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The finite element method (FEM) is widely accepted for the steady-state dynamic response analysis
of acoustic systems. It exhibits almost no restrictions with respect to the geometrical features of these
systems. However, its application is practically limited to the low-frequency range. An alternative method
is the wave based method, which is an indirect Trefftz method. It exhibits better convergence properties
than the FEM and therefore allows accurate predictions at higher frequencies. However, the applicability
is limited to systems of moderate geometrical complexity.

The coupling between both methods is proposed. Only the parts of the problem domain with a complex
geometry are modelled using the FEM, while the remaining parts are described with a wave based model.
The proposed hybrid method has the potential to cover the mid-frequency range, where it is still difficult for
currently existing (deterministic) techniques to provide satisfactory prediction results within a reasonable
computational time.

1. INTRODUCTION

The Helmholtz equation governs the steady-state acoustic pressure fields in cavities. The finite ele-
ment method (FEM) is widely used for the analysis of such acoustic problems [1, 2]. The numerical
procedure consists of subdividing an acoustic cavity in a large number of small subdomains, i.e. the
finite elements. The FEM exhibits almost no restrictions with respect to the geometrical features of
the considered problem domain, because the subdivision in finite elements is possible for arbitrarily
shaped systems. Within each element, a linear combination of simple (polynomial) basis functions
approximates the field variables. The basis functions do not satisfy the governing Helmholtz equa-
tion. Consequently, the FEM cannot approximate efficiently the spatial variation of the dynamic
field variables for higher frequencies due to the involved interpolation errors and dispersion errors [2].
The dispersion errors result from the difference between the numerical wavenumber and the physical
wavenumber of the problem and they become the dominant sources of error at higher frequencies.
The number of elements and the subsequent computational efforts have to increase drastically for
increasing frequency to keep the approximation errors within reasonable limits. This restricts the
practical use of the FEM to low-frequency applications.

Alternative deterministic methods are desired, which suffer less from dispersion errors in order
to allow accurate predictions at higher frequencies. The broad family of Trefftz methods satisfies
this requirement [3-6]. These methods apply approximation functions, which satisfy a priori the
governing differential equations.

Various applications of the Trefftz method to the Helmholtz equation have been reported in
literature, a.o. [7-17]. This paper considers the wave based method (WBM) [16, 17]. The WBM
is an indirect Trefftz method, based on the application of wave-type functions. The numerical
procedure consists of subdividing the cavity in large (convex) subdomains. The wave based (WB)
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approximation functions satisfy the Helmholtz equation, but they violate the boundary conditions
and the interface conditions. Either a weighted residual formulation or a least-squares formulation
enforces the WB approximation to satisfy these conditions in an integral sense.

The WBM exhibits better convergence properties than the FEM. The computational efficiency
is most pronounced for acoustic systems, which can be subdivided in a small number of subdomains
with a regular shape. The computational efficiency decreases, if the number of subdomains grows
for reasons of system geometrical complexity. The application of the WBM is therefore limited to
systems of moderate geometrical complexity.

In order to exploit the advantageous features of both methods, i.e. the wide application range of
the FEM and the high convergence rate of the WBM, the coupling between both prediction tools
is proposed [18, 19]. The basic idea is to replace those parts in the finite element (FE) mesh, that
have a simple geometrical shape, by much smaller WB models. The resulting hybrid model has
less degrees of freedom (DOF’s) and a smaller computational load. This allows a further model
refinement, which leads to an improved accuracy at higher frequencies. Figure 1 illustrates this
procedure for a 2-dimensional (2D) car cavity. The proposed hybrid finite element — wave based
(FE-WB) method has the potential to cover the so-called mid-frequency range, in which it is difficult
for the currently existing (deterministic) techniques to provide accurate prediction results within a
reasonable computational time.

1

1. original FE mesh

2. model reduction by hybrid modeling

3. further model refinement with
retrieved computational resources

Fig. 1. Coupled FE-WB approach for 2D car cavity

The paper is arranged as follows. After the introduction of the mathematical description of the
class of 2D bounded acoustic problems, the theoretical background of the FEM and the WBM are
reviewed. The steady-state dynamic analysis of a simple acoustic system demonstrates the better
convergence properties of the WBM compared to the FEM. The next part considers the derivation
of the hybrid model. This part also covers the motivation for the selection of certain modelling
principles. Finally, a simple example of a hybrid FE-WB model shows the computational potentials
of the hybrid method.

2. REVIEW OF NUMERICAL PREDICTION METHODS
2.1. Acoustic problem definition

Consider a 3D homogeneous acoustic cavity, of which the dimension in the z-direction is infinite. If
both the dynamic loads and the boundary conditions do not vary in the z-direction, then the 3D
problem can be reduced to a 2D problem, as depicted in Fig. 2.

The bounded acoustic problem consists of the acoustic cavity {2 surrounded by the boundary I
The boundary I' is composed of three parts (I" = I, U I}, U I'z), namely the boundary I}, with a
prescribed pressure p, the boundary I, with a prescribed normal velocity 7, and the boundary I'y
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Fig. 2. 2D interior acoustic problem

with a prescribed normal impedance Z. Furthermore, an acoustic line source ¢ at position ry excites
the cavity £2. The following inhomogeneous Helmholtz equation governs the steady-state pressure
p at position r

(A+k%) p=—jpwgd(r,rg), in 2, (1)
together with the boundary conditions

p = D at I, i 9
Lo(p) = Tn, atly with Ly = == 2)
Ly(p) = p/Z, atIz P

A = §?/0z% 4 9%/0y? represents the Laplace operator, k = w/c the wavenumber with the speed of
sound ¢, j = v/—1 the unit imaginary number, p the ambient fluid density, w the radial excitation
frequency and & the Dirac delta function. The linear operator L, in Eq. (2), applied to the pressure,
results in the velocity in the outward normal direction n.

2.2. FEM applied to bounded acoustic problems

The acoustic cavity {2 is subdivided in a large number of elements resulting in an FE mesh, as
shown in Fig. 3. Each element 2¢ is surrounded by the element boundary I'®, which is composed of
four parts (I'* = [;UIyUI'ZU I'?). These parts are the intersections of the element boundary and
the problem boundary (I'y = I'*N I, Iy =I*N1T, and I' = I'*NTIz) and the common interface
I'f between two adjacent elements.
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Fig. 3. FE subdivision and element definition
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Within each element §2¢, a linear combination of simple (polynomial) basis functions approxi-
mates the exact solution

p) ~5) = Y Nale)ph =N@) pe,  Vre o ®)
a=1

The contribution factors p¢, stored in the element vector p¢, form the unknown DOF’s. In general,
the DOF’s are nodal pressure values associated with the basis functions N,, stored in the row
vector N.

Assume that the approximation satisfies a priori both the essential boundary conditions and the
inter-element pressure continuity for two adjacent elements (conforming elements). The approxi-
mation violates the Helmholtz Eq. (1) and the mixed and natural boundary conditions in Eq. (2).
The introduced errors are forced to zero in an integral sense. Furthermore, the velocity continuity
at the interface I'f between two adjacent elements has to be enforced. This results in the following
weighted residual formulation for one element

/ W (Ap + k*p + jpwqd(r, ry)) dzdy + / JpwW (Ly(P) — Tp)ds + ...
e FS

[ i (£5) = 5/Z)ds + [ g (£0(5) 18 ds =0, @
re re

where W represents a weighting function, s the tangential coordinate on the element boundary and
v; the unknown interface velocity. Some parts of the element boundary I"¢(= Iz UIy Ul Ul
may be empty, such that the corresponding integrals in Eq. (4) may vanish.

The approximation function p and the weighting function W in the weighted residual formulation
must be C; continuous and C_; continuous, respectively. By application of partial integration and
the divergence theorem [20], the weighted residual formulation is transformed into its weak form

/ (=(VW)T (VD) + k*Wp + JpwWqd(r,rg)) dzdy + ...

--"/ J'PWWEndS—/ jprﬁ/fds—/ JjpwWuids =0, (5)
re e Ie

v Z i

where T denotes the transpose and where V = [8/0z 8/0y]T represents the gradient operator. The
continuity requirement of the approximation function p reduces to Cp continuity, while the weighting
function W has to be Cj continuous too. Furthermore, the assumption is made that the weighting
function W is zero on the parts of the boundary where essential boundary conditions are imposed.
Following the Galerkin approach, the weighting function is chosen to be a linear combination of the
same basis functions as used for the pressure approximation

W(r) = iNa(r)cZ = N(z) c*, Vre 2° (6)
a=1

where c{ represent arbitrary, nodal contribution factors.

The substitution of the approximation function and the weighting function in the weak form of
the weighted residual formulation and the requirement that this weak form should hold for any set
of contribution factors c® result in the following element model

(~w?M® + jwC® + K®) p° = jw(q® — v§ — v§), (M
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with
M* = / ¢ *NTN dady, W= / pNTqé(r,rq) dzdy,
e ne
C*= / (p/Z)NTN ds, £ = / pNT7, ds,
rg re

K®= / (VN)T (VN)dzdy, v¢= / pNTv¢ ds.
e Ff

The global FE model is obtained from the assembly of all elements models. In this assembly proce-
dure, the contributions v§ of two adjacent elements cancel out each other. The essential boundary
conditions are taken into account by assigning the prescribed pressure values directly to the nodal
DOF’s on the problem boundary I, such that these DOF’s are no longer unknown. The reader is
referred to references [1] and [2] for more details on the derivation of the FE model.

2.3. WBM applied to bounded acoustic problems

The WBM uses an approximation function, which is globally defined, i.e. on the entire problem
domain, instead of on element level. It satisfies the inhomogeneous Helmholtz equation, but it
violates the boundary conditions. The pressure field approximation is a linear combination of Trefftz
basis functions, extended with a particular solution function pg

p=p(r)= Z B, (r)pa + Pg(r) = ®(r) p+h4(r), Vren (8)
a=1

The row vector ® contains Trefftz basis functions @,, that satisfy the homogeneous Helmholtz
equation. The unknown contribution factors pg, stored in the column vector p, form the unknown
DOF'’s of the WB model. The DOF’s do not represent nodal pressure values as in the case of the
FEM. The method is named after the set of Trefftz basis functions, which consists of propagating
and evanescent wave functions, defined as

B, (r) & (z',y) = cos(kpd!)eihmV,
r)= : ’
S ¢s(xlayl) I Bk COS(ksyy’),

(9)

krm:_lz and <oty =i/ k® = ki, ofof £=0,15000 0y,

ksy=;—7; and kg = £,/k? — k2, fors=0,1,...,n,.

The coordinate system (z’,%’) is associated with the smallest rectangle, enclosing the acoustic cavity
2 and having the dimensions L, and L, (see Fig. 4). Only a finite number of Trefftz basis functions
can be applied. The following wavenumber dependent truncation rule limits the number of Trefftz
basis functions in the r-set and s-set (see Eq. (9))

kL,
s

w ek ns%ﬂ“ﬁﬂ, (10)

Ny = "T
™

where [ | represents the round operator to the nearest integer towards infinity and 7" a user de-

fined truncation parameter. The truncation rule implies that the smallest wavelength of the cosine

functions in the Trefftz basis functions is 7' times smaller than the acoustic wavelength A = 27 /k.
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Fig. 4. (Smallest) enclosing rectangle for cavity 2

The particular solution function p, in Eq. (8) is associated with the cylindrical acoustic source ¢ in
the cavity {2

H 1
Pa(r) = 3w g Hy? (kllr = xq), (11)

where H(()2) is the zero-order Hankel function of the second kind.

The wave approximation p violates the acoustic boundary conditions in Eq. (2). Either a weighted
residual formulation or a least-squares formulation enforces the approximation to satisfy these con-
ditions in an integral sense. In [18] and [19], the least-squares formulation has been discussed. Here,
the following weighted residual formulation is used

- [ e @-pds+ [ W) -m)ds+ [ W (£a(5) - /Z) ds =0, (12)
Iy b Pz
where W represents a weighting function.

Following the Galerkin approach, the weighting function is chosen to be a linear combination of
the same Trefftz basis functions as used for the pressure approximation

Z@ Jea=®(r)c, Vren, (13)

where ¢, represent arbitrary contribution factors.

The substitution of the pressure approximation and the weighting function in the weighted resid-
ual formulation and the requirement that this formulation should hold for any set of contribution
factors c result in the following WB model

(Ap+ A, +Az)p=Db,+b, +by, (14)
with

A,,:—/FPLU(Q)T)@ds, b,,=—/Fva(‘I>T)(z"v—ﬁq)ds,

A, = / ®7L, (®)ds, b, = / @7 (T, — Ly (Bg)) ds

Az = /1“ o7 (L, (®) - ®/7)ds, by = __/F &7 (Lo ()  5o/7) ds

Since the contribution factors of the Trefftz basis functions are the unknown DOF’s, which are
not nodal values of the field variables, the pressure approximation in each point of the cavity 2 is
computed in a post-processing step using Eq. (8).

The reader is referred to references [16] and [17] for more details on the WBM.
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2.4. FEM-WBM comparison

First, the features of FE models and WB models are compared. An FE model consists of large
but sparse, symmetric model matrices. The model matrices are composed of frequency indepen-
dent submatrices. A WB model consists of symmetric matrices that are small compared to FE
model matrices. The model matrices are, however, fully populated and not composed of frequency
independent submatrices.

The FEM requires a large number of elements to keep the approximation errors within reasonable
limits. If the approximation errors are kept constant, then the FE model size has to grow with
frequency. This would require the construction of many FE meshes, which is practically impossible.
Therefore, in general, one FE mesh is constructed, for which the approximation errors at the highest
frequency of interest are acceptable. Consequently, this strategy does not make optimal use of the
computational resources in the sense that the FE model is “too accurate” if a broad frequency
spectrum is considered. The WBM requires a new WB model for each frequency, because the
model matrices are not composed of frequency independent submatrices. This strategy allows one
to practically keep the approximation errors constant over the total frequency range.

Next, the convergence behaviour of both methods are compared for a simple numerical example.
Consider the simple 2D acoustic system, shown in Fig. 5. It consists of a bounded acoustic domain
filled with air (p = 1.225 kg/m3, ¢ = 340 m/s), which represents a simplified car cavity. A prescribed
velocity of U,, = 1 m/s of the fire wall at x = 0 m excites the acoustic system. A prescribed normal
impedance of Z = pc at the ceiling introduces some damping.

Mol % 4
inm|inm
0.00| 0.00
1.50| 0.00
1.50| 0.75
1.25| 1.00
0.50 | 1.00
0.00 | 0.50

0.88 | 0.70

a
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Fig. 5. 2D simplified 2D car cavity

Figure 6 shows the response spectra of the pressure at a discrete cavity position obtained with
three different numerical models. An FE model consists of linear quadrilateral elements and contains
725 DOF’s. A WB model uses a truncation parameter of 7' = 2. A third model serves as reference
model and consists of a very accurate FE model of approximately 5000 DOF’s, which is constructed
using quadratic quadrilateral elements. The comparison of the three spectra shows that the WBM
does not suffer from dispersion errors. The resonance peaks of WBM results coincide with the
reference results, even in the upper part of the considered frequency range. On the other hand,
the resonance peaks of the FEM results coincide only with the reference results at low frequencies
(approximately below 600 Hz).

The convergence behaviour of both methods is considered at two distinct frequencies, one in the
low frequency range (350 Hz) and one in the mid-frequency range (1700 Hz). Both frequencies are
indicated with vertical cursor lines in Fig. 6. Figure 7 shows the corresponding convergence curves.
The plotted relative pressure error is defined as

DPref

where p represents either the FE or WB pressure approximation at the considered response point
and where prer is the pressure at the response point obtained with the reference model. Clearly,
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Fig. 6. Pressure response spectrum

the WBM exhibits better convergence properties. The overall WBM error level is below the overall
FEM error level with substantially smaller model sizes. Furthermore, the slope of the convergence
curves is higher for the WBM. The WBM has the potential to produce accurate approximations
also in the mid-frequency range, as is illustrated by the curves associated with the frequency of
1700 Hz. At this frequency, the FEM is still not converging, even with a fine FE of approximately

4000 DOF’s.

10"

107+

relative pressure error

—o— FEM: 1700 Hz
—&— FEM: 350 Hz
10 —o0— WBM: 1700 Hz [
-v— WBM: 350 Hz

10° 10°
number of DOF's

Fig. 7. Convergence curves

The numerical example, presented here, shows that the WBM exhibits better convergence prop-
erties than the FEM in that less DOF’s are required to obtain good accuracy. Various valida-
tions [16, 17, 21] have shown that the smaller model sizes result also in significant reduction of the
computational time. A sufficient condition to achieve this enhanced convergence is that the con-
sidered cavity is convex. Otherwise, a domain decomposition strategy can be employed, however,
at the expense of some loss in computational efficiency [16, 17]. The computational benefits of the
WBM can therefore only be exploited for systems of moderate geometrical complexity.
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3. HYBRID FINITE ELEMENT — WAVE BASED METHOD
3.1. Introduction

The coupling between the FEM and the WBM is proposed to exploit the advantageous features
of both methods, i.e. the geometrical flexibility of the FEM and the high convergence rate of the
WBM. Fig. 1 illustrates the basic idea of this approach. Small WB models replace those parts of
the FE subdivision, which have a simple geometrical shape. The resulting hybrid model contains
less DOF’s. The subsequent computational resources that are saved, compared to the original FE
model, allow a further model refinement, so that this strategy may lead to an improved accuracy
at higher frequencies.

3.2. Hybrid FE-WB method applied to bounded acoustic problems

Consider the division of an acoustic cavity as shown in Fig. 8. The subdomain £2F is modelled by
the FEM and the subdomain 2" by the WBM. Each subdomain is surrounded by a part of the
boundary I'* = I'y U Iy U I'; and by the FE-WB interface I" F_ The following interface conditions
hold at I'F’
p¢=p" (pressure continuity), (16)
1
Le(p®) = =LY (") (velocity continuity),

where superscripts ¢ and W refer to the finite element and the wave model, respectively.

Ne
0f_ )"
e=1

FeUTSUTF UL m

Fig. 8. Coupled FE-WB approach

In the hybrid approach, the interface conditions are satisfied in an integral sense by the applica-
tion of the Lagrange multiplier technique (LMT) [1]. The procedure consists of placing a fictitious
frame at the FE-WB interface I'" on which the Lagrange multiplier is defined. Here, a velocity
frame is applied with the frame velocity v/ as Lagrange multiplier. The velocity frame is subdivided
in ns line elements (I'" = U}”: i 7), that are matching geometrically the edges of the finite ele-
ment subdomain §2¢. Within each line element, a linear combination of simple (polynomial) basis
functions approximates the frame velocity v/ as follows

ny
vf(s) mof(s) = Y Nf(s)vf = NI(s)vf, vser’ (17)
b=k

The contribution factors v{: , stored in the column vector v/, are additional unknown DOF’s asso-
ciated with the frame basis functions N,f , stored in the row vector N/, The approximation o/ is
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discontinuous at the interface vertices by the application of basis functions N, / , which belong for
example to the family of 1D hierarchical functions based on mid-side nodes [1, 5, 6].
The frame velocity forms an additional natural boundary condition for each subdomain

U ine= 'yvf
= at I'f with y = n® nf = —nWTnf, (18)
W = —yv

where n®, nf and n" represent the outward normal vectors of the finite element £2¢, of the frame
element I'f and of the WB submodel, respectively.

First, the construction of the FE part of the hybrid FE-WB model is considered. The FE element
model is obtained by enforcing the FEM approximation errors on the following relations to zero
in an integral sense: (i) the Helmholtz equation in {2¢, (ii) the boundary conditions at I'{ and I'g,
(iii) the inter-element velocity continuity at the interface I' between two adjacent elements and
(iv) the velocity continuity at the interface I'f. According to the LMT, the pressure continuity at
the interface I'f is considered separately in order to obtain additional equations to account for the
additional frame DOF’s. The following weighted residual formulations are applied, similar to the
FE formulation considered in Section 2.2

/ We (Ap® + k*p° + jpwqd(r,1,)) dady + /I‘C JpwWe (LE(p°) —Tp)ds + ...
ot [ W (£5°) 7 Z) ds+ [ oW (£50°) — u8)ds ..
zZ i
oo /ﬂ jpuWe (Lﬁ(ﬁe) = 'yﬁf) ds =0, (19)

[ rivow? (5 =") as =0

where the superscript  refers to the finite element and where p/ represents the unknown pressure
at the frame element. The weighting functions W€ and W/ are linear combinations of the elemental
basis functions N, and the frame basis functions Ng , respectively

We(r) = ZNa(r)cZ = N{r) % Vre2° (see Eq. (6)),

a=1

5 (20)

b

Wi(s) =Y Nf(s)d] =N'(s)d’, Vserl
b=1

where ¢ and d{ represent arbitrary contribution factors.

The FE element model is derived from the presented weighted residual formulation by a two-
step procedure. First, the application of partial integration and the divergence theorem on the first
relation in Eq. (19) relaxes the continuity requirements for the element pressure approximation
p° (see Section 2.2). The first weighted residual formulation in Eq. (19) is transformed into its
weak form. Then, the substitution of the approximations ¢ and 9/ and the weighting functions W®
and W/ in the obtained weighted residual formulations and the requirement that these formulations
should hold for any set of contributions factors c® and d/ result in the following element contribution
to the hybrid model

7Ze Qef pe fE ‘ 7e = —w2Me +ije +Ke,
AR 0 £ B vkt @

n 1
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Me¢, C¢, K¢, q°, v¢ and v¢ represent the uncoupled FE submodel contributions as defined in Eq. (7).
C¢f represents the elemental FE — frame coupling matrix defined as

cef = jw / vpNTN/ ds = cfe” (22)
PF

and the vector b/ is defined as
b/ = —jw/ 'yprTpf ds. (23)
rf

The global FE submodel is obtained by a straightforward assembly process, in which the contribu-
tions v{ of two adjacent elements cancel out each other. The contributions b/ will vanish at the
time the FE submodel is coupled to the WB submodel.

Next, the construction of the WB part of the hybrid FE-WB model is considered. The WB model
contribution is obtained by enforcing the WBM approximation errors on the following relations to
zero in an integral sense: (i) the boundary conditions at I’;’V , IV and I'}/" and (ii) the velocity conti-
nuity at the interface I'F'. Again, according to the LMT, the pressure continuity at the interface I'F
is considered separately in order to obtain additional equations to account for the additional frame
DOF’s. The following weighted residual formulations are applied, similar to the WBM considered
in Section 2.3

— | LoWMEW -p)ds+ [ WY (¥ ®Y)-Fn)ds+ ...

T, .
oy
ok | WYY ") = /Z) ds + | ( /F WY (L") + ) ds) =0, (24)
z F=1
Ut
U ([, oo (o7 ) as) =0,
f=1 T

where the superscript " refers to the WB subdomain. Equations (13) and (20) define the weighting
functions WY and W/, respectively.

The substitution of the approximations " and %/ and the weighting functions W% and W/ in
the weighted residual formulations and the requirement that these formulations should hold for any
set of contributions factors ¢ and df result in the following WB contribution to the hybrid model

0 CFW vF TW BF
|:CWF (AW+CWW)]{pW}={bW+CWW}a (25)
where vF collects all the unknown frame DOF’s v/. AW and b" represent the uncoupled WB

model contributions as defined in Eq. (14). CW"W and ¢"'W represent the WB model back-coupling
matrix and WB model back-coupling vector, respectively, defined as

N

cWW = fgl (/Ff &TgY (<I>)ds> ,

&y

s ed </Ff aTLY (p,) ds) :

f=1

CWF represents the WB model - frame coupling matrix defined as

s

ci/] | ( /F ; v®TN/ ds> . (27)

f=1
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CFW and ¢V represent the frame — WB model coupling matrix and the frame — WB model
coupling vector, respectively, defined as

ng
CFW=—ij</ 'yprT<I>ds>,
iy v LY
ng
cfW = ij(/ 'yprTﬁqu).
i

The vector b is defined as

nr
b = jw | ( / 'yprTpfds>. (29)
A

The final hybrid FE-WB model follows from the assembly of the submodels in Eqgs. (21) and (25)

(28)

7ZE CEF 0) pE fE
CFE o) CcFw vF T cFwW \ (30)
o) CWF (AW + CWW) pW bYW + WW

where p? collects all the FE DOF’s. The contributions b’ and b cancel out each other at the
interface between the FE submodel and the WB submodel.

The system matrix of the hybrid model in Eq. (30) contains both large sparse submatrices and
small dense submatrices. In order to apply suited solution strategies for both types of submatrices,
the FE DOF’s can be eliminated from the hybrid model as follows

_CFE (ZE)—l CEF CFW vF cFW _ CFE (ZE)_l £E
—= , (31)
CWF (AW o CWW) p" (bW +CWW)

The above procedure benefits from the sparsity of the FE model, since the expressions (ZE)_1 QEr

and (ZE )_1 f¥ can be computed with efficient solvers for sparse linear systems. The FE DOF’s are
recovered by the following matrix-vector multiplication using the solution of Eq. (31)

pf = (ZE)—l ¥E 1 (ZE)“l CEFyF (32)

where the expressions (ZE)"l CEF and (2P )_1 fE have already been computed in Eq. (31).

3.3. Numerical example

Consider the simple 2D acoustic problem, which has been discussed in Section 2.4. This problem is
well suited to demonstrate the potentials of the hybrid FE-WB method. Starting point is the FE
model shown in Fig. 9, which consists of linear quadrilateral element and contains 725 DOF’s. The
hybrid FE-WB model is derived from this FE model by replacing a large number of elements in the
lower part of the acoustic cavity by a WB submodel with a truncation factor 7' = 2 (see Fig. 9).
Again, the very accurate FE model, used in Section 2.4, serves as reference model. Table 1 lists the
sizes of the three models. Recall that the size of the WB submodel is frequency dependent. The
model sizes are therefore given for five discrete frequencies.

Figure 10 shows the response spectra of the pressure at the discrete cavity position obtained
with the reference model, the FE model (FEM-1) and the hybrid FE-WB model (HM-1). The
upper frequency limit is restricted to 1200 Hz, since the response spectrum, obtained with the FE
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Fig. 9. FE model and hybrid FE-WB model (configuration 1)

Table 1. Model properties for FEM and hybrid FE-WB method comparison

model frequency number of DOF’s
inHz | FE frame WB | total
reference! 4787 4787
FEM-1 725 725
HM-1 300 | 375 24 22 421
450 " 4 28 427
600 " " 38 437
750 s i 46 445
900 : " 52 451
1050 4 » 62 461
1200 g . 70 469
HM-2 300 | 316 51 30 397
450 . H 40 407
600 " . 50 417
750 . " 62 429
900 . 4 70 437
1050 - o 82 449
1200 3 " 90 457

1 constructed using quadratic quadrilateral elements

model, suffers too much from dispersion errors. The plot shows clearly that the hybrid FE-WB
model suffers less from dispersion errors than the FE model. The response spectrum of the hybrid
FE-WB model coincides with reference solution below 800 Hz and the resonance peaks are predicted
accurately even up to 1200 Hz.

The convergence behaviour of the hybrid FE-WB method is compared to convergence behaviour
of the FEM and the WBM. The model refinement for the hybrid FE-WB method constists of a
mesh refinement of the FE submodel only. The convergence analysis is considered at one distinct
frequency in the low frequency range only (350 Hz), because the convergence analysis in Section 2.4
has shown that the FEM has not converged at 1700 Hz due to the large dispersion erros, even
for large model sizes. Figure 11 shows the improved convergence behaviour of the hybrid FE-WB
method (HM-1) with respect to the FEM (FEM-1).

Next, the influence of the subdivision of the acoustic cavity is considered briefly. A second FE
mesh, shown in Fig. 12, provides a slightly different response prediction for the pressure with respect
to the original FE mesh, shown in Fig. 9. The derived hybrid FE-WB model, which contains two WB
subdomains (see Fig. 12), will therefore provide different pressure approximations than the original
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hybrid WB-FE model. Figure 10 shows that the response spectrum, obtained with this alternative
hybrid FE-WB model (HM-2), is closer to the reference solution. Also, the convergence behaviour
has been improved as shown by the HM-2 curve in Fig. 11. Future investigations will focus on the
influence the domain subdivision on the prediction accuracy with the objective to obtain rules for
optimal domain subdivision.
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Fig. 12. FE model and hybrid FE-WB model (configuration 2)

Finally, this numerical example shows that still the WBM exhibits the best convergence prop-
erties. However, in practice, it is not always possible to subdivide an acoustic cavity in convex
subdomains [19]. Furthermore, this domain decomposition strategy may involve a large number of
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subdomains, which reduces the computational efficiency of the WBM [22]. These problems may be
circumvented by the application of the hybrid FE-WB method. Furthermore, the hybrid FE-WB
method has the advantage over the FEM that it suffers less from dispersion errors, as is shown by
this numerical example. Therefore, the hybrid FE-WB method has the potential to be applicable
in the mid-frequency range.

4. CONCLUSIONS

This paper considers the prediction of the steady-state pressure response in bounded acoustic Sys-
tems. The FEM is well suited for this application, however it is restricted to the low-frequency
range. A large number of elements is required to keep the approximation errors within reasonable
limits. Especially, the dispersion errors cause problems for increasing frequencies.

There is a need for deterministic methods that suffer less from dispersion errors, such that these
methods can be used for higher frequencies. The broad family of Trefftz methods satisfies this
requirement. This paper considers one such method, namely the WBM. The WBM exhibits better
convergence properties than the FEM. However, the computational efficiency decreases if domain
decomposition is required to cope with systems of high geometrical complexity.

The coupling between the FEM and the WBM is proposed to exploit the advantageous features of
both methods, i.e. the unrestricted geometrical complexity of FE models and the high convergence
rate of the WBM. The idea is to reduce the overall computational efforts by replacing large parts
of an FE model with a much smaller WB model. The paper presents the mathematical description
of this hybrid modelling strategy.

It is illustrated through a validation example that the hybrid model can produce more accurate
results than the FE model from which it is derived by replacing a large number of finite elements
by a smaller WB model. The validation demonstrates the potentials of the hybrid FE-WB method,
in that it exhibits an enhanced convergence rate with a reduced numerical dispersion, compared
to a full FE approach. In this way, the hybrid approach may allow mid-frequency analyses within
reasonable computational efforts.
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