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This paper concerns the modelling of plate bending problems governed by Reissner-Mindlin theory when
hybrid equilibrium elements of high polynomial degree are used. The fields of statically admissible stress-
resultants are categorised into three types according to the nature of their incompatibilities, i.e. pure
Trefftz or strongly compatible, weakly compatible, and hyperstatic or strongly incompatible. The effects
of this categorisation are reflected in the element formulation. Incompatibilities are quantified in terms
of local discontinuities which also account for transverse twist terms. The construction of bases for the
three corresponding subspaces of stress-resultants by numerical and/or algebraic means is reviewed. The
potential use of a reformulated element is considered in the context of glass plate structures where residual
or hyperstatic stresses play an important role.

1. INTRODUCTION

The modelling of thin plate bending problems with finite element techniques has spawned many
different types of elements to cater for the special problems of simulating 3D structures as thin plates.
Developments with stress based elements in hybrid forms have proved useful as an alternative, or
a complement, to more conventional forms based on displacement fields [1]. Hybrid elements with
discontinuous boundary displacements can enable models to satisfy completely the equilibrium
conditions in a strong sense. This enables important bounded properties to be achieved, e.g. in the
context of error estimation and limit analyses. A special case of stress based hybrids occurs when
the internal fields are Trefftz functions [2, 3]. In this case internal stress fields are not only statically
admissible but also kinematically admissible.

The existence of stress fields with different characteristics raises a question of choice and suit-
ability for specific problems. It would seem useful to recognise special characteristics at the stage of
element formulation rather than treat all stress fields in a similar way. A new formulation of hybrid
equilibrium plate elements is proposed in this paper based on polynomial fields of general degree.
This formulation is considered from a Trefftz perspective, and the fields of stress-resultants are
categorised as (a) strongly compatible i.e. pure Trefftz, (b) weakly compatible, and (c) hyperstatic
and hence strongly incompatible i.e. non-Trefftz.

The aims of such a formulation are to assist the study of the suitability of each category for
problems driven by different types of excitation, e.g. loads, displacements, and initial strains; and
to assist the study of compatibility defaults [4] as indicators of the local quality of solutions.

The paper proceeds with the following structure: Section 2 recapitulates the formulation of the
hybrid equilibrium element, and Section 3 presents the vector space of internal stress-resultant
fields as a decomposition into a direct sum of three subspaces which correspond to the above cate-
gorisation. Section 4 defines compatibility conditions and incompatibilities, from a local viewpoint,
corresponding to initial “strains” and statically admissible fields of stress-resultants which include
the Trefftz fields. Section 5 then reviews numerical and algebraic procedures for constructing bases
for the three subspaces. The problem of modelling glass plate structures is discussed in Section 6
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as an application where residual stresses are of great importance, and the paper is concluded in
Section 7.

2. FORMULATION OF THE HYBRID ELEMENT

The formulation of the hybrid element is presented for completeness. It is based on polynomial fields
of degree p which are complete for side displacements,

{6} = [VI{v} (1)

and for internal stress-resultants as far as statical admissibility allows. Statically admissible stress-
resultants are represented by

{o} =[Sl{s}, (2)

where the columns of [S] in Eq. (2) are basis functions for the vector space Xg4. The vector space
Y g4 has an inner product defined for the domain {2 of an element:

ik /Q (o7l {o2}d2 and [f]{o} = {e}, 3)

where {o} is a vector of stress-resultants which contains three moment and two shear force compo-
nents. {&} is the corresponding vector of deformations or strain-resultants.
The element equations take the form:

3 0 =) @
where
k= [ STiES1a2; ]= § VT El4r; )= [ ST a2 @)= $ VI By ar

and [§] contains the side tractions equilibrating with [S]. In this case the problem is driven by
specified tractions {t} and initial strains {£}. Body force and pressure loads are not considered in
this paper.

The matrix transformations represent mappings between vector spaces as indicated in Fig. 1.
Spaces ¥sa and E have dimension ng and E contains the generalised strains {e}; spaces G and A
have dimension n, and they contain the modes of side traction and side displacement respectively.
Subspaces Yuyp and Ak are the nullspaces of the equilibrium and compatibility maps, and they
have dimensions denoted by npyp, and ny respectively. Subspaces Gapum and Ecom contain admissi-
ble tractions and compatible generalised strains as the ranges of the equilibrium and compatibility
maps, their dimensions are denoted by n, and n. respectively.

Consistency of Egs. (4) requires the tractions to be admissible, i.e.

[A]" {&} = {0} (5)
Compatibility of generalised initial strains requires that:
[B]" {e} = {0}, (6)

where matrices [A] and [B] represent bases for the nullspaces Ak and Tuyp respectively.
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Fig. 1. Mappings between spaces
3. DECOMPOSITION OF Xga

The overall vector space Yga is now considered as the direct sum:

YsA = Enyp ® XWEAK _TREFFTZ ® LTREFFTZ, (7)

where ‘HYP’ refers to the subspace of hyperstatic stress fields, TREFFTZ’ refers to the subspace
of stress fields with fully compatible elastic deformations, and ‘WEAK TREFFTZ’ refers to the
direct complement of X rrerrTz @ LHyp in Xsa whose stress fields satisfy some compatibility con-
ditions by virtue of being orthogonal to the hyperstatic fields in Xyyp. The subspaces are shown
diagrammatically in Fig. 2.

2ZsA

2 TREFFTZ

ZHYP

2 WEAK_TREFFTZ

Fig. 2. Subspaces of the space of stress-resultants

The compatibility condition for arbitrary strain-resultants within an element can be expressed
in the integral form using the principle of virtual work [5] as in Eq. (8)

/ {o}"{€}d2=0 for all possible hyperstatic stress fields {o}. (8)
Q
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Strain fields corresponding to Trefftz stress fields should satisfy this condition, and the weaker
compatibility condition for other strain fields corresponding to Ywgak TREFFTZ 2pplies with {o}
belonging to the finite dimensional subspace Yxgyp. %

The aim in this paper is to reformulate the element equations to reflect the different properties of
the three different categories of stress-resultants in equilibrium models. The basis for [S] may then
be selected to suit a particular problem. The categories are introduced in [S] with the partition:

[S] = [Su | Sw | ST}, (9)

where the columns of the submatrices form bases of the three subspaces Xgyp, YWEAK TREFFTZ,
and Y TrErrTZ respectively.
If the bases are mutually orthogonal the equations for the element then take the following form:

—Fy 0 0 0 SH ey
0 —Fw 0 Da, Sw _ ew (10)
0 0 -Fr DI st er (-
0 DW DT 0 v g

The problem can now be solved in two uncoupled parts, with the hyperstatic stress modes
condensed out of the second part without affecting the spurious kinematic modes [6].

4. COMPATIBILITY CONDITIONS
4.1. Initial strains

Initial strains or deformations for the Reissner-Mindlin plate are described in terms of gradients of
rotations of transverse sections ¢ and equivalent transverse shear strains 7. The basic kinematic
assumption for Reissner-Mindlin theory [7] is that the equivalent shear strains over a cross-section
are defined by 7 = ¢ + grad w. The gradients of the components of ¢ constitute the curvatures and
the twists, defined as follows:

( ol )
Oz
i Oty
ky | _ Oy
Kzy 15 1 % + ¢z (> (11)
é 2 \.0z dy
L(9¢y _ 9
L2 ox 8y /

where the last component represents the local transverse twist @ = 0.5 curl ¢ [8].

Incompatibility of deformations is assessed by evaluating differential expressions for disconti-
nuities of the primary displacement variables comprised of the transverse deflection w and the
rotations ¢. Then compatibility of initial strains requires these differential expressions to be zero.
For example

0 [ow 8 [oOw
oz \dy) 9y \oz) - inuity of w. 12
Oz (5?1) dy (8:10) curl(gradw) =0  for continuity of w (12)

Then the discontinuities per unit area of the primary displacement variables can be expressed:

f (z,y) = curl(grad w) = curly — 29,

_ 0 0Ky
g (z,y) = curl(grad ¢,) = oo ("Lmy =4} = By’ | (13)
Fi(@,y) = curl(grad ) = 2% - 2 (4, + 9).

or Oy
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The discontinuity of w, for example, around the perimeter of an infinitesimal rectangle of dimen-
sions dz by dy is thus determined by the product curl(grad w) x dzdy. A discontinuity norm over
an element of area A is given by the Lo norm:

lall, = B /A (7 <x,y>)2dmdy] " (14)

The first expression in Eq. (13) can be interpreted as the difference in rotations caused by
transverse shear strains and transverse twist, whilst the other two expressions can be interpreted as
the incompatibilities of plane lamina parallel to the mid-plane. It is observed that an initial strain

involving only a constant transverse twist @ is incompatible, but this is not recognised by a defect
in Eq. (8).

4.2. Elastic strains from statically admissible stress fields

Moments and shear forces are statically admissible when they satisfy the equilibrium equations:

divm =¢q; divq=p (when pressure applied in the negative z direction is positive) ; (15)

or combining the two equations: div(divm) = p.

In the absence of pressure or body forces, p = 0.

The elastic strain-resultants corresponding to a field of statically admissible stress-resultants lead
to alternative forms of expressions for discontinuities after exploiting the equilibrium equations and
the constitutive relations. Then

12
curl(grad w) = —curlq — 29,

Gt
10 [24(1+v) 12 9
curl(grad d)z) = Ea—x' [——ﬁg—mzy 5% 2@] ew —_Et_3 ay (mz = l/my) j (16)
10 [24(1+v 12 0
curl(grad ¢,) = ~25y [——%w—)mzy + 2@] + o (my — vmyg)

and the last two expressions can be simplified to

12 0 0P
Curl(grad ¢£II) = W [(1 _a V) Qy Ei gy— (mz 4 my)] e ?9—3—:,

12 ) ob (17)
curl(grad ¢y) = 5 | = (1 + V) ga + 5~ (Mma + my)| — e

where @ is undetermined.
The residuals of the expressions in Egs. (16) may be used as indicators of incompatibility error
together with an Ly norm as in Eq. (14). A simple example serves to illustrate. Consider:

Mg 0
my 0
{#} =4 may =1 L83, (18)
qz -3y
Qy 0

This field is statically admissible with zero transverse pressure p. Although & is undetermined
it may be included so as to eliminate either transverse or in-plane discontinuities. With transverse
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gibiio A 0.6 182 ¥ : ik de
continuity imposed, & = ren -curlq = rens since curlq = 3, and then the in-plane discontinuities

are quantified by Eq. (17) as a 2D vector.

12 0
73???{ v B } [rad/m?). (19)

Alternatively if in-plane continuity is imposed, then from Eq. (17)

12 18 (1

Then the local transverse discontinuity is determined to within a constant as:

i

JoE y? [rad/mz]. (21)

curl(grad w) =

Another example is provided by a triangular element with the 4th degree hyperstatic field of
stress-resultants specified in Eq. (22).

( 4 3 2,2 3 2 \
97 6x 6x 2x 6
S o e e
mg g2zab6 3250 4 6b2 2(13
-4 4 Y ot AR R SR ) 22
:: ’ ab b2 R ab o a? b a ty > . (22)
o —4z3y  9x%y? N 6z%y 4ry®  6xy? s
L b ab b a? a Y J

This moment field has zero shear forces, and contravariant components are given with reference
to the skew axes indicated in Fig. 3. The dimensions a and b refer to the lengths of two sides of the
triangle. Figure 3 includes a plot of principal moment crosses evaluated at a set of uniformly spaced
gridpoints. The details are derived in [9]. Figure 4 illustrates the distribution of the discontinuity
vector at the same gridpoints after imposing transverse continuity.

v/

B
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2NN NI
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Y

Fig. 3. Principal moment trajectories for the 4th degree hyperstatic field in Eq. (22)
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937

Fig. 4. Vector plot of in-plane lamina discontinuities from the moment field in Eq. (22)

4.3. Trefftz fields of stress-resultants

R s T SIS
P L Y TR W

e e

Stress-resultants belonging to Yrrerrrz are fully compatible and thus the discontinuities of their

strains must be zero. Considering first zero transverse discontinuity:

1.2
20 = curly = acurlq = 0.

(23)

This condition leads (see Appendix) to the form of Helmholz Eq. (24) for a uniform isotropic

plate:
[V2 - %29} curlq =0, or [V2 - —] d=0.

Then the conditions for zero in-plane discontinuity form Eq. (25):

0 t? dcurlq
a_y(mm"'my)‘(l‘f"/)[%_l_o o7 ],
0 t? Ocurlq
2 (my ) = (1+9) [0 + 152509,

The compatibility conditions are collected together in Eq. (26).

i o 10} O g IO
¢ _[V_t_2]8_y [v--ﬁ}%
gt . +(1+u)t26_2 ? (SN [8_2_
o, o 10 9dzdy 10 Ox?
3] FR 5 +(1+u)t2.[g2__}9} {lwr

Lo Az 1.9 10 Qy? ., . 12 10,058y

(24)

(25)
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In the case of polynomial Trefftz fields Eq. (23) and (25) simplify to the set in Eq. (27).
curlq = 0,
8 = (1
5o (Mt my) = (L+ ) g, @)

o (my +me) = (14+) g

If the problem is driven by initial strains, then the definition of particular Trefftz fields needs to be
considered. The general form of the expressions for initial discontinuities are contained in Eq. (13).
A particular polynomial Trefftz field is selected from E’s’ A So that the combined discontinuities from
Egs. (13) and (16) are zero. In general complete continuity will require a transverse twist function
@ for consistency of the three continuity equations. This function will need to satisfy Eq. (28).

V-] 2= (3T @0+ G+ 2R E@). (28)

The solution to Eq. (28) is not unique, but if a restriction is made to polynomial functions, then
& can be simply determined and then a particular field of stress-resultants can be selected. Only
when the right hand side of Eq. (28) is zero will the discontinuities be consistent without the need
for introducing transverse twist.

5. BASES FOR Xga

The construction of these bases may be carried out in a number of ways. Two constructions are
considered here, a general numerical procedure, and a procedure which exploits a mix of general
algebraic forms and some numerical procedures. In either procedure the process starts from an
arbitrary basis for ¥ga, and this may be simply derived for example from a set of Southwell func-
tions complete to some degree. General properties of bases for ZTrgrrrz and Xyyp which may be
recognised ab initio are:

[S7] is independent of the element shape or size, and generates a subspace in its own right;

[SH] is dependent on the element shape and size, and generates a subspace in its own right which
is orthogonal to [St].

5.1. Numerical procedures

The mapping from fields of stress-resultants to admissible side tractions is represented by the n, xng
matrix [D]. Singular value decomposition [10] of this matrix yields Eq. (29).

[Y]"[D)[Z] = [W] or [D]{z}=wi{yi}, (29)

where [W] contains the singular values w; of [D] on its diagonal, and the columns of [Z] and [Y]
represent internal stress-resultant and side traction vectors respectively. The columns of [Z] are
partitioned into a right hand set of nyy, columns [Zg] which represent a basis for Eyyp, and a left
hand set of n, = ns; — npyp columns [Z;] which represent a basis for a direct complement of Zyyp
in Xga. However these bases are not necessarily orthogonal to each other with respect to the inner
product defined in Eq. (3), and thus Trefftz fields are unlikely to be explicitly determined by this
decomposition.

The columns of [Y] are partitioned into a right hand set of n, admissible tractions, each of
which is equilibrated by a particular field of stress-resultants corresponding to a vector in [Z], and
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a set of ny = n, — n, inadmissible tractions. Inadmissible tractions are those which are not in
overall equilibrium, or those which excite spurious kinematic modes (pseudo mechanisms). The
useful feature here is that this method gives an automatic way to define internal stress-resultants
in terms of admissible tractions and to define spurious kinematic modes!! The disadvantage is that
the vectors in [Y] and [Z] are generally full and tend to hide underlying patterns or sparsity. The
problem of finding a sparse basis for a nullspace is a complex one, and reference may be made
to [11, 12] for further work in this context.
A natural flexibility matrix formed from [Zg | Z] has the partitioned form in Eq. (30).

i | Feo Ea
i [ Fio Fnu ] ' 1867

Orthogonalisation of [Z;] with respect to [Zo] is achieved with Eq. (31).
[Z2] = [Z1] ~ [Zo] [Foo] " [Fou]. (31)

This change only involves solving small sets of nyy;, equations when elements are of low degree.
The orthogonal set [Z;] contains combinations of bases for [St] and [Sy]. A basis for [St| can be
derived from biharmonic polynomial functions whose gradients represent rotation fields ¢ [3], or
from enforcing the continuity conditions on a basis for Xga [13].

The last set of stress-resultants EW] is contained within [Zs] and these can be selected by
invoking the Exchange Theorem [14]. At this stage the natural flexibility matrix has the partitioned
form in Eq. (32).

Foo 0 0
[Fl=| 0 Fw Fwr |. (32)
0 Frw For

Finally [Sy]| is orthogonalised with respect to [St] by combining as in Eq. (33).

[Sw] = [Sw] - [St] [F7]”" [Frw]. (33)

This method is perhaps rather heavyweight in terms of computational effort. The other approach
takes advantage of bases which can be defined a priori by a direct algebraic analysis.

5.2. Algebraic procedures

A basis for ¥pyp can be formed by enforcing the zero equilibrating traction condition on the sides
of an element. The enforcement is simplified for a triangular element by using oblique axes parallel
with two sides of a triangle, and by using contragredient components of stress-resultants. This is
described in more detail in [9].

A basis for XTrerrrz can be derived algebraically as before. By definition, the bases for Yyyp
and YTrerrTZ are orthogonal, and it remains to complete a basis for ¥gs. This may be done again
by exploiting the Exchange Theorem using the initial the basis formed from Southwell functions to
obtain a set of independent incompatible stress-resultant fields [Sy7]. The latter are not necessarily
orthogonal to the hyperstatic fields. The basis for ¥ga at this stage appears in Eq. (34),

[S]=[Su|Swnr|Sr] (34)
and the natural flexibility matrix has the form in Eq. (35).

Fyu . EFgy -0
[F]=| Fxnu Fn Fnr |. (35)
8 FPry Fr
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The incompatible fields in [Sy7] are then transformed into weakly compatible ones [§W} in
Eq. (36),

[Sw] = [Sn1] — [SH] [F7'] [Fan] (36)
and finally [Sw| is again orthogonalised with respect to [St] as in Eq. (33).

Algebraic results are illustrated for a triangular primitive plate element where the hyperstatic
modes are present when p > 4. Table 1 shows the dimensions for the subspaces for the direct sum
of ¥sa. When p = 8 there is an approximate balance between the three dimensions, and for higher

degrees the hyperstatic fields dominate due to the dependence on the square of p. The other two
subspaces are only linearly dependent on p.

Table 1. Dimensions of spaces of statically admissible fields of stress-resultants for a triangle.

Degree p of moments Ng Nhyp Nweak T nr
0 3 0 0 3
1 9 0 2 i
. 17 0 6 11
3 27 0 12 15
4 39 3 i 19
>4 (p*+5p+3) | (P —4p+3) | (5p—3) | (4p+3)
8 107 35 37 35
10 153 63 47 43

One of the three hyperstatic fields when p = 4 is defined in Eq. (22), and illustrated in Fig. 3.

6. AN APPLICATION TO GLASS PLATE STRUCTURES

An application to a residual stress problem is considered in the context of glass plate structures
where the prediction of high quality information on residual stress is important.

An early example of a residual stress problem was considered by J. C. Maxwell [15]. He referred
to a number of problems to which he applied recent work on photoelasticity as an experimental
method to verify theory. However his last problem concerned a triangular glass plate heated to
a high temperature and rapidly cooled (e.g. quenched). This process produces residual stresses
for which there was no theoretical solution. His photoelastic technique led to the production of
the pattern of planar stress trajectories in Fig. 5. This should be compared with the hyperstatic
stress field of 4th degree derived for the membrane aspect of the hybrid plate element [9]. This has
exactly the same pattern as the stresses produced by the pure moment field defined in Eq. (22) and
illustrated in Figs. 3 and 6. The 4th degree field is remarkably similar to that found by Maxwell
and serves to demonstrate that such fields are relevant to residual stress problems!

A similar manufacturing process is currently used in the production of toughened and/or
strengthened glass plates, the object being to induce compressive residual stresses at the surfaces
so as to inhibit the propagation of cracks from within the plate to its surfaces [16]. Simulating the
manufacturing process so as to predict and control such patterns or prestress appears to be another
challenging problem.

The use of glass plates as structural components appears to be increasing [16] as illustrated in
Fig. 7.

Typical features of glass structural behaviour appear to lend themselves to simulation by equi-
librium models. These features include:
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Brittle material, designers cannot ignore stress concentrations;

Elastic material behaviour which can involve large deflections with small strains, hence non-linear
structural behaviour involving both bending and membrane actions;

Loading from wind pressure et al, but also stressed by manufacturing processes and temperature
gradients;

Sensitivity to support conditions;

Design criteria related to maximum principal stresses.

Fig. 5. Residual stress trajectories from Fig. 6. Residual stress trajectories
photoelasticity [15] from Eq. (22) [9]

Fig. 7. The Yurakucho glass canopy, Tokyo
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7. CONCLUSIONS

e The space of statically admissible stress-resultant fields within a hybrid element can be decom-
posed into a direct sum of three subspaces which are orthogonal with respect to the energy inner
product;

e For load excitation, modelling with high degree elements becomes dominated by the hyperstatic
subspace ¥yyp. There is a need to weigh up the computational effort in including this subspace
with the extra accuracy that may be achieved with it. Egyp can be excluded without any
penalty from spurious kinematic modes, whereas the inclusion of Ywgak TREFFTZ iS 2 way
to supplement the Trefftz element with weakly compatible stress fields which avoid potential
problems with spurious kinematic modes;

e For initial strain excitation, it would seem preferable to include Xyyp for completeness so as to
better simulate residual stress fields.

e Particular Trefftz fields may be selected from Txyp ® YWEAK_TREFFTZ in the case of an initial
strain problem. Complete compatibility may require the inclusion of a transverse twist function.

e Further computational work is required to evaluate these concepts, and to implement them in
an efficient manner.

APPENDIX

Compatibility relation for transverse shear force field.
Using the equilibrium relations between shear forces and moments leads to

By . Pty . Povs Py, 2 ( o 02 ) 0?

curlqg = My — Mg)

0xdy 0z 0zdy  Oy? 0z 9y - dzdy (

Using the constitute relations between moments and curvatures leads to

D-v) [ P\ (04 08, P (06 06, 06 _ 04y
Pl (W‘éy_ (8y+6m D5 ot By T Yy
Et3
whereD——m.

Assuming the components of the rotation derivatives to be continuous leads to the simplification
of the expression for curlq:

D(l=-¥) (83¢y 3 83¢y 63¢z asd’:z: )

iy 2 dx3 ' 9zdy®  9y®  0z20y
_D(-v 9% (8¢, Oy 02 O¢y 0d:\| _D(1-v)_,
2 [&vz ( or Oy t 82 oy2\ 0z 08y/)| ;- Vi lewig).

Finally using the constitutive relation between shears and equivalent transverse shear strains:

2
curlq = :—Ovz (curlq).
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