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For several elasticity problems, solution representations for the displacements and stresses are available.
The solution representations are given in terms of “arbitrary” complex valued functions. For any choice of
the complex functions, the governing differential equations are automatically satisfied. Complex solution
representations are therefore useful for applications of the Trefftz method. For the analysis of local stress
concentrations, due to the local geometry of the boundary curve, such solution representations can be very
helpful in the construction of appropriate series of Trefftz functions. In this paper, a few examples are
given to demonstrate how to construct Trefftz functions for special purpose finite elements, which include
the local solution behavior around a stress concentration or stress singularity.
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1. INTRODUCTION

Erich Trefftz opened new approximation possibilities with his method introduced in 1926 [1]. The
Trefftz method is based on the use of a set of linearly independent trial functions which a priori
satisfy the differential equation under consideration. The Trefftz method can be used for finite el-
ement and boundary element approximations. Since its introduction, a variety of papers appeared
on the Trefftz method (see e.g. Almeida/Pereira [2], Dumont [3], Freitas/Ji [4], Herrera [5], Jirousek
et al. [6-10], Kita/Kamiya [11], Kompis/Konkol/Vasko [12], Leitao [13], Maunder/Almeida [14, 15],
Moorthy/Ghosh [16], Petrolito [17], Piltner [18-25], Qin [26], Reutsky/Tirozzi [27], Ruoff [2§],
Stein [29, 30], Szabo/Babuska [31], Zhang/Katsube [32], Zielinski/Zienkiewicz [33], Zielinski [34],
Zienkiewicz et al. [35], Zienkiewicz/Taylor [36]). In order to utilize the idea of Trefftz for obtaining
approximate solutions for differential equations, we have to construct appropriate trial functions
which satisfy the governing differential equations. Depending on the geometry of local boundary
curves, we need series of functions in curvilinear coordinates. Instead of working with real functions,
we can have an advantage using complex functions. For example, for several problems in mechan-
ics, complex solution representations are available and can be used with advantage. The basis of
complex function methods for elasticity has been developed in the first half of the twentieth cen-
tury [37-39]. After numerical methods such as the finite element method and the boundary element
method became available as well as powerful computers and symbolic manipulation programs, new
possibilities for utilizing complex functions for numerical approximations in mechanics became fea-
sible. In this paper, a brief overview is given for some possibilities to construct and use complex
functions in numerical approximations related to the Trefftz method and finite elements.
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2. COMPLEX SOLUTION REPRESENTATIONS IN ELASTICITY

The displacements, strains and stresses for several elasticity problems can be expressed in terms of
“arbitrary” functions. For example, the deflection of a Kirchhoff plate can be expressed in terms of
the arbitrary functions @ and ¥ as w(z,y) = Re[z®(z) +¥(z)]. The functions @ and ¥ are arbitrary
in the sense that with any choice for these complex functions the governing differential equation
is automatically satisfied. Choosing complex functions, as for example complex power series in
different systems of curvilinear coordinates enables us to construct systematically a variety of sets
of approximation functions. Solution representations are available for isotropic and anisotropic thin
plates under bending, for plane strain and stress problems, for the stretching and bending of thick
plates [21-24], and for three-dimensional elasticity problems [25]. In this paper some strategies for
plane strain and stress problems are discussed. The ideas behind the discussed strategies can be
translated to several other types of problems.

3. EXAMPLE: COMPLEX SOLUTION REPRESENTATION FOR PLANE STRAIN/STRESS

The displacement components and the stresses for plane strain/stress can be written in terms of
two arbitrary functions @(z) and ¥(z) of the complex variable z = z + iy in the following form [39]:

2uu = Re [n¢(z) — 20 (2) — ] (1)
2puv = Im [n@(z) —29(2) — ] (2)
02z = Re [20/(z) — 28" (2) — ¥'(2)] (3)
=Re [2@’(z) +29"(2) +¥'(2)], (4)
[ @ll + !p/ )] (5)
where
2u=E/(1+v),
_J 3=v)/(1+v) for plane stress, (6)
. i (3—4v) for plane strain.

A displacement boundary condition with given displacements @ and ¥ can be written as
kP(z) — 29 (2) —¥(z) = 2u(a+1i0) on Iy, (7)
B(2) + () + T(Z) =i / (ri8 il (Sl gsiger (8)

When using a conformal mapping z = f(¢) involving the complex variable ( = £ + in, one has to
distinguish the derivatives

7(z) = 2 )
and

3(¢) - 8. (10)
If & is assumed in the transformed domain (i.e. & = #(C)), we have

& = 20 (11)

f(©)
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and

llzé(g_)_' & 12
TGRS 0) o

4. FUNCTIONS FOR FINITE ELEMENTS WITH EXTERNAL CRACKS
Some of the first numerical applications of complex functions were for linear elastic crack prob-

lems [40, 41]. Here the derivation of Trefftz functions via a complex variable representation is
considered. The finite element domain in Fig. 1 can be mapped via the conformal mapping

C=\/Z=\/Fcos§+i\/77sin(—§ (13)
and the associated inverse mapping is
z=f(¢)=¢% (14)
: ip ; i0
z=x+iy=re {=£+in=Re
n
Fl
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Fig. 1. Element with crack and conformal mapping

The location of the mapped crack surface is at £ = 0. The displacements for the crack element
are obtained from the complex solution representation of Muskhelishvili-Kolosov (1)—(5). Instead of
assuming the complex functions in the original element domain, the complex functions are assumed
in the transformed domain as complex power series of the complex variable { = £ + in:

&= ai(, , (15)
i

=% b, (16)
i

In order to satisfy the stress free boundary conditions on the crack surface, a relationship between
the coefficients in @ and ¥ has to be established. The stress boundary condition on the crack can
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be written as

W+Tc>%+mo iy (17)

On the mapped crack (¢ = 0), we can get rid of conjugate complex terms (7 by utilizing
J=(-1Y¢ on £=0. (18)
For Eq. (17) we use the assumed function @ of (15). Solving (17) for ¥ and utilizing (18), we get

N :
W(¢) = = Y la;(-1) + Zasl¢ (19)

J=0

The two functions ¢ and ¥ from Egs. (15) and (19) substituted into the Muskhelishvili-Kolosov
representation guarantees i) the satisfaction of the equilibrium equations, and ii) the satisfaction of
the stress-free boundary conditions on the crack.

Among the stress terms constructed via the complex solution representation are two stress terms
which are singular at the crack tip. The coefficients of the singular stress terms are used for the
definition of the stress intensity factors.

The advantage of using a Trefftz approach for an element with a singularity is that the stiffness
matrix can be obtained by evaluating boundary integrals along the element boundary. Since the
boundary conditions are exactly satisfied on the crack surface, no integration is necessary along the
crack.

For the triangular crack element shown in Fig. 2, integration is necessary along the line connecting
nodes 1, 2, 3, 4, 5, 6, and 7. The number of terms in the complex series is N = 7. Between two
neighboring nodes, linear displacements are assumed for the element shown in Fig. 2. Utilizing
functions which satisfy the governing differential equations, the variational formulation reduces to

oI = — /S OTT (u — W)dS + /S suT (T - T)dS, (20)

where T = nEDu, u are the Trefftz functions obtained from the complex solution representation
and 1 are the assumed boundary displacements along the element boundary. The assumed boundary
displacements involve the nodal displacement values, and the Trefftz functions collected in u involve
parameters which are eliminated at the element level.

s 18}

~

)
3

Fig. 2. Triangular crack element
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5. FUNCTIONS FOR FINITE ELEMENTS WITH CIRCULAR OR ELLIPTICAL HOLES

For the construction of Trefftz functions for a finite element with an elliptical hole, the finite element
domain is mapped to a new, domain (Fig. 3) in which the boundary of the elliptical hole is the
boundary of a unit circle (radius R = 1). The conformal mapping

m
2= 10 =c(c+2), (21)
involves the semiaxes a and b of the ellipse:
a+b
- 22
=12 (22)
a—>b
& ; 23
" a+b (23)
?

. i
zZ=x+iy=re

YA {7 R
o}
X
‘\—_____—
e z=c<¢+%)=f<o
z - plane ¢ - plane

Fig. 3. Mapping of a finite element with an elliptic hole

On the unit circle we have the following feature for the complex variable { = £ + in:

G=¢7  on [¢|=1 (24)
The boundary condition on the unit circle can be written as
= 7 P(C)
U(() =-9(¢) — e e B 25
(©) (©) jTC)f«) on (]| (25)

Because the derivative of f of the mapping function is not a constant for a general ellipse, the
following substitution turns out to be convenient:

WG = & 26
(©) I (26)
The boundary condition becomes
X(©) = —f(OP() - FO)P(C)  on [¢[=1. (27)
With a chosen @ of the form
M
&)=Y ai¢ (28)

j=—N
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and utilizing the feature (24) on the unit circle, the expression for x is obtained as

M M M M
XQ)=~c Y @G tem Y @I —c Y Gt —em Y ja(. (29)
j=—N j=—-N j=rN =¥
For a general ellipse the function ¥ is obtained from the substitution (26).

For the first example element shown in Fig. 4, the summation limits are chosen as N = 4 and
M = 4, and between two adjacent nodes linear boundary displacements are assumed. For the second
element and the third element in Fig. 4, the limits are chosen as N = 8 and M = 8, and boundary
displacements are chosen as piecewise quadratic functions.

MEESI

Fig. 4. Finite elements with a circular/elliptical hole and with an internal crack

5.1. Functions for a circular hole

For the special case of a circular hole, the parameter m takes the value m = 0 and the function ¥
can be written as

e(¢)=- Y ja;¢d - )" @i (30)

The pair of functions ¢ and ¥ from Egs. (28) and (30) guarantee the satisfaction of both the
equilibrium equations and the boundary conditions on the hole boundary.

5.2. Functions for the case of constant pressure

For the case of constant pressure p on the hole boundary, the following pair of complex functions
can be derived:

®(¢) =0, (31)

w(C) = —pe (% + mc) . (32)

6. STRESSES IN THE NEIGHBORHOOD OF RE-ENTRANT CORNERS

For the case of plane strain and plane stress problems the local behavior near a corner is illustrated.
Using only real functions, Williams analyzed the local solution behavior in corner regions [42].
Here we want to construct the displacements and stresses in the neighborhood of a corner with
the complex function representation of Muskhelishvili-Kolosov (1)—(5). There is an elegant way to
express the two complex functions for this problem.

The advantage of using the complex representation (1)—(5) is that with any choice of complex
functions @(z) and ¥(z) the equilibrium equations are automatically satisfied. In order to describe
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the local solution behavior in the neighborhood of a corner with the angle a defined in Fig. 5 we
need functions which satisfy the stress free boundary conditions

o =0 on = :t%, (33)
o
Tro =0 on ¢= :EE. (34)

For an arbitrary angle « it is not possible to use power series of the form
= Z a; (35)
b
=5 e (36)
J

and to be able to satisfy the boundary conditions. However, if instead of integer exponents we admit
real or even complex exponents it becomes possible to satisfy the boundary conditions (33)—(34).

/ m

Fig. 5. a) Domain with a re-entrant corner; b) Finite element with re-entrant corner

For a given angle a there is a series of possible exponents for the power series of the complex
functions @ and V. Assuming the first complex function in the form

ZaJ J+Eaz’+2bz J—i—Zb 27
j=0 3=0

00 o0
Z[ (2 +29) + B;(2 a—z’]+2 15(2% = 277) + 85(21 + 2)] (37)
§=0 7=
where
a; = aj + iﬂj, (38)
b2 403 (39)

one can find the second function ¥ and the unknown exponents from the boundary conditions
(33)—(34). The function ¥ can be found in the form

o0 o0
i Z“J’ [ei)\ja + )\jei"‘] o T Z“_J' [ei,\ja +;\;e¢a] oy

oo
+ Zb [e%7% — wje™] 24 + ) by [€77% — a5e’®] 7. \A0)
=0

<.
Il
S
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The exponents A; and w; are solutions of the characteristic equations

sina; + Ajsina =0, (41)
sin aw; — wjsina = 0. (42)

Table 1. Exponents \; and w; for different values of

(0% )\1 w1

20° 12.07947991720516 + i 6.38438830561358 1

30° 8.06296525882784 + i 4.20286708520903 i

60° 4.05932901215137 + i 1.95204994722751 1

90° 2.73959335632460 + i 1.11902453434242 1

120° | 2.09413910919242 + i 0.60458500270356 1

150° 1.53386000277759 1

160° 1.28841389377039 1

170° 1.12509643539585 1

180° 1.0 1

190° 0.90004381148814 I}
200° 0.81869585132384 1
210° 0.75197454540764 1

220° 0.69716497209720 1
230° 0.65226955518163 1
240° 0.61573105949078 1
250° 0.58627886495729 1
257.4° 0.56840931132629 1

258° 0.56709271330195 0.99576576628600
260° 0.56283948048168 0.98047492545310
270° 0.54448373678246 0.90852918984610
280° 0.53039571912977 0.84343956892930
290° 0.51985430311392 0.78444055297409
300° 0.51222136116051 0.73090074151295
310° 0.50693284228647 0.68229483030706
320° 0.50349048318478 0.63818247129336
330° 0.50145300871355 0.59819184961408
340° 0.50042637542606 0.56200654961948
350° 0.50005298712644 0.52935473834138
360° 0.5 0.5

In Table 1, solutions for the characteristic equations are given for different angles o. Fig-
ures 7 and 8 show the smallest exponents as a function of the angle a. For the angle a = 270°
(Fig. 5), for example, the first non-zero exponents (Table 1) are

A1 = 0.54448373678246 (43)
and
w1 = 0.90852918984610. (44)

The terms involving A\; and w, lead to singular stresses.
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For other angles a, singular stresses are possible if the exponents satisfy the following relation-
ships:

Re[\;] < 1, (45)

Relw;] < 1. (46)

Using polar coordinates r and ¢ the sum of the normal stresses which is an invariant can be written
for the first terms as

A1—1 wl—l]

Oz + Oyy = Opr + 0pp = 4Re[on 12 + 16w 2

= 8lag \irM L cos(A; — 1) — Srw 1 Lsin(wy — 1)¢)]. (47)

It is seen that for exponents A; and w; satisfying Eqgs. (41) and (42) the sum of the normal stresses
in Eq. (47) becomes infinite for r = 0. In Fig. 6 a plot of the term involving \; = 0.54448373678246
is shown. From the plots of the smallest exponents which are solutions of (41) or (42) we find which
corner angles are critical in the sense that singular stresses can occur. From the sequence of values
for A; in Table 1 we see that for angles a > 180° singular stresses can occur, and the sequence of
w; values indicates that for o > 257.4° singular stresses can appear.

' L L L L L L
0 50 100 150 200 250 300 350
[

Fig. 7. Exponent \; as a function of the angle o
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Fig. 8. Exponent w; as a function of the angle «
7. CONCLUSIONS

A few examples are considered for which complex function representations are an elegant tool for
constructing Trefftz functions. After constructing appropriate pairs of complex functions which guar-
antee both satisfaction of equilibrium conditions and local boundary conditions, the real physical
quantities displacements and stresses can be obtained conveniently by using the complex solution
representations in a symbolic manipulation program.

REFERENCES

[1] E. Trefftz. Ein Gegenstiick zum Ritzschen Verfahren. In: 2. Int. Kongr. fiir Techn. Mech., pages 131-137, Zurich,
1926.
[2] J.P.B.M. Almeida, O.J.B.A. Pereira. A set of hybrid equilibrium finite element models for the analysis of three-
dimensional solids. Int. J. Numer. Meth. Eng., 39: 2789-2802, 1996.
[3] N.A. Dumont. The hybrid boundary element method: An alliance between mechanical consistency and simplicity.
Appl. Mech. Rev., 42(11): S54-63, 1989.
[4] J.A.T. Freitas, Z.Y. Ji. Hybrid-Trefftz equilibrium model for crack problems. Int. J. Numer. Meth. Eng., 39:
569-584, 1996.
[5] I. Herrera. Trefftz method: A general theory. Numerical Methods for Partial Differential Equations, 16(6): 561
580, 2000.
[6] J. Jirousek. Basis for development of large finite elements locally satisfying all field equations. Comp. Meth.
Appl. Mech. Engrg., 14: 65-92, 1978.
[7] J. Jirousek. Hybid-Trefftz plate bending elements with p-method capabilities. Int. J. Numer. Meth. Eng., 24:
1367-1393, 1987.
[8] J. Jirousek, A. Venkatesh. Hybrid Trefftz plane elasticity elements with p-method capabilities. Int. J. Numer.
Meth. Eng., 35: 1443-1472, 1992.
[9] J. Jirousek, A. Wroblewski, Q.H. Qin, X.Q. He. A family of quadrilateral hybrid Trefftz p-elements for thick
plate analysis. Comp. Meth. Appl. Mech. Engrg., 127: 315-344, 1995.
[10] J. Jirousek, A.P. Zielinski, A. Wroblewski. T-element analysis of plates on unilateral elastic Winkler-type foun-
dation. Comp. Ass. Meth. Engrg. Sci., 8: 343-358, 2001.
[11] E. Kita, N. Kamiya. Trefftz method: An overview. Advances in Engineering Software, 24: 3-12, 1995.
[12] V. Kompis, F. Konkol, M. Vasko. Trefftz-polynomial reciprocity based FE formulations. Comp. Assist. Mech.
Eng. Sci, 8: 385-395, 2001.
[13] V.M.A. Leitao. Application of multi-region Trefftz-collocation to fracture mechanics. Engineering Analysis with
Boundary Elements, 22: 251-256, 1998.
[14] E.A.-W. Maunder, J.P.B.M. Almeida. Hybrid-equilibrium elements with control of spurious kinematic modes.
Comp. Assist. Mech. Eng. Sci, 4: 587-605, 1997.



The derivation of special purpose element functions 607

[15] E.A.W. Maunder, J.P.B.M. Almeida, A.C.A. Ramsay. A general formulation of equilibrium macro-elements with
control of spurious kinematic modes. Int. J. Numer. Meth. Eng., 39: 3175-3194, 1996.

[16] S. Moorthy, S. Ghosh. Model for analysis of arbitrary composite and porous microstructures with voronoi cell
finite elements. Int. J. Numer. Meth. Eng., 39: 2363-2398, 1996.

[17] J. Petrolito. Hybrid-Trefftz quadrilateral elements for thick plate analysis. Comp. Meth. Appl. Mech. Engrg.,
78(3): 331-351, 1990.

[18] R. Piltner. Spezielle finite Elemente mit Lochern, Ecken und Rissen unter Verwendung von analytischen Teil-
l6sungen" (Special finite elements with holes, notches and cracks using analytic solution series). PhD thesis,
Ruhr-University Bochum, 1982. Fortschr.-Ber. VDI-Z, Reihe 1, Nr. 96, VDI-Verlag, Diisseldorf.

[19] R. Piltner. Special finite elements with holes and internal cracks. Int. J. Numer. Meth. Eng., 21: 1471-1485,
1985.

[20] R. Piltner. Special finite elements for an appropriate treatment of local effects. In: P. Ladeveze, editor, Local
Effects in the Analysis of Structures, pages 299-314. Elsevier Science Publishers, 1985.

[21] R. Piltner. The application of a complex 3-dimensional elasticity solution representation for the analysis of a
thick rectangular plate. Acta Mechanica, 75: 77-91, 1988.

[22] R. Piltner. The derivation of a thick and thin plate formulation without ad hoc assumptions. Journal of Elasticity,
29: 133-173, 1992.

[23] R. Piltner. Three-dimensional stress and displacement representations for plate problems. Mechanics Research
Communications, 18(1): 41-49, 1991.

[24] R. Piltner. A quadrilateral hybrid Trefftz plate bending element for the inclusion of warping based on a three-
dimensional plate formulation. Int. J. Numer. Meth. Eng., 33: 387-408, 1992.

[25] R. Piltner. On the representation of three-dimensional elasticity solutions with the aid of complex valued func-
tions. Journal of Elasticity, 22: 45-55, 1989.

[26] Q. H. Qin. The Trefftz finite and boundary element method. WIT Press, Southampton, 2000.

[27] S. Reutsky, B. Tirozzi. Spectral method for elliptic equations of general type. Comp. Ass. Mech. and Eng. Sci.,
8(4): 629-644, 2001.

[28] G. Ruoff. Die praktische Berechnung der Kopplungsmatrizen bei der Kombination der Trefftzschen Methode
und der Methode der finiten Elemente. In: Finite Elemente in der Statik, pages 242-259. Verlag Ernst & Sohn,
Berlin, 1973.

[29] E. Stein. Die Kombination des modifizierten Trefftzschen Verfahrens mit der Methode der finiten Elemente. In:
Finite Elemente in der Statik, pages 172-185. Verlag Ernst & Sohn, Berlin, 1973.

[30] E. Stein. An appreciation of Erich Trefftz. Comp. Ass. Mech. and Eng. Sci., 4: 301-304, 1997.

[31] B. Szabo, I. Babuska. Finite Element Analysis. John Wiley & Sons, New York, 1991.

[32] J. Zhang, N. Katsube. A hybrid finite element method for heterogeneous materials with randomly dispersed
rigid inclusions. Int. J. Numer. Meth. Eng., 38: 1635-1653, 1995.

[33] O.C. Zienkiewicz, A.P. Zielinski. Generalized finite element analysis with T-complete boundary solution func-
tions. Int. J. Numer. Meth. Eng., 21: 509-528, 1985.

[34] A. P. Zielinski. On trial functions applied in the generalized Trefftz method. Advances in Engineering Software,
25: 147-155, 1995.

[35] O.C. Zienkiewicz, D.W. Kelly, P. Bettess. The coupling of finite element and boundary solution procedures. Int.
J. Numer. Meth. Eng., 11: 355-376, 1977.

[36] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, volume 1/2. McGraw Hill, 1989/1991.

[37] S.G. Lekhnitskii. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco, 1963.

[38] S.G. Lekhnitskii. Anisotropic Plates. Gordon and Breach Science Publishers, New York, 1968.

[39] N.I. Muskhelishvili. Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, The
Netherlands, 1953.

[40] E. Byskov. The calculation of stress intensity factors using the finite element method with cracked elements.
International Journal of Fracture Mechanics, 6: 159-167, 1970.

[41] P. Tong, T.H.H. Pian, S. Lasry. A hybrid element approach to crack problems in plane elasticity. Int. J. Numer.
Meth. Eng., 7: 297-308, 1973.

[42] M.L. Williams. Stress singularities resulting from various boundary conditions in angular corners of plates in
extension. J. Appl. Mech., pages 526-528, 1952.



