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A multiscale and Trefftz computational method for medium-
frequency vibrations of assemblies of heterogeneous plates
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A new approach called the “Variational Theory of Complex Rays” has been developed in order to cal-
culate the vibrations of slightly damped elastic plates in the medium-frequency range. The solution of a
small system of equations, which does not result from a fine spatial discretization of the structure, leads
to the evaluation of effective quantities (deformation energy, vibration amplitude,...). Here we extend
this approach, which was already validated for assemblies of homogeneous substructures, to the case of
heterogeneous substructures.
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1. INTRODUCTION

The modeling and analysis of the vibrational response of elastic structures are undoubtedly among
the key issues which appear in the design of satellites or car chassis. Today, at least concerning
modeling and analysis, there remain no major difficulties in the low-frequency range, even for
complex structures [1]. Concerning high frequencies, computational tools quite distinct from those
used for low frequencies do exist, particularly the SEA method [2-5].

Conversely, the modeling and analysis of medium-frequency vibrations, which constitute the topic
of this paper, continue to raise certain problems. Difficulties are experienced in extending the SEA
method, which is appropriate mostly for high frequencies. In particular, the scale on which space
is described is too coarse for medium-frequency analysis since the spatial aspect disappears almost
entirely. The difficulty in attempting to extend the low-frequency methods to this case is that the
length of variation of the phenomena being studied is very small compared to the characteristic
dimension of the structure. Therefore, the finite element calculation involved would require an
unreasonable number of degrees of freedom. Apart from these serious numerical difficulties, the
quantities involved in the calculation remain associated with small variation lengths which are not
very significant. These are not “effective” quantities, i.e. they are not representative of the vibratory
response of the structure on the time and space scales considered. Therefore, they lead to results
which are very sensitive to imprecisions in the data. Nevertheless, various improved finite element
approaches have been studied, in particular in [6-24].

There are few works dedicated specifically to the calculation of medium-frequency vibrations.
For rods and beams, the problem was solved, in particular, in [25-27]. For more complex structures
such as plates or shells, boundary element methods were proposed in [28] and methods based on the
use of specific reduced bases can be found in [29-32]. Most of these works are closely related to finite
element methods and the quantities calculated are still not “effective”. Therefore, in our opinion,
they are not “true” medium-frequency methods. On the contrary, the theory initiated by Belov
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and Ryback [33] is built upon the concepts of “effective energy density” and “effective power flow”.
However, despite the improvements proposed [34], this theory still encounters theoretical obstacles.

The approach followed here is the Variational Theory of Complex Rays (VICR), a predic-
tive tool designed specifically to deal with medium-frequency problems, which was introduced by
Ladeveze [35]. This approach is a “true” medium-frequency method in the sense that the calcu-
lations are performed on “effective” quantities. Previous works already validated this strategy for
two-dimensional and for three-dimensional assemblies of elastic homogeneous plates with low damp-
ing [36-38]. For example, an assembly of 54 plates is used to model the front part of the chassis of
a car, made of steel sheet (Fig. 1). The mechanical properties of the 54 plates are: E = 210 GPa;
n = 0.001; v = 0.3; p = 7800 kg/m?; A = 0.8 mm. The harmonic excitation is a distributed force
Fy on the front side frame: Fy = 1 N/m; f = 650 Hz; w = 2nf rad/s. Symmetry conditions are
prescribed on the appropriate boundaries; the rear boundaries are fixed. w designates the normal

deflections.
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Fig. 1. VTCR solution: |w| (m)

However, most industrial structures present some kind of structural heterogeneity, whether inten-
tional (such as portholes or equipment connections) or unintentional (such as cracks). The vibratory
response in the medium-frequency range is very sensitive to these structural discontinuities. While
the VI'CR was originally based on the assumption that the structure is an assembly of homogeneous
substructures, this paper goes one step further and proposes an extension of the VTCR which en-
ables the designer to take heterogeneity into account. The objective is to deal with three-dimensional
assemblies of homogeneous and heterogeneous substructures.

2. BAsic ASPECTS OF THE VTCR

In the general case of a structure made of several substructures, the first step of the VT'CR consists of
associating each substructure with a superelement described by degrees of freedom which correspond
to local basic modes, defined on two scales, which satisfy the dynamic equations (local equilibrium
and constitutive relation) exactly. These modes are called complex rays. Besides having a strong
mechanical meaning, they can be divided into families related to interior, edge or corner zones. In the
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vicinity of a point, the solution is assumed to be properly described locally as the superimposition
of an infinite number of such local vibration modes. The unknowns are large-wavelength quantities,
each representing the amplitude of the basic mode with which it is associated.

Next, an appropriate variational formulation enables us to verify, on average, the boundary and
transmission conditions. Our choice of reasoning on a superelement level requires the formulation to
allow approximations which are a priori independent within substructures. These approximations
do not necessarily need to verify the transmission conditions a priori. In practice, the variational
formulation associates each superelement with, on the one hand, an elementary matrix which rep-
resents the interaction of the fields with one another and, on the other hand, a right-hand side
which represents the interaction between the fields and the boundary conditions. The transmission
conditions at the interface are taken into account automatically at the assembly stage.

The last characteristic of the VT'CR is that, from the calculated discretized amplitudes, it retains
only effective quantities related to the elastic energy, the kinetic energy, the dissipation work, etc. ..

3. EXTENSION OF THE VTCR TO HETEROGENEOUS STRUCTURES
3.1. The reference problem

Here, we will focus on the construction of the superelement associated with an isolated heterogenous
substructure (Fig. 2). Let us consider the steady-state vibrations of a thin, isotropic and elastic
Kirchhoff-Love plate with local heterogeneity. Let S be the plate and 0S its boundary loaded
harmonically at a fixed angular frequency w. Classically, all quantities are defined in the complex
domain: an amplitude Q(X) is associated with Q(X).exp(iwt). The boundary conditions are the
deflection w® on part 9,,qS of 8S; the slope 'wg on OyngS; the bending moment M 4 on OprqS and
the Kirchhoff shear K% on 8x4S. Each type of heterogeneity results in specific limitations at its
boundary. In order to test the strategy, let us consider the case of a plate with an arbitrarily-shaped
hole. Its boundary I is assumed to be free.

I

Fig. 2. The reference problem

Let us introduce for S the space 8q4 of the displacement-stress pairs s = (w, M) such that:

s € Ux 8 (set of finite-energy fields),

SE 8y & AAw —k'w=0 onsS, (1)
=
M,; = ——(1 + 1) Kps X(w)
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with

4 _ 3pu?(1-07)
(1+inER2 "

The reference problem is defined in Problem 1.

Problem 1. Find s such that:

S € ‘Sad
w = wl om: ByuS
7 2008 on OynaS
M, = M4 on OpgS
K, = K¢ on OkgqS
M, = M%=0 on Iy
Kn = K d 0 on I 0
with
M, =nMn

and

Kn = ndiv[M] + (tMn) ;.

3.2. Directapplication of the VTCR
3:2:1. Thve;. variational formulation associated with the VTCR
The first optibri is to treat I like S. This option is defined in Problem 2.

Prqbfem 2. Find s such that:

SE€E Sad- )

(Aas (Js,5) + A, (0s,5)) — (Las (6s) + Lr, (8s)) = 0
Vis € 894

with: ,
Aps(dsys) — Lag(ds) =

Re{ . '[w( o / 6K, (w —wh)* dL + / dnMn (wy, — wh)* dL
? au,dS aumds

+/ (QM@—Md) 5w;';dL —/ (Kn —Kd) ow* dL)}
OmdS OkaS
and

Ar,(ds,8) — L, (6s) = Re {—-iw (/ nMndw, dL - | K, dw* dL)} :
Iy Iy

Note that the terms which appear in this formulation represent powers.
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3.2.2. Construction of admissible fields

In practice, the first stage of the VT'CR consists of building admissible fields. Let us define a subset
of S,q which can contain local interior vibration modes described using “complex rays of the nth
order”. If the damping coefficient n (7 < 1) is small, the basic mode can be written as:

w(X, P) = eVoRX HVREX (X, P)[a(P)] = W(X, P) [a(P)],

M(X, P)= (1 +in)KpsX(w(X, P)),
Pe C.

Each mode is associated with a wave vector P. The admissibility relation requires that the locus
of the end of P be a curve characterizing the material. V(X, P) [a(P)] is a polynomial expression
of degree n in X. The small-length part appears explicitly. The unknown generalized amplitudes
[a(P)] do not depend on X and, therefore, are large-length quantities. The edge and corner modes
are built in the same way.

3.2.8. The discretized form of the VICR

In order to derive approximations from the VT'CR, one discretizes the curve C using finite elements;
for example, P — a(P) is assumed to be constant in each element. In other terms, a” is associated
with C" (i.e. C discretized with r elements). The subspace SZd of the approximations deduced from
844 vields a discretized variational formulation leading to a system of equations of dimension 7 in

the complex domain:

] = 22 "
3.2.4. Example
Such a method can be applied, for example, to the problem of a square steel plate of side L=1m
with a center square hole of side L/3. Its mechanical properties are: £ = 210 GPa; n = 0.001;
v=203; p="T800 kg/m3; h = 0.8 mm. The harmonic excitation is a distributed force Fy; on one
side: f = 400 Hz; w = 2 f rad/s; F; = 1 N/m. The plate is clamped on the opposite side. The
solution obtained with the VTCR (Fig. 4) and the solution obtained with finite elements (Fig. 3)

are very similar.
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Fig. 3. Finite element solution: |w| (m)
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Fig. 4. VTCR solution: |w| (m)

However, the influence of heterogeneity is taken into account through the terms integrated on
I, whereas we would like the treatment of local heterogeneity to be distinguished from that of the
master structure. Indeed, from a mechanical point of view, the hole creates only a perturbation
of the vibratory response. One should note that this interpretation is not valid for all types of
heterogeneity. For example, a long stiffener would behave differently. The case of stiffeners will be
developed in a subsequent paper.

3.3. Adaptation of the VTCR to the treatment of local heterogeneity

The adaptation consists of taking the perturbation due to local heterogeneity into account as soon as
the admissible fields of 8,4 have been built. The purpose is to develop a priori, and only once, families
of admissible fields which satisfy the boundary conditions resulting from each type of heterogeneity.
Therefore, let us define the set 8¢, (i.e. corrected 8,4) of the pairs s such that:

SiE Sad,

SE€ES © M,=M%=0 on Iy, (5)
K, =K¢=0 on Ij.

Then, the problem is defined in Problem 3.

Problem 3. Find s such that:

S € SZd’
Aps (8s,8) — Lag (8s) = 0, (6)
V(SS € Sgd

3.4. Construction of the corrected admissible fields

We want to build fields which correspond to the new definition of admissibility. Thus, we seek
s € 8, among the pairs § admissible in the sense of S,4 which already exist, to which we apply
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a correction 3 so that s¢ verifies the boundary conditions resulting from heterogeneity. Of course,
this correction must belong to 8,4 also. One can view each s¢ as the superimposition of an incident
field 5 and a diffracted field s due to heterogeneity:

(w®,M°) = (@, M) + (@, M) = W(X, P) [a(P)] + W(X, P) [a(P)]. (7)

The fields s¢ of 8¢, are deduced from those of §44:

Lo {wc(i,ﬁ) = (W(X,P) + [H(X)] [Cr(W(X, P)]) )],
B 68ad ~ : (8)
M°(X,P) = (1+in)KpsX(we),
with:
W(X, P) = [H(X)], 9)
@(P)) = [Cr(W(X, P))] [a®))- (10)

Thus, the correction associated with each 3 is built individually as a linear combination of functions
H, which are additional basic modes. These modes are weighted by coefficients Cr adjusted to the
incident field. In the final calculation, each correction function enriches the basic modes and the
associated generalized amplitude becomes a new unknown connected to the amplitudes associated
with .

3.5. Example of the construction of corrected admissible fields

In the case of the reference problem, corrections s(X, P) associated with an incident field of unit
amplitude 3(X, P) are defined in Problems 4 and 5.

Problem 4. Find s such that:

ge Sad,
Mn = _M’n|Fo) (11)
K, = K|,

In order to take into account the radiating aspect of the wave diffracted due to heterogeneity, we
wish to calculate s in polar coordinates with an origin located at the “center of gravity” of the hole.
Therefore, we define an “equivalent circular hole” with appropriate boundary conditions. This hole
is an imaginary circular contour [je of radius R, centered at the origin of the polar coordinates
system and containing the heterogeneous property (Fig. 5).

R —
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Fig. 5. Definition of the imaginary circular contour
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Then, w is sought in the classical form:

Z Ctm (W) Hm(r,0), (12)
meZ
=12
with
Hiy = H,(,{)(afkr) ™ and a; =i, =1, (13)

where H,(n) and Hp, @) denote the Hankel functions of the first and second kind respectively. The
solution is a combination of an outbound propagating wave and a boundary wave which decreases
rapidly. Both waves are emitted by I and neither reflects at infinity. The coefficients Cjy, are
determined through the boundary conditions on Iy, which are relocated on I'je. These relocated
boundary conditions are the restrictions to the contour I'ye of the solution to Problem 4. In fact,
outside I e, the solution to Problem 4 is the same as the solution to Problem 5.

Problem 5. Find s such that:

g & Sad,
TR R Tiog b ) (14)
e il

Problem 4 is solved by a boundary element method, e.g. [39], or an extension of the VTCR to
unbounded media which is currently under development. Then, @?|r, and @¢| re are expanded into
Fourier series:

@(R,0) = Lmez @ ™(R) €™,

~d ~dm (R gimb (15)
w,n(R, 0) = Y omez WY #:3 on®
with
il 2 ) 1 2T .
FM(R) = — / mIGR0)d9,  FM(R) = — / =m0 (R 9)dg. (16)
2 Jo : 2m Jo '
The coefficients C',, are calculated by inverting linear systems of dimension 2:
CimHS (ikr) + ComHP (kr) = @™(R), b1
CimHW (ikr) + ComHY (kr) = @M(R),
or
[Hom][Cm(W)] = [Eam(W)]- (18)
One obtains an approximate solution by truncating the series, i.e.:
@(r,0)= Y Crm(®) Hym(r,0), (19)
mEZf,|m2|SM
=],

with |m| < M. For any incident pair 3, the correction 3 is expressed on the same basis of (2M + 1)
local fields Hyy,. Let C be the vector of correction coefficients associated with the vector H of
functions Hyy,. Then, w(r,6) can be expressed as:

w(r,0) ~ [C(w)|" [H(r,0)], (20)
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and C is the solution to the following linear system, which results from the assembly of systems of
the same type as 18:

[H[C(w)] = [Fy(w)]. (21)

Then, all the Cs obtained while correcting each incident field are assembled to build the operator
Cr defined in 3.4.

In short, the superelements corresponding to heterogeneous substructures include a family of
additional basic modes weighted in order to verify conditions on the boundary of the discontinuity
a priori. The weights for ranges of nondimensional parameters corresponding to each type of local
heterogeneity are processed and stored in advance. This approach can be generalized to two or more
zones containing local heterogeneities.

4. CONCLUSION

The “Variational Theory of Complex Rays”, initially introduced to calculate the vibrations of slightly
damped elastic plates in the medium-frequency range, is a very general approach with a strong
mechanical basis. This tool is not only efficient for assemblies of homogeneous plates, but also
flexible enough to deal with locally heterogeneous substructures economically.

In the near future, the capabilities of the VTCR will be extended in several directions e.g.
from plates to shells and from local heterogeneity to more complex cases such as multi-stiffened
substructures. In addition, an approach will be proposed which will be appropriate for dealing with
wide-band frequency excitations.
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