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General strategy for developing finite elements of general geometric shape explained on quadrilateral
folded plate structure element ensuring invariance properties is presented in this paper. The basic idea of
this strategy consists in using the natural coordinate system only for defining the element geometry and
performing the element integration in a mapped biunit square. For defining the approximation functions
a suitable local Cartesian coordinate system defined from the directions of the covariant base vectors and
the perpendicular contravariant base vectors is used. The origin of the local coordinate system is located
at the element centroid (centre of gravity).

Hybrid and boundary finite elements of reduced Trefftz type for analysing the folded plate structures
are also presented. The folded plate structure element is a combination of a plate bending element and a
plane stress element.

1. INTRODUCTION

The obstacles in formatting displacement and hybrid finite elements are reported in many publi-
cations [1-4]. Different suggestion has been made for selecting the element coordinate systems and
constructing the approximation basis for various finite element types. For the hybrid quadrilateral
Kirchhoff plate-bending element developed in [4], the element local coordinate system is selected
in a skew (but not curvilinear) coordinate system located at the geometric center of the element
and defined in the direction of the natural coordinate system. For the hybrid Trefftz elements de-
veloped in [3, 5], the origin of the local coordinate system is located at the element centroid and
the displacement functions are assumed in those coordinates but it seems that no attention is paid
to the selection of their direction. The invariance properties are preserved through constructing the
approximation basis in the local coordinates divided by an average distance between element cen-
toid and element corners. In general, the most widely used strategy in formatting finite elements of
general geometric form depends on an approximation basis selected directly in a natural coordinate
system [6-10].

In this paper a general strategy for developing finite elements of general geometric shape explained
on quadrilateral folded plate structure element ensuring invariance properties is presented. The basic
idea of this strategy consists in using the natural coordinate system only for defining the element
geometry and performing the element integration in a mapped biunit square. For defining the
approximation functions a suitable local Cartesian coordinate system defined from the directions
of the covariant base vectors and the perpendicular contravariant base vectors is used. The origin
of the local coordinate system is located at the element centroid (centre of gravity). Such strategy
enhances basically the application of complex formulations like the Trefftz method in the framework
of the finite element method and enables preserving invariance properties as well as insensitivity to
nodal point numbering for finite elements of general geometric shapes; see for example [11-14].

A slightly modified geometrical interpolation technique for constructing the finite element shape
functions is also presented. The displacement approximation basis starts with approximation func-
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tions in parametric form involving a homogeneous part and a particular part. This modified tech-
nique leads to a constructed displacement basis with shape functions, which involve also in addition
to the homogeneous part a particular part. The modified interpolation technique enables considering
the effect of the external loading on the displacements at the finite element level [15-17].

The folded plate structure element is a combination of a plate bending element and a plane stress
element.

Although the displacement approximation basis is constructed in the defined local Cartesian
coordinate system the advantages of using the natural coordinate system are exploited. All quantities
needed in the application are expressed in the natural coordinate system by using the isoparametric
transformation.

The integration over the interval [—1, +1] is used to derive the element matrices and load vectors.
The integration can be performed either numerically or exactly. It is also not necessary to transform
the energy expressions to the natural coordinate system in order to evaluate the element matrices
and the load vectors. The energy expressions can be evaluated as they are related to the Cartesian
coordinate system after replacing the Cartesian-variables with their natural equivalents.

A cellular hollow box and shell roof with complex cross section geometry meshed by folded plate
structure elements of Trefftz type are subjected to static and eigenvalue analysis. The results are
compared with the results produced by hybrid and mixed hybrid elements developed in [18-22].
The results, obtained both by static and eigenvalue analysis, are of the same order.

The deformation of the cross section of the studied structures under external loading signifies
the mechanical behavior of the cellular hollow box and the shell roof as surface structures. Such
behavior can not be modeled by applying the beam theory. The mode shapes corresponding to the
first four eigenvalues obtained by an eigenvalue analysis of the structures studied recognize also the
same multi-dimensional behavior.

2. DEFINING THE LOCAL COORDINATE SYSTEMS

A general strategy for formatting finite elements of general geometric form should be presented by
means of the quadrilateral plane stress element and Kirchhoff plate bending element shown in Fig. 1
and Fig. 2, respectively.

Various difficulties may be encountered in developing such element geometry forms especially in
association with a Trefftz type approach. The first difficulty, encountered, consists in satisfying the
requirement of the approach in constructing the approximation basis, so that the Lagrangian equa-
tion is a priori fulfilled. In addition, difficulties encountered in formatting finite elements of general
geometric form in association with displacement and hybrid versions of the finite element method
concerning convergence, invariance and nodal point numbering insensitivity are to be overcome.
Further difficulties appear especially in applying complex formulations like the Trefftz method in
the framework of finite element method for solving dynamic problems. In this case, approximation®
functions, which satisfy the Lagrangian equation in the dynamic case, are required. Such requirement
can not be easily achieved in general for Lagrangian equations formulated in a natural coordinate
system.

The use of a Cartesian coordinate system enhances basically the application of the Trefftz concept
in the framework of the finite element method. For sake of further simplicity, it is also possible to
use displacement approximation functions of a static case in applying a dynamic case together with
variational concept involving the inertia forces. In such case, it is necessary to evaluate domain
integrals, which means that the Trefftz approach is only used in a “static sense”.

In order to circumvent the difficulties associated with the application of the Trefftz type approach
and the formatting of finite elements of general geometric form for other versions of finite element
methods (i.e. displacement and hybrid versions), the following steps of the general application
procedure are adopted:
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1. Beside global Cartesian coordinate system (mi, xi), parallel local coordinate system located at
the element centroid (z!,z2) and the natural coordinate system (6',6%), a suitable Cartesian
coordinate system (z!,z?) located at the element centroid is defined in the following way:
Firstly, the coordinate system (z!,z2) is defined by translating the origin of the global coordinate
system into the element centroid. The coordinates of an arbitrary point of the element related

to system (!, z2) with the unit vectors (e »,e :)can be rewritten as:
T xz

* ~ ~

rt =7t —xfc), (1)

z' are the global Cartesian coordinates of the arbitrary point and :1:2 ¢) are the global coordinates
of the element centroid defined as

Thy = /A ridA / /A dA. 2)

Now the following differential geometry properties of the element are defined [21]:
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The coordinates of an arbitrary point of the element can be written as follows

*

2! = ag + a10* + a20? + a36'62, , (3a)
22 = by + b10" + 62 + bsf162, (3b)

The covariant base vectors and the contravariant base vectors are orthogonal and their directions
construct naturally a suitable Cartesian coordinate basis for defining the local coordinate s¥stem.
Thus, the local coordinate system (z!, z%) or (x1, x2) with the unit vectors (e,1, e;2) or (e, e*’)
is, for example, defined from the directions of the covariant base vectors and the perpendicular
contravariant base vectors evaluated at the geometric centre of the element, where (8! = 0,
62 = 0), as follows

(4)

[ €1 ] " 1 a1sy +bas1  bisz — ags1 ] aX
€x2 V2(51)%(52)2 + 2jos152 L @251 —b1sz @182+ basy e ’

s1=v(a1)?+ (01)%;  s2=+/(a2)?+ (b2)?;  Jo=a1bs —agh. (5)

Note that a;, by and ag, by are the components of the covariant base vectors where ba/ 70,
—ag/jo and —by/jo, —a1/jo are the components of the contravariant base vectors evaluated in
the geometric center of the element.

The coordinates in the local system and the unit vectors can be calculated and the trans-
formation relation between both systems can be uniquely defined
xiza{xf; ot =al zi; eiza{.e.’; e =d e, (6)
J J J J
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2. The displacement approximation basis is constructed in the defined local coordinate system so
that the Lagrangian equation is satisfied. In such a way, the difficulties in constructing trial func-
tions, which satisfy the Lagrangian equation for applying the Trefftz method, can be overcome.

3. The advantages of using natural coordinate systems are exploited. All quantities needed in the
application are expressed in the natural coordinate system by using the isoparametric transfor-
mation.

4. The integration over the interval [—1,+1] is used to derive the element matrices and load vectors.
The integration can be performed either numerically or exactly [13]. It is also not necessary to
transform the energy expressions to the natural coordinate system in order to evaluate the
element matrices and the load vectors. The energy expressions can be evaluated as they are
related to the Cartesian coordinate system after replacing the Cartesian variables with their
natural equivalents.

3. REDUCED HYBRID AND BOUNDARY TECHNIQUE OF TREFFTZ TYPE

The global variational approximation is based on the static version of the extended variational form
of the natural boundary conditions (7)

ol = /aijnjduids ~/ Ti(suids =0 (7

o

ol n; denotes the boundary tractions on the part of boundry s, where the forces T' are prescribed.
The current approach exploits the basic concept of the Trefftz method in the use of assumed
internal displacement field (8) that solves the Lagrangian equation
Ui = M oy + My a®), (8)

M ™) are homogeneous trial approximating functions satsify the homogeneous part of Lagrangian
equation, Cp,(m) are parameters to be determined depending on the degrees of freedom of the

element, T/fz-(p) are non-homogeneous approximating functions satisfy the particular part of the

Lagrangian equation and g are the nodal values of the element loading.

Different techniques are possible in relating the undetermined parameters Cp(m,) to the nodal
degrees of freedom uj(e) [13]. Whenever it is possible to satisfy the continuity requirement using the
geometrical interpolation technique, the essential boundary conditions at the finite element level
can be used to construct ‘interpolation’ functions over an element that approximate the internal
displacement field. This technique leads to a displacement approximation basis that involves both
homogeneous shape functions and particular shape functions.

Two alternative techniques are followed to enforce conformity and inter-element continuity when
the interpolation cannot ensure the continuity requirement. The ‘frame function’ concept is used in
both cases. The first technique is hybrid in form of equation (9a) and consists simply in applying
the Gauss divergence theorem for the stress variation at the finite element level, after imposing the
essential boundary conditions of the element and enforcing the equation of equilibrium, in order to
eliminate the undetermined parameters. The second technique is a boundary equivalent. It results
from the application of condition (9b) at the finite element level in order to relate the undetermined
parameters Cp,(,,) with the nodal degrees of freedom Ui(e)-

/‘/ui,jdaijde/ (5aijnj)uids+/ (60" n;)ds, (9a)
So Su
/(6aijnj)uids=/ ((5aijnj)uids+/ (60" In;)t;ds. (9b)
8 So Su
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In order to apply the boundary technique, first we derive from u; as given in (8), the corresponding
displacement functions u;((¢))) on the element boundary

_ 2 m(m) oo ¥
Ui((e)(5) = Mi((e)(b))Cmim) T M ()T (10)

At the element boundary the conjugate vector of boundary tractions is determined from (8) and
can be written using different index notations as follows

Ti((©®) = RilE@Emm)e ﬁié()e>(b)>q(p), (11a)
Ti(E®) = RIE@®RMm,, 4+ RIg0), (11b)
TiE®) = RO g + BT Pg®), (11c)

Assuming that the variation of the load terms is zero, the variation of the boundary tractions is
then given by (12)

sT(©®) = Ri(e)(®)n(n) 8Cn(n)- (12)

The index ((©)(®) varies over the four element sides, along which we assume for %; a displacement
field that ensures the inter-element continuity in the customary way

_ L k(k) e _ L k(k)
TUi((e)) = Lie)on Wkk)i  Ti@®) = Li((e) ) Lkik)- (13)

Matrix Ll(((e)()b)) or L'L(((e)(b)) contains shape functions on the element boundaries.

The undetermined parameters cp(m) (or ¢;;y) may now be eliminated with the aid of (9a), (9b)
using a boundary technique. By substituting the conjugate vector of boundary tractions (11) and
the prescribed displacement field from (13) into (9b) the relation (14) can be evaluated and the

relationship (19) between the undetermined parameters and the nodal degrees of freedom can be
established.

Semumy H™™™ Wy 4+ e (m)ﬁggm)q@) = Sy T My . (14)

This leads to the boundary H™™™(") and ﬁ?;gm) matrices defined by equations (15b) and (16b),

which are quasi equivalent to the hybrid H m(m)n(n) and F?;gm) matrices results in by applying the
hybrid Trefftz technique (9a) and defined by (15a), (16a).

gmmn(n) / Mm(m) ikl M (")d A, (15a)
(m)n(n) _ m(m) i((e)(b))n(n)

Hmmnm) = / Mo R(E@ERm gs, (15b)

—=m(m) = i 7 7 i b))m

Fov: o / Mi(e)(ty) o) OO ds. (16b)

The matrix H™™n(") of (15b) is quasi symmetric. It is possible to evaluate the integral (17)
instead of the integral (15b) to ensure the symmetry (see for example [23])

m(m)n(n) _ i b))n(n i n )
Fmimn(n) ( / M @O g 1 / Ri@®)n(n) M’&(%))ds) (17)



396 S. Abo Diab

The remaining matrix in Eq. (14) on the right side is defined as follows

mmjn(n) — [ Ri((©)®)n(n) pmim) ,
B —/SR L3 ds. (18)

Elimination of the undetermined parameters Cm(m) (0r ¢y(y) using Eq. (14) recovers relation (19),
where Hj(j)(n) is the inverse matrix of (17)

cit) = Hiaym(m) (T™™M Wy — F?;§m)a"’ ). (19)

Definitions (11a)-(11c) and (13) for the boundary tractions and the boundary displacements,
respectively, can be used to derive the following relation by evaluating the variational expression (7)

i) (0D o)y k(k) k(k) il@)®) | _
6uk(k){ /s (RO Oy 1+ Ry ™g®) i ® | ds - /S Li@onT ds}—O. (20)

The last equation can be recast after observing (18) and introducing the definitions (22) and
(23) in the form (21)

Su(ay (TFOM Dy + T Fg®) — 7940 — g, - (21)
—0k(k) _ 7((e)(b)) rk(k)
7Ook(k) _ n T Li((e)(b))ds, (22)
Fk(k) _ 5i((e)(0)) ; k(k)
Ty = /s Ry Li (e ) ds- (23)

Substituting the free parameters cizy defined by Eq. (19) into Eq. (21) leads to the following
equation

Sty gy (TFRID Hz(z)m(m)Tm(m)"("))un(n)

] k(k)—
+ g (TF®I) g, Om (m)ﬁ%m) q(p)) + Suy, T} ;5) ) g® — 5uk(k)F°k(k)) =y (24)
This leads by recasting the previous equation to the following “force-displacement” finite element
relationship

kk(k)n(n)un — 7Ok(k) — wk(k) (25)

(n)

In this equation the symmetric finite element stiffness matrix and the equivalent nodal force
vectors are defined by the equations below

kk(FEn(n) _ Tk(k)l(l)Hl(l)m(m)Tm(m)”("), (26)

—k m)_ k(k)—
(k) — _ Tk(k)l(l)Hl(l)m(m)Fz% )q(P) 4 T(;E) )q(P)_ (27)

4. EXTENDING TO DYNAMIC PROBLEMS

The global approximation basis of the reduced Trefttz-type approach in case of kinetic application
operates on the natural boundary conditions enforced in an integral form (Eq. (7)) between two fixed
time points ¢jand t3 of the vibration process (the virtual variation du; of the actual displacement
field u; is to be assumed in such a way that the governing differential equation and the kinematic
boundary conditions are exactly satisfied)

/t :2 { /S ,, (o%in; — T) éuids} dt = 0. (28)
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A possible extension to deal with dynamic problems consists in adding the equation of motion
to the last variational expression with the aid of Lagrange multiplier

/ttz {/s (m‘jni — T) du;ds + /V (crljJ + ? + pﬁi) éui} dt = 0. (29)
1 o

In the last equation, 71, piit are the body and inertia forces, respectively.

Applying a displacement approximation basis constructed for a static case in a dynamic case
presented in the potential form of (29) leads after performing the variation to the following standard
FEM-relation (in the absence of damping effects)

km(m)n(n)un(n) & mm(m)n(n)un(n) = 7Ok(k) 4 7k(k), (30)
The mass matrix m™(™™") is defined by the following equations

mmmn(n) _ /AN:n(m)pijN;L(n)dA, (31)

Nim (™) are the shape functions, in which the displacements and rotations are included and p* is

the corresponding mass density matrix.

9 QUADRILATERAL FOLDED PLATE STRUCTURE ELEMENT
5.1. Plane stress element

The four-node quadrilateral plane stress element shown in Fig. 1 has three degrees of freedom per
nodal point, these are the displacement components in the directions of the defined local axes z!, z?

and the rotation about the third axis z® normal to the element plane, that means {u?,, u%,, ¢,3}.
z x

- =x'(3) =x*(3)
X2 I 2 (3)’q 9qx
X N

iy Lokl
@, g9, 4

qx'(l),q—x-u)’ (1) (2)’-qx‘(2) ,ax’(z)

X b

Fig. 1. Quadrilateral finite element for plane stress. Coordinate systems and element loading

The local axes z!, 22 are defined using the directions of the element base vectors in an analogous
procedure used in section 2. The approximation basis is constructed using a stress function F(z!, z2)

approximated in parametric form
E(#;2?) = M"e;, (32a)
M" = [1 .’131 :122 (:L‘1)2 :1:11'2 (322)2 (xl)S (x1)2.,r2 xl(x2)2 ($2)3
(xl)ti (x1)3x2 (.’1,‘1)2(%2)2 .’L‘l(w2)3 (:1:2)4] : (32b)

Cp = {Cl C2 A C14 615} o (320)
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In order to satisfy the differential equations (33) the stress function (32a) may be substituted into
the differential equations to yield the relationship (34) between a subset of undetermined parameters

Ap(pl 22 30 $ -2
T e e = o
24c¢11 + 8c13 + 24¢15 = 0. (34)
The possible solution (35) of Eq. (34) enables the rearranging of Eq. (32a) in the form (36)
c13 = 3en1 — 3es, (35)
F(z',2%) = c1 + cox’ + c3x? + ca(z)? + es2ta? + c6(22)? + cr(2?)®
+ cg(zh)?2? + coz' (22)2 + c10(2?)? + 1 ((z1)* - 3(z1)?(z?)?) (36)

+ c12(2')’2® + ez (2)® + c15((2?)* - 3(21)2(2?)?).
The conjugate force vector to the previous stress function can be derived using the following
relation

9%F (2!, 2?)
Nl Feoitep s 9
(0z2)
0%F(z!, z?) gl i
Nglg2 = S v R x2qw g7 fthz : Wod gl = Poogd 24 (37)
8% F(z,22)
Refe?™=|""rpo1Ne -
(0z1)
This yields the following approximation basis for the force functions
Ngigt 0 0 2 0 0 2zt 622 —6(z!)? 0
Ng2g1 0 -1 0 0 -2z —222 0 0 12x122
fgigz | [0 =1 0 0 —2z' —2z2 0 0 12122
Ng242 2 gD, Bl 270 0 0 (12(z)? - 6(z2)?) 6x'x?
] (38)
6zlz? (12(z?)% - 6(z1)?) " 0 0
—3(z!)? — 3(x!)? 12z'z? i =z2 —g! il
—3(z!)? — 3(2!)? 122122 b =% =gl |
0 —6(z?)? £y 0 0
L C15 |

The strains follow from the forces (38) using the strain-force dependency

ki
€ij = Eijun™,

Eplgl 1 0 0 —v Nylgl

€g201 | 1 0 (1+4+v)/2 (1+4+v)/2 0 T2 (39)
Eply2 T Et 0 (1+v)/2 1+v)/2 O RLtoa .

Ex22 -V 0 0 0 T332

E is the elastic modulas, v is the Poisson’s ratio.
For the displacement %; along the four element sides we assume a displacement field that ensure
the inter-element continuity in the customary way

L, m(m)

Ui = Liie) ) Umim)- (A0

The matrix L:T(L((g()b)) contains the shape functions of the element boundaries.
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Now the implementation of the element can be carried out in an analogy to the steps described
in section 3.

The element matrices can be derived by performing the integration over the biunit interval
[~1,4+1]. The use of 2 x 2 Gaussian integration formula leads to a singular H™m)n() matrix. The
exact integration of H™m)n(n) matrix shows its regularity. The use of at least 3 x 3 Gaussian
integration formula is necessary.

For considering the inertia forces we define the displacement functions inside the finite ele-
ment (42) using the shape functions of the element boundaries (41a), (41b):

1 o 1 -
U = 5(1 — 91)U(4)(1) + 5(1 + 91)'U,(2)(3), (41a)
1: oy 41 1 o i
Uy = 5(1 -0 )U(l)(g) + -2-(1 + 0 )U(g)(4), (41b)
Ui = Nim(m)um(m)a (42)
where the shape functions in the last equation are defined by (43a), (43b):
1)) _ 1 oy (1350 103
N =1 9)[2 Y24 1 (0]
NI = o,
atty el sty ol gt b tgobig e
N =1a e)[4+49+4(e) sy,
10y & n[1_32 193
N! _2(1+0)[2 S ERIGAE
N2 g,
32 1 1 qd 1 giotil 3
RS [—Z+Ze2+z(e2) ‘1(92)]’
1 1. .3 1 iada)
13) _ 2 1YY Lo Spg T gy
MO =2+ 3430 - @
NZ® =,
sayt o 1 (1 1 1 2 1 3
Ny =5 (1+6') f+292"1(92) ~21(6)"]
19 _ 1oty (132 Lig2y3
MO -1 9)[2+49 L@’
N = q,
3(4) _ 1 n |1 12_1 n2 1 03],
MO =200 |3+ 00— 3 0 - )
Nj® =,
21y 1 a1l 3,11 143
MW =10 9)[2 N
1 1 =739 1 1 Sl
34 i i T I 3 Gl ¢ e
N2 2(1 9)[4 40 4(9)+4(0)}’
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2 1 1 3 1 1
N22()=§(1—92) l:'2'+‘4'91—2(02) :|,
1 T LA 1
N3® - 5 (197 [_Z A o (6" + 5 (91)3] ,
NI® g,
Ny® = % (1+06%) % i %91 = % (01)3} : (43b)
33) _ 1 2;1 i LAY A% S =
Ny =5 (14+6%) | =5 = 76"+ 7 (0)°+ 7 (0],
N =0,
r
NE = 2 (14 67) S- 20+ : (91)3] )
N3 = 2 (1+67) 17—~ HOR: : (91)3] :

5.2. Quadrilateral 12-DOF plate bending element

The four-node element has three degrees of freedom per nodal point, namely the transverse dis-
placement and the two rotations. The application allows the element to be loaded by a dis-
tributed load g*° (z!, 22) with different nodal values 7°°(), 7=*®@, 7°®) 7#*@) at the element nodes
(1),(2),(3),(4), respectively (see Fig. 2). The homogeneous displacement approximation basis is
taken from the 12-DOF rectangular plate bending element. The approximation basis is extended
to involve a particular part, which satisfies the differential equation of the plate problem. Thus,
the application can be classified under the displacement version of the reduced Trefftz type ap-

proach.

0’ 3
X2 | i :3)’ax 2.

Fig. 2. Quadrilateral finite element for plate bending. Coordinate systems and element loading

The internal displacement field of the finite element is approximated in the defined local coor-
dinate system (z!,z?) in parametric form involving a homogeneous part with the same dimension
as the degrees of freedom of the element and a particular part dependent on the element loading as

follows:
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uga(a!, 2%) = M™™ep ) + Mg,
Mm(m) =[1 ! 3;2 (m1)2 .’171:1:2 (:L'2)2 (2:1)3 (1:1)2:1:2 xl(x2)2 ($2)3 (1?1)3.’1,‘2 1131(1172)3], (44)

Eu Em —5}3 An

- 1 [(@)%(2?)? (aV)%2? z'(z?)! (2')3(2%)3] | A Az Az Ap
8 24 24 72 E31 Asy Asz A

Ay Agp Az Ay

The known values A1y, ..., A44 depend only on the coordinates of the nodal points of the element.
Now the 12-nodal degrees of freedom uge) (i.e. the nodal displacement and slopes at the four element
nodes) are used to form the element shape functions.

The folded plate structure element is a combination of the plate element and the plane stress
element.

6. NUMERICAL RESULTS

6.1. Invariance and insensitivity to nodal point numbering

The invariance study of the element is performed using the single quadrilateral folded plate structure
element shown in Fig. 3. The global coordinate system z!, 22, 23 is located in nodal point (1). The
structure is rotated about its axes with different rotation angles as can be recovered from Fig. 3a,

Geometry and finite element mesh

a=30.;B3=45.; y=60.
b)

Geometry and finite element mesh

z-coordinates
G Lo a B0 s

a=45.; B=67.5; y=90. a=67.5; p=90.; y =120.
c) d)

Fig. 3. General single folded plate structure element
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3b, 3c, 3d. The nodal point numbering is also changed for the element. The geometry properties
are defined by the elasticity modulus E = 1365 [kN/m?], mass density p = 5. [Mg/m?], thickness
h = 0.2 [m] and Poisson ratio ¥ = 0.3. The boundary conditions are chosen such that the structure
is clamped at nodal point (1).

An eigenvalue analysis is performed on the structure for all the geometry definitions explained.
It is found that the eigenvalues remain unchanged in all these cases (see Table 1)

Table 1. The frequencies of the folded plate structure for all cases presented in Fig. 3

w1 w2 w3 wyq ws we
0.194123 | 0.520251 | 1.18842 | 1.96525 | 2.45231 | 2.9974

(%4 ws Wy w10 w11 w12
3.96588 7.65959 | 9.60759 | 11.1233 | 14.9202 | 17.5173

6.2. A cellular hollow box

The cellular hollow box shown in Fig. 4 and meshed by 72 folded plate structure elements (Fig. 4a)
is subjected to static and eigenvalue analysis. Details on mechanical system, geometry and loading

a) Geometry and finite element mesh

z-coordinates

y-coordinates AT 9

1000 kN
l 022 m 0.20 m 0.22 m
A 4 A 4
| A A

E=3.15¢5 kN/m
2. m 025 m

0.15m 025m ©=03
v p=2.4 Mg/m®
A

I_Z.m_}l.mlL 3.m _lll.m+__2_m_|

Fig. 4. Hollow box. a) system and finite element mesh b) system, loading, and cross section geometry
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z-coordinates

y-coordinates

displacements

x-coordinates

Fig. 5. Hollow box: 3-D representation of the deformation caused by the concentrated load

are given in Fig. 4b. The hollow box is fully clamped on both its end cross sections. A concentrated
Joad of 1000 kN is specified at the position shown in Fig. 4b. Figure 5 shows a 3-D representation
of the displacements components caused by the concentrated load. The deformation of the cross
section of the hollow box signifies the mechanical behavior of the box as a surface structure. Such
behavior can not be modeled by applying the beam theory. The mode shapes corresponding to the
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404 S. Abo Diab

first four eigenvalues obtained by an eigenvalue analysis of the hollow box recognize the same multi-
dimensional behavior of the structure. Finally, the results obtained both by static and eigenvalue
analysis are of the same order comparing with that obtained using the hybrid mixed elements
adopted in [18-22]. Table 2 lists the first nine frequencies of the hollow box and Fig. 6 shows their
first four mode shapes.

Table 2. The first nine frequencies of the cellular hollow box meshed in Fig. 3a

w1 w2 w3 w4 ws we w7 ws Wy
16.74340 | 17.14055 | 25.01900 | 25.16251 | 25.38703 | 25.50325 | 28.12267 | 35.95455 | 36.17884

6.3. Folded plate roof

The folded plate roof, presented in Fig. 7 and meshed by 6x4 folded plate structure elements is

subjected to eigenvalue analysis. The boundary conditions are specified at the supported nodes as
follows:

U2(1) = 05 ugan) = 05 ugas) = 05 ugi(an) =05 uza31) =0;  upsay =0;  ugas) = 0.

In Fig. 7 the axes (z',z%, z3) are designated as (z,y, z).
The geometry properties are defined by the elasticity modulus E = 34700000 kN/m?2, mass
density p = 2.4 Mg/m?3, thickness h = 0.1 m and Poisson ratio v = 0.2.

Fig. 7. Folded plate roof, Geometry and finite element mesh

The mode shapes corresponding to the first fourth eigenvalues are presented in Fig. 8. These mode
shapes recognize multidimensional response of the structure, which can not be modelled using the
beam theory. Table 3 lists the first nine frequencies of the folded plate roof.

Table 3. The first nine frequencies of the folded plate roof meshed in Fig. 7

w1

w2

w3

w4

ws

we

w7

wsg

)

22.13216

104.44011

221.54477

250.83380

387.22121

411.06980

616.83469

621.32724

684.12496
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Fig. 8. Folded plate roof mode shapes

7. CONCLUSIONS

General strategy for developing finite elements of general geometric form explained on quadrilateral
elements with invariance properties has been presented in this paper. The basic idea of this strategy
consists in using the natural coordinate system only for defining the element geometry and perform-
ing the element integration in a mapped biunit square. For defining the approximation functions a
suitable local Cartesian coordinate system defined from the directions of the covariant basis vectors
and the perpendicular contravariant basis vectors is used. The origin of the local coordinate system
is located at the element centroid (centre of gravity). Such strategy enhances basically the applica-
tion of complex formulations in the framework of the finite element method like the Trefftz method
and enables preserving invariance properties as well as insensitivity to nodal point numbering for
finite elements of general geometry forms.

A slightly modified geometrical interpolation technique for constructing the finite element shape
functions is also presented. The displacement approximation basis starts with approximation func-
tions in a parametric form involving a homogeneous part and a particular part. This modified
technique leads to a constructed displacement basis with shape functions, which involve also in ad-
dition to the homogeneous part a particular part. Such interpolation procedure enables considering
the effect of the external loading on the displacements at the finite element level.
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