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This paper reviews the important concepts presented by Trefftz in 1926 regarding bounds to solutions,
error estimation, and hybrid fields for use with domain decomposition. Observations are offered from
the perspective of today’s relatively mature state of the art in finite element methods. The numerical
examples presented by Trefftz are also reviewed with the benefit of ‘exact’ solutions made available from
current commercial finite element methods. The accuracies of the solutions given by Trefftz are quanti-
fied and compared, and the effectivity indices of Trefftz’s proposed error estimates are also quantified.
An English translation of the original German version of Trefftz’s paper is included for reference in an
Appendix.

1. INTRODUCTION

The seminal work presented by Trefftz in 1926 [1] has recently been translated into the En-
glish language. The translation was undertaken for reference at the 3rd International Work-
shop/EuroConference on Trefftz Methods held in Exeter in September 2002, and to enable the
work of Trefftz to reach a much wider audience.

Whilst Trefftz made many contributions to applied mathematics and mechanics [2], he is mainly
remembered in the finite element community for proposing the new concept of using trial func-
tions which satisfy the governing differential equations of a boundary value problem but not the
boundary conditions. However the driving force behind these concepts was the need to obtain both
upper and lower bounds to exact solutions of boundary value problems so that the global error
of an approximate solution could be estimated. The Trefftz method was proposed as a means to
complement the Ritz method in order to achieve such bounds. Similar aims were behind the de-
velopment of dual finite element analyses some 50 years later [3], and it remains a topic of current
research [4, 5.

The present paper is intended to accompany the translation which appears in the Appendix.
In order to identify equations and/or figures in the translation, these carry the original reference
numbers but with a prefix “A”. Observations are included from the current viewpoint which benefits
from the relative maturity of finite element techniques and computational mechanics.

Section 2 interprets the Dirichlet integral of the error as defined by Trefftz in terms of energy
norms as currently defined. In Section 3 the bounds on solutions of the Laplace problem are re-
viewed, and Section 4 extends the review to generalised methods with domain decomposition. Trefftz
presented two applications to torsion problems as solutions to Poisson’s equation with a single do-
main and with domain decomposition. Section 5 presents further aspects of these solutions together
with exact values of energy and stress which enable the error estimations made by Trefftz to be
compared with actual errors. Conclusions are presented in Section 6.
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2. ERROR MEASURE

The problems considered by Trefftz were the classical Dirichlet boundary value problems as exem-
plified by the equation governing steady state heat conduction in 2D. Equation (1) gives the typical
form as given in [6, 7].
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in domain G, with temperature (potential) u specified by the function g(s) on the entire boundary
K. k denotes the thermal conductivity, although this is not explicitly mentioned by Trefftz. It may
be considered as a constant equal to unity. Q denotes a scalar heat source function. The (heat) flux
vector e within the domain satisfies Eq. (2).

e=—k-gradu and —dive+Q@ =0. (2)

With v denoting an approximate solution for temperature (potential), the error f is defined by
Eq. (3).

f=v—u (3)

and an integral global measure F' is defined by the Dirichlet integral dot product in Eq. (4).

Fz//Ggra,df-gradfdxdy, (4)

F may be interpreted as an energy measure of the error since grad f = —error in flux e for unit
conductivity. However F%5 is the Ly norm of the flux error, which is also termed the energy norm
for the case of unit conductivity [7].

3. ERROR BOUNDS FOR A SINGLE DOMAIN
3.1. Ritz method

The Ritz method is recalled for the Laplace problem with essential boundary conditions. Trial
potential functions are used which satisfy the boundary conditions. By invoking Gauss’s divergence
theorem it is shown that: the error in flux is orthogonal to the true flux; the energy of the error
equals the error of the energy; and consequently the trial solution which minimises the energy of
the solution provides an upper bound to this energy. It also minimises the energy of the error and
is thereby an optimum one.

3.2. Trefftz method

Trefftz introduces his new method for the problem using trial potential functions which are harmonic,
i.e. they each satisfy the homogeneous form of the governing differential equation (1), but they do
not satisfy any boundary conditions. In this case it is shown that the energy of the error equals
minus the error of the energy. The aim remains to minimise the error but the result of this is to
provide a lower bound to the energy of the solution. Consequently both upper and lower bounds
can be obtained to bracket the exact, and generally unknown, solution. From the pedagogical point
of view it appears to be more logical to start with the aim of minimising an error measure and then
conclude that this is achieved by minimising the energy of the approximate solution. Indeed this is
exactly the approach taken by Trefftz in his “New Method”.
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Two important characteristics of his new method are mentioned: greater simplicity and freedom
to use trial functions which do not satisfy the boundary conditions (at least for the first type of
problem considered, however he appears to loose this freedom in generalising the method for use with
subdomains); and local errors in quantities of interest are expected to be largest on the boundary.
The latter point has been demonstrated by Jirousek and Wroblewski [8]. The latter characteristic
may be bad news for those who need to quantify potentially harmful stress concentrations on the
surface of a structure — unless special functions are used.

The initial problems considered by Trefftz are 2D Laplace type problems with boundary condi-
tions which are entirely of the Dirichlet (or displacement) type. We may consider in this case that
the lower bound nature of the solutions is also guaranteed in another variational problem by varying
flux fields which a priori satisfy continuity conditions (cf. statically admissible stress fields in struc-
tural problems), and minimising the appropriate functional. Of course by selecting trial harmonic
potential fields, the corresponding flux fields do satisfy the continuity conditions automatically in
the absence of any “flux” type of boundary conditions.

It could be said that dual analysis offers even more freedom in seeking a lower bound solution
since the trial flux fields need only satisfy continuity [9], and need not be derived from potential
functions (harmonic or otherwise).

4. GENERALISATION OF THE METHODS WITH DOMAIN DECOMPOSITION
4.1. Ritz method

This method is generalised by introducing another set of trial potential functions h, which are
defined along the interfaces between subdomains. Two types of solution are then to be derived
independently for each subdomain: particular solutions go which conform with the specified essential
boundary conditions on external boundaries and with homogeneous essential boundary conditions
on potential interfaces; and complementary solutions g, which conform with homogeneous boundary
conditions on external boundaries and with each trial interface function.

90 = 8(5)
\ .
s qo = 0 on interface
9% =0
Complete domain gp = h, on interface

Fig. 1. Essential boundary conditions for a subdomain in the Ritz method

These derived solutions are then combined for the whole domain so as to enforce continuity
of potential and minimum energy of the error. It should be noted that continuity of flux is not
enforced, and the upper bound nature of the solution can only be guaranteed when the derived
solutions exactly conform with the assumed boundary conditions. The latter conformity may be
easier said than done!

Obtaining solutions by analysing each subdomain independently appears to be an expensive way
to obtain global trial solutions. For the Ritz method it is only strictly necessary to use piecewise
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continuous global trial functions which satisfy the essential boundary conditions in order to obtain
an upper bound solution.

4.2. Trefftz method

This method is generalised by introducing another set of trial functions k, representing normal
flux distributions along interfaces between subdomains. Now each subdomain is analysed to derive
harmonic solutions py, p, satisfying mixed boundary conditions. These boundary conditions include
homogeneous and/or non-homogeneous essential boundary conditions on external boundaries, and
homogeneous and/or non-homogeneous natural boundary conditions at interfaces.

Po=g(s)

\ interface flux =0 on interface

P =0

Sflux =k, on interface

Complete domain

Fig. 2. Mixed boundary conditions for a subdomain in the Trefftz method

The solutions are then combined for the whole domain so as to enforce flux continuity and
minimum energy of the error. It should be noted that continuity of potential is not enforced exactly
but only in a weighted integral sense as defined in Eq. (A21), and the lower bound nature of the
solution can only be guaranteed when the derived solutions exactly conform with the flux continuity
conditions. This again appears easier said than done.

Trefftz required the harmonic functions within each subdomain to satisfy mixed boundary con-
ditions for each subdomain in order to lead to the desired lower bound in the global solution! In
which case the new found freedom to choose trial functions appears to be restricted. Trefftz con-
sidered that solutions could be derived for subdomains subjected to mixed boundary conditions by
solving conventional boundary value problems. No explicit examples are included to illustrate such
derivations. It could involve considerable computational effort and the use of parallel computing
techniques!

In terms of dual analyses, which do not seem to have been considered by Trefftz, lower bounds can
be derived from a variational problem in which continuous flux fields are taken as the trial functions
and an appropriate functional is minimised. This requires trial functions in each subdomain which
also satisfy continuity of normal flux across the interface, but do not need to satisfy the global
essential type of boundary conditions. The interface continuity condition can be enforced through
the use of the interface potential functions h, which can be viewed as weighting functions in order to
zero the residual flux discontinuities, i.e. functions h, are then common hybrid potential functions
for the subdomains. Functions k, could also be viewed as dual hybrid tractions on the sides of the
subdomains where the interfaces occur.

It is of interest to compare this generalised method to recent hybrid finite element methods
which utilise hybrid functions along interfaces, or element edges, in the assembly of elements [8-
12]. For example the HT-D and HT-T elements [8, 12] utilise internal Trefftz type displacement
fields and displacement frame functions or edge traction functions respectively; hybrid equilibrium
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elements [10] exploit the weighted residual concept for element edges [9] to achieve stress continuity
sufficient for strong equilibrium; and a hybrid stress based element with internal Trefftz type stress
fields and edge displacement functions is also considered [11].

In these hybrid elements the two fields are generally defined independently of each other, and
bounded solutions are not guaranteed except for the equilibrium model. So one can have more
freedom of choice for hybrid functions, but generally this freedom incurs penalties: e.g. a loss of
bounds, and instability when spurious kinematic modes are present!

5. APPLICATIONS TO TORSION PROBLEMS
5.1. Torsion of a square section — a single domain

This problem is formulated in terms of the Prandtl stress function ¢ as a solution to Poisson’s
Eq. (5), with essential boundary condition ¢ = 0.

Vip=2Gw. (5)
It should be noted here that this application involves upper and lower bound properties of

solutions but the bounds are opposite to those for the Laplace problem discussed in Section 3! The
nature of the bounds are considered in the following sections.

5.1.1. Ritz method
Before discussing the specific solution to this problem, the nature of the bound of the approximate
solution v to the exact solution u of Eq. (6) is proved in a similar way to Trefftz in Egs. (A1) to
(A4).

V2u+Q =0 with w=0 on the boundary. (6)

Starting from Eq. (A4), the orthogonality condition of grad f to grad u changes to that in Eq. (7).

gradu - grad fdzdy = [ foeds— [[ fV2udzdy= [[ fQdzdy
I/ felam e Y

=//dexdy—//qumdy=//demdy—//gradzudmdy, (7)

since u = 0 on the boundary.
So now

//grad2vdxdy= —//gradzudmdy+2//dexdy+//gradzfda:dy,
or
//grad2fda:dy=//gradzvdxdy—2//dexdy+//grad2udxdy.

Minimisation of the global error leads to [[ grad?vdzdy = [[vQdzdy, so that the energy of
the error is minus the error of the energies and finally the bounded nature of the solution appears
in Eq. (8) as a lower bound.

// grad®?vdz dy = // grad? udz dy — // grad® fdzdy < // grad? udz dy. (8)
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Fig. 3. Square cross-section for the torsion problem

For the torsion problem governed by Eq. (5), and illustrated in Fig. 3, a quartic polynomial is used
with two variable parameters to approximate ¢ (Eq. (A29)) and satisfy the boundary conditions.
Minimising the error leads to the solution for function ¢ in Eq. (9),

105Gw
13296a4 (9)

p= (:z:2 - a2) (y2 — a2) [74(12 +15 (x2 + yz)]
and a lower bound for the torsional stiffness in Eq. (10)

2.2463Ga* [torque per unit twist], (10)

cf. 2.2496Ga* for the exact stiffness [13].

Trefftz gives the result as an upper bound for the torsional flexibility in Eq. (A36). It is noted
that Trefftz moves rather swiftly from detailed consideration of the Laplace problem to the Poisson
problem for torsion, and casts the Ritz method as minimising the strain energy of the solution
for a given torsional moment. This step can be analysed with a little more depth to consolidate
understanding! Integration by parts of the expression for torque in Eq. (A26) leads to Eq. (11).

M= // (m— + You ) dxdy = —2//vd:1:dy when v =0 on the boundary. (11)

But after minimisation of the error f, [[ grad?vdzdy = [[vQ dz dy where Q = —2Gw and the
relationships for torque and strain energy become as in Eq. (12).

M = —l—//grad%)dmdy;
Gw

(12)
1 }

strain energy = Yel // grad?vdz dy = é-Mw.

Thus the approximate solution v actually provides a lower bound solution in terms of strain
energy for a specified twist w on the right hand side of Eq. (5), but Trefftz considers the Ritz
solution as an upper bound for strain energy for a specified torque.

The tangential shear stress at the midpoint of a side can be derived as in Eq. (13).

801 M M
M X
cf. 4.8077 for the exact maximum stress [13].

(2a)®
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5.1.2. Trefftz method

In the new method Trefftz uses a trial function for ¢ which combines a particular solution (py =
r? = 22 +y? so that V2pg = 4) and an harmonic function (p; = z* — 6z2y? +y* so that V2p; = 0).
The solution quoted by Trefftz is recalled in Eq. (14),

_Gw ([ 5,9, 2 7 (4 25190 14
<p—2a2{a (z +y)+36(x 6z’y* +y*) p and
Gwa? 2 4 (14)
p= 43—6(2) +7(2) when z=a
12 a a
and this provides an upper bound for the torsional stiffness in Eq. (15).
2.2518Ga* [torque per unit twist] ; (15)

cf. Eq. (10).

This solution satisfies the governing differential equation within the square domain, but as ex-
pected it leads to error on the boundary. The stress function itself is not constant but varies as
shown in Fig. 4 along the side z = a. Of more interest to the engineer is the error in shear stresses.
The expression for 7, along the side z = a (which should be zero) is given in Eq. (16).

0y Guwa Y y\3
= gl ER Lo (YN = (_> 1
" Jy 18 {3 (a) a (16)
and this is plotted in Fig. 5. This plot indicates that the largest error in stress occurs at a corner

where the residual surface shear stress is about 16% of the exact maximum shear stress 7, at the
midpoint of the side. The latter stress is estimated by the Trefftz method in Eq. (17).

0p Gwa 375 M M
LS B e £ P il R Y e
O er B o ThdBa! 5o (P e,

which exceeds the exact maximum stress in Eq. (13) by 2.66%.
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Fig. 4. Variation of stress function ¢ along the side Fig. 5. Error in shear stress 7, compared with the
z = a in terms of the non-dimensional distance exact maximum stress along the
from the centre to the corner side z =a

The comparisons between the Ritz, Trefftz and exact solutions are tabulated in Table 1. In
this table the numerical coefficients for flexibility are taken as the reciprocals of the coefficients in
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Eqgs. (10) and (15), the error estimate for flexibility is based on assuming that the exact flexibility
is the average value from the two solutions, the effectivity indices are based on comparing energy
norms (the square root of the error energy, or in this case the error in flexibility), and the shear
stresses are taken from Egs. (13) and (17).

Table 1. Comparison of results and error estimation for the single domain torsion problem

Quantity Ritz Exact | Trefftz
Flexibility 0.44518 | 0.44452 | 0.44408
Error estimate 0.124% 0.124%
Actual relative error 0.148% 0.099%
Effectivity index 0.913 1.118

Maximum shear stress | 5.0062 | 4.8077 | 4.9342

It is to be noted that the relative errors are low and the effectivity indices are well within current
normally accepted values, i.e between 0.8 and 1.2 [6].

5.2. Torsion of an angle section — domain decomposition

The last dpplication considered concerns twisting of an angle. The domain is decomposed into two
rectangles for the Ritz method and two rectangles and a square for the new method. The trial
functions used for the analyses are not explicitly stated, but the interface connections are simply
based on enforcing zero values for the stress function or its normal derivative for the Ritz or Trefftz
methods respectively. Based on the two solutions, this lead to an estimate of the global twist error
of about 8%. No information can be derived about the local error in stress since the solution for ¢
is not given.

5.2.1. Ritz method

Refer to Fig. 6 for the decomposition with interface AO. The two rectangles are analysed with
homogeneous boundary conditions so that the domain solution for stress function ¢ is continuous
but with zero value along AO. The upper bound to the flexibility is stated in Eq. (A46).

hy =0 on interface

A O
5d

go=0

Fig. 6. Equal angle section with subdomains and boundary conditions for the Ritz method
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5.2.2. Trefftz method

Refer to Fig. 7 for the decomposition into three subdomains. In this case stress functions are based
on larger rectangular or square subdomains and using their axes of symmetry to ensure that the
functions give zero normal flux across all internal boundaries. The resulting solution for the complete
domain has piecewise but continuous flux fields but with zero flux and discontinuous stress functions
at the interfaces. The lower bound to the flexibility is stated in Eq. (A47).

5d

Fig. 7. Equal angle section with subdomains and boundary conditions for the Treffz method

5.2.3. Further comparisons with a reference solution

In order to compare accuracies and effectivities of error estimates a series of finite element models
of the problem were analysed to provide an accurate reference solution. With uniform meshes of
square elements, the exact torsional moment was estimated using Richardson’s extrapolation [7] as
2.8621Gd*w, which in turn gives the exact flexibility relation in Eq. (18).

M
The results and their errors are summarised in Table 2 based on assumptions similar to those
for Table 1.

Table 2. Comparison of results and error estimations for the angle problem

Quantity Ritz Exact | Trefftz
Flexibility 0.388 | 0.3494 | 0.332
Error estimate 7.78% 7.78%
Actual relative error | 11.05% 4.98%
Effectivity index 0.839 1.250

Compared with the previous problem of the square section, the relative errors are much higher,
but the effectivity indices are still reasonable. Again the Trefftz solution not only provides error
bounds but also is considerably more accurate. Figure 8 provides an accurate contour map of the
Prandtl stress function from the final finite element analysis of the series. From this map it can be
judged that the interface assumptions for the Trefftz solution (zero normal flux) are more realistic
than those for the Ritz solution (zero valued stress function across AO).
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The final point made by Trefftz is that the global error should be judged against the uncertainty
in knowing the value of the shear modulus G. Such uncertainty is also a feature of the “error in
constitutive relations” concept as quantified by Ladeveze in 1975 and thereafter [14]. This concept
also makes use of two solutions which in the context of the Trefftz paper can be considered one as
a potential function from a finite element version of the Ritz method, and one as a flux function
from a dual solution which could also be a Trefftz solution.

. NODAL SOLUTION ANSYS

DEC 31 2002
15:51:00

STEP=1

SUB =1

TIME=1

TEMP {AVG)
RSYS3=0

SMX =.306984

u} .068219 .136437 .204656 .272875
.034109 .102328 8§ -170547 .238765 .306984

Fig. 8. Contour map of the Prandtl stress function for the angle section

6. CONCLUSIONS

e The aim of Trefftz was to obtain bounded estimates of error, and this was achieved by carrying
out two analyses to complement each other. Thus he provided a foretaste of current work on
dual finite element analyses which has the same aim.

e Proofs of the bounds were provided for the Laplace problem with essential boundary conditions.
However the applications used to illustrate the bounds are governed by the Poisson equation with
homogeneous essential boundary conditions without further proofs. Perhaps this was thought to
be obvious and/or unnecessary for the Poisson problem, although as this paper shows the energy
bounds on the solutions are then reversed!

e Trefftz emphasised the freedom of his new method over Ritz in that it may be easier to define
trial functions without regard to the boundary conditions. However when viewed from a wider
perspective which includes equilibrium models for dual analyses in structural mechanics appli-
cations, it is observed that even greater freedom exists for the type of problem considered by
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Trefftz in his paper, i.e. trial flux functions can be used, which only need to satisfy “equilibrium”
or continuity, to provide similar bounds. Of course the Trefftz particular solutions and harmonic
functions do yield flux functions which satisfy the “equilibrium” conditions by default, but with
the extra demands of “compatibility”.

e Trefftz proposed domain decomposition for more complex shapes, although only relatively simple
cases were considered practical in the pre-digital computer age! This generalisation of the Trefttz
method provided another foretaste of recent research in the use of hybrid flux functions to “glue”
the subdomains together with a weak weighted residual form of continuity of the potential
function. However unlike current hybrid Trefftz methods, it appears that Trefftz required his
trial functions to lose their new found freedom and satisfy mixed boundary conditions for each
subdomain. Again this freedom can be more than recovered by using equilibrium models which
only require flux continuity between subdomains to achieve the desired bounds.

e For the examples detailed by Trefftz it has been confirmed that the Trefftz trial functions incurred
significantly less error compared to the Ritz trial functions. Using the average of the two solutions
as an estimate of the exact solution leads to effectivity indices of the error estimates which are
generally within currently accepted values.

APPENDIX: A TRANSLATION OF REFERENCE [1]

Proceedings of the 2°¢ International Congress of Applied Mechanics
Zurich, 1926
pp 131 to 137

A counterpart to Ritz’s Method
by E. Trefftz, Dresden

The Ritz method solves partial differential equation boundary value problems using the minimum
potential energy theorem. Obviously, the error of the approximate solution is the difference between
the strain energy of the exact mathematical model and that obtained using the Ritz trial functions.

It is important to note that the Ritz method does not allow an error estimate or some sort of
error bounds since it yields only an upper bound to the true potential energy of the system. The
objective of this paper is to present an analogue to the Ritz method that produces a lower bound
to the potential energy. A combination of the Ritz method and the novel approach thus yields the
desired error bounds.

For the sake of simplicity, we present the new method using the plane potential theory boundary
value problem. Generalization to include other differential equations is straightforward.

Given a domain G with boundary K and prescribed boundary values u = g(s) we approximate
the potential function u using Ritz trial functions by

v(z,y) = g(=,9) + Y, cagn(z,y) (A1)
1

where g(z,y) is a function that satisfies the prescribed boundary values on K and qn(z,y) are
functions which are zero on K. Hence v(z,y) satisfies the boundary conditions for arbitrary coeffi-
cients c¢. Minimization of the DIRICHLET integral of v yields the parameters c;. If we denote by
f(z,y) the error

f(z,y) = v(z,y) — u(z,y) (A2)
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then we have f =0 on the boundary and obtain

//graddeacdy=//grad2udxdy+2//gradu-gradfdzdy
+//grad2fd:1;dy=//grad2udxdy+//grad2fdxdy, (A3)

using the condition

//gradu-gradfdmdyz/ f%ds—/ fV2udazdy =0; (A4)
K

note that v is the outward normal to the boundary.

This leads us to a slightly modified version of the minimum potential energy problem. Recognizing
that the DIRICHLET integrals of v, i.e. [[ grad?vdzdy, and of the error f, i.e. [[ grad? f dz dy,
differ by a constant value which is the DIRICHLET integral of the true solution, the Ritz method
minimizes both the integrals [ grad®vdzdy and F = [[ grad? f dz dy. Among the family of trial
functions in (A1), the Ritz analysis method thus yields the one that minimizes the integral of the
error.

Departing from this formulation, we arrive immediately at an analogue to the Ritz method.
Instead of using trial functions that satisfy the boundary conditions but violate the differential
equation, we approximate the solution by selecting functions that violate the boundary conditions
but satisfy the differential equation. We can view this procedure as a generalisation of series ex-
pansions using particular solutions and the new approach in fact contains the conventional series
expansions as a special case. We select trial functions

w(z,y) =Y capn (z,) (A5)
1

where pj(z,y) is an harmonic potential function and determine the coefficients ¢ that minimize the
integral of the error

f // grad? fdzdy = // grad®(w — u)dz dy, (A6)

where u is the actual solution to the problem. Hence

oF ow

O—Ch—2//grad(w—u)grad6—cgdxdy——0, (A7)
with

ow

P (z,y) . (A8)

With v being the outward normal, we integrate using GAUSS’ theorem and obtain

// grad (w — u)grad pp dz dy = / (w—u) % ds=0, (A9)
K

or
< 8 3
Zcp/pp%d.s*:/g(s)é;—hds.
1

We thus generate n linear equations for n coefficients ¢, since u = g(s) is prescribed on the
boundary.
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We know from classical series expansion that the DIRICHLET integral of w is smaller than that
of the true solution. A simple calculation confirms this statement. If f denotes the error, we have

//grad2udzdy=//grad2wdxdy—2//gradw-gradfdmdy+//grad2fdmdy.

Since

wspup@igga. _ e
//gradwgradfdxdy— /Kfau e Zcp/(w u) 5 ds (A10)

and the coefficients ¢, are determined by invoking (A9) to be zero, the central integral on the right
hand side disappears. Hence

//grad2wdxdy=//gradzudmdy—//grad2fdmdy§ //grad2udwdy, (A11)

which proves the above statement.

For practical purposes, the new approach is superior to the Ritz method since we don’t have to
find trial functions that satisfy the boundary conditions which is not always easy. Moreover, error
assessment is simplified: the largest error lies on the boundary. If we assume that a solution exists,
we can easily prove convergence since both the field variables and their derivatives converge inside
the domain G.

Both the Ritz and the new methods can be generalized, if we relax the continuity requirement
inside the domain. Since this generalization is only of practical significance for simple cases, let us
discuss a simple example for illustration.

v

Fig. Al

Let us consider a domain that consists of two rectangles which share the common side AB, e.g.
a T-section as shown in Fig. Al. The boundary of the domain and the side AB are termed the
“exterior edge” and the “interior edge” respectively. The origin of the coordinate system is at point
A, and point B is at z = b and y= 0.

Ritz Method

Since the values of u are unknown along side AB, and hence we are unable to solve the boundary
value problem by dealing with the two rectangles individually, we use trial functions hg, h; etc. to
write

v(z) = ho+ ) cphp(), (A12)
1
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in order to approximate u. Next we determine potential functions qo, 1, g2 etc. which satisfy the
following boundary conditions:

qo satisfies the prescribed boundary values along the “exterior edges” and
=0 along AB;

q0 g ‘7‘ . ’ ( Al 3)

gp = 0 along the “exterior edges”,

gp = hy(z) along AB.

We obtain the functions g,(z,y) solving the conventional boundary value problem for the two
individual rectangles. Along line AB, the functions g,(z,y) are continuous but not their derivatives
in the normal direction. We now use the trial functions

v(e,9) = 90(2:9) + D (2, Y) (A14)
-

and determine the coefficients ¢ such that they minimize the DIRICHLET integral over the entire
domain. Clearly, we obtain an upper bound to the true solution.

New Method

0
Since the values of — are unknown along side AB and hence we are unable to solve the boundary

v
value problem by dealing with the two rectangles independently, we use trial functions k1, ko etc.
to write

g_’;’ = cpkol(@), (Al5)

i Ou : : ; , :
as an approximation to — and we determine harmonic potential functions pg, p1, p2 etc. which
v
satisfy the following boundary conditions:

po satisfies the prescribed boundary values along the “exterior edges” ,

? — 0 along AB;
g . (A16)
pp = 0 along the “exterior edges”,
o
% =k, (z) along AB.

Again, we obtain the functions p,(z,y) by solving the conventional boundary value problem for
the two individual rectangles. Along line AB, the functions p,(z,y) are discontinuous but their
derivatives in the normal direction are continuous. We now use the trial functions

w(z,y) = po (T,y) + Y ¢opp (2,9) (A17)
1

and determine the coefficients ¢ such that they minimize the integral of the error

F=//grad2(w—u)d:vdy,

where u is the true solution. This results in the condition

// grad (w — u) - grad py(z,y)dzdy = 0. (A18)
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We use integration by parts to rearrange terms. Since both u and w are harmonic potential
functions, the area integrals are zero and we are left with the integral along the boundaries of the
two rectangles

/(w—u)%dszo. (A19)

Since u = w along the exterior edge, the only remaining contribution is along AB, one for each
rectangle. Let us denote by pgl) (z,y) and pf) (z,y) the values of pp(z,y) for rectangles 1 and 2,

respectively. Since

Opn i€ Opn T=. I

——-ay = —ay = Kkr (A20%)
and

Oph . Opn _ I

for rectangles 1 and 2, respectively, we obtain

/AB (w(l) — u) kp dx — /AB (w(z) - u) kpdz = /AB (w(l) - w(2)> kpndx =0. (A21)

Since the derivative along the normal is continuous the unknown u cancels out and we have the
equations

B n
/A {p(()l) - p(()2) + Zc” (pgl) _p5)2)) } krdz =0, (A22)

1

to determine c,. It is easy to show that the DIRICHLET integral does in fact yield a lower bound.
We have

//gradzudzdyz//grad2wdxdy
—2//gradw-grad(w-—u)dxdy+//grad2(w—u)da:dy

and the second integral on the right hand side becomes

//grad(w—u)-gradpodxdy+Zcp//grad(w—u)-gradp,,dxdy.

The summation in the preceding expression is zero according to Eq. (A18). The first term is
equal to the boundary integral

9po
/ (w—u) i ds,

o
which disappears since w = u along the exterior edge and % = 0 along AB.
Thus we have in fact

//grad2wdxdy=//gradzudacdy—//gradz(w—u)dxdys//grad2udxdy. (A23)
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APPLICATION: TORSIONAL STIFFNESS OF PRISMATIC BEAMS

In order to illustrate the above we first discuss the simple example of the torsional stiffness of a
square cross section of side length 2a. The origin of the coordinate system lies at the centroid of the
section. The shear stresses acting in the section plane can be derived from a stress function ¢ as

o8 ¢

Ty =5 % = 2 (A24)
Equilibrium along the boundary requires ¢ = const or, since the constant is irrelevant,
p=0 (A25)

for simplicity. Determination of ¢ can be cast into the following variational problem: find the function
¢ with boundary values ¢ = 0 which minimizes the strain energy

- ke 2., .2 Sil 2
A= 2G// (Tm-i-’l'y) drty = 5 //grad pdxdy, (A26)

for a given torque

M= // (z1y — y72) dxdy—// (:c—+y(9 )dmdy (A27)

Once this variational problem is solved we obtain the twist w from the relation
2A=Mw. (A28)

Ritz Method

Considering symmetry and boundary conditions we select the trial functions
o= (2°—a®) (y* — a®) {aa® + B (22 +4?)} . (A29)

Torque and strain energy then become

Af—-}—aS{IOa—F4ﬂ} (A30)
and
128a12 2
respectively. The parameters a and  that minimize the strain energy for a given moment are
T4\ 15\
£ LA S A32
=@ P e
where
2 45 x 831 M : (A33)
16 x 800 a8
is a LAGRANGE multiplier. Eliminating \ yields
6 x 6648 M?
2A= ————. A34
700 x 128 Gat (§34)
Clearly, this is an upper bound for A. Hence
M2
2A* = Mw < 0. 4452G it (A35)

where the * — symbol denotes the true strain energy, or

w<amm£§. (A36)
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The author’s approach
The minimum potential energy problem is equivalent to solving the differential equation
V2yp = const,
with the boundary condition ¢ = 0. If we let
p=C {a2r2 - u} (A37)

(C is the LAGRANGE multiplier of the constrained variational principle) then we need to determine
the potential function u that takes on the value a?r? along the boundary. Using symmetry we select
a trial function

=T {a2r2 + (x4 — 6x2y? + y4)} : (A38)

With z? — 62%y? + y* = p, the coefficient « is determined using the condition

Op
2.2 OB e
/{a r* 4+ ap} £ ds=0 (A39)
and we obtain
a="7/36. (A40)
Hence
8X 76 . ¢
= A41
e e (A41)
and
8 x 456 C2%a®
o A42
Sx 135G AaZ)
or after eliminating C
24 = 130 MG (A43)
~ 304 Gat’
This is a lower bound for A, thus
M2
2A* =M -w > 0.44415; j (A44)
If we take, say,
w= 0.4446£ (A45)

Gat’

as the approximate value, then the resulting error is less than 0.14%.
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y AA'

Fig. A2
The angle

Using the approach described above, we estimate the torsional stiffness of the angle shown in Fig. A2
with a leg aspect ratio of 1:5. The coordinate axes are along the interior edges. For simplicity, we
ignore any fillets.

For a given torque, we first determine the strain energy as if the angle consisted of two individual
rectangles meeting along OA. The resulting stress function is continuous and differentiable in both
rectangles, but violates the boundary conditions along OA by taking on zero value along that line.
The stress function is thus an admissible function according to the Ritz method and yields an upper
bound to the true strain energy. The result is

M
w < 0.388Gd4 i (A46)
Let us now assume that the domain is composed of two rectangles and a square connected along
OA and OA'. Determining the stress functions for these sub-domains so that the normal slopes at
the interfaces are zero yields a lower bound for A. For each rectangle, the stress function is equal
to that for a rectangle of twice the length. For the square, it is equal to that for a square of twice
the side length. The result is

M
332— . A
u.)>0332Gd4 (A47)
Taking as the approximate value the average of the upper and lower bounds we obtain
M

and the error is less than 8%. In light of the uncertainty associated with the shear modulus G, this
result is satisfactory. Little effort is required to come up with a better approximation.
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