Filtering Algorithm in the analysis of cyclic behaviour. . . 281

4.2. Bayesian learning method

Next, the stochastic approach was applied. MLP weights were adopted as random variables with
the known ‘a priori’ Gaussian distribution. They were adopted according to Bayes’ updating scheme
in the model, in which ‘a priori’ distribution of the weights is p(w)N(0, σ) = p(w|D) N(0, σ).
The posterior distribution of the w represents knowledge about the values given data D was

presented to the network. They were computed via the application of the Bayes’ theorem: p(w|d) =
p(D|w)p(w)/p(D) where p(D|w) – data set likelihood, p(D) =

∫
p(D|w)p(w)dw – normalization

constant. The evidence procedure was taken from [9] as an iterative algorithm for determining
optimal weights and hyperparameters during Bayesian learning of MLP. The results of Bayesian
learning and testing of MLP are shown in Fig. 4. The number of training cycles in the inner loop
was 500, the number of inner loops 2 and the number of outer loops 2.

Fig. 4. ANN and Bayesian learning method.

In Table 1 the learning and testing errors MSEL and MSET obtained by the numerical models
are listed for MLP with applied Bayesian methods (written in Table 2 as MLP+Bayes). As shown
in Table 1, the approximation MLP+Bayes gives the best results for the discussed problem of the
hysteresis loops simulation.

Table 1. Comparison of errors obtained by different numerical models.

Method MSEL MSET

MLP+KF 0.00092 0.0005

GP+GA 0.00004 0.0002

MPL+Bayes 0.00001 0.00009

5. CONCLUSIONS

1. The numerical analysis proved that the Node Decoupled Extended Kalman Filtering (NDEKF)
can be a learning method for the training of Multilayer Perceptron (MPL), however it is nu-
merically costly. The author improved the learning method of NDEKF applying pruning and
dynamic changes in MLP structure in order to decrease the number of operations.

2. The proposed algorithms seem to be numerically efficient. The application of KF leads to the
development of other statistically based methods, i.e. Bayesian learning and Gaussian Process
model.

282 A. Krok

3. Comparison of the applied method shows that this methodology can be efficient in simulation
of concrete subjected to cyclic loading.

4. From the viewpoint of numerical efficiency, the Gaussian Process modelling calibrated by Genetic
Algorithm seems to be one of the favourable methods.

5. MLP gives the best estimations of hysteresis loops simulation, see Table 1. But this method
and the Gaussian Process model and the MLP with Bayesian methods need an additional effort
with respect to the implementation process. That is why for the simplicity of implementation,
the KF learning can also be recommended.

REFERENCES

[1] S. Haykin. Neural Networks, A Comprehensive Foundation, 2nd Ed. MacMillan College Publ., Engle-wood Cliffs,
NJ, 1999.

[2] S. Haykin. [Ed.], Kalman Filtering and Neural Networks, John Wiley & Sons, New York, 2001.
[3] R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions of ASME, Journal of
Basic Engineering, 82(D): 35–45, 1960.

[4] A. Krok, Z. Waszczyszyn. Neural prediction of response spectra from mining tremors using recurrent layered net-
works and Kalman filtering. In: J-K.Bathe [Ed.] Proc. 3rd MIT Conf. Computational Fluid and Solid Mechanics,
pp. 302–305. Elsevier, 2005.

[5] A. Krok, Z. Waszczyszyn. Simulation of building loops for a superconductor using neural networks with Kalman
filtering. Computer Assisted Mechanics and Engineering Sciences, 13: 575–582, 2006.

[6] A.Krok, Z. Waszczyszyn. Kalman filtering for neural prediction of response spectra from mining tremors. Com-
puters and Structures, 85(15–16): 1257–1263, 2007.

[7] A. Krok. Analysis of Mechanics of Structures and Material Problems Applying Artificial Neural Networks Learnt
by Means of Kalman Fltering (in Polish), Ph.D. Thesis, Institute of Computer Methods in Civil Engineering.
Cracow Univ. of Technology, 2007.

[8] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge Univ. Press, 2003.
[9] I.T. Nabney. Netlab, Algorithms for pattern recognition. Springer, 2006.
[10] L. Prechelt. Adaptive Parameter Pruning in Neural Networks. International Computer Science Institute Univer-
sity of California Technical Report TR-95-009, 1995.

[11] B.P. Sinha, K. H. Gerstle, L. G. Tulin, Stress-strain relations for concrete under cyclic loading. Journal of
American Concrete Inst., 61(12): 1964.

[12] Neural Network Toolbox for Use with MATLAB, User’s Guide, Version 4. The MathWorks, Inc., Natick, MA,
2000.

