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Trefftz methods for plane piezoelectricity
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Starting from the governing equations, the general solution and the complete solution set for plane piezo-
electricity are derived in this paper. Subsequently, the Trefftz collocation method (TCM) is formulated.
TCM falls into the category of Trefftz indirect methods which adopt the truncated complete solution set as
the trial functions. Similar to the boundary element method, the solution procedure of TCM requires only
boundary discretization. Numerical examples are presented to illustrate the efficacy of the formulation.
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1. INTRODUCTION

Piezoelectric materials have been extensively used in sensors, actuators, resonators and intelligent
structures. Owing to the material anisotropy and the electromechanical coupling, analytical methods
are limited to relatively simple problems [1-4]. In real engineering analysis, numerical methods are
often resorted to. In recent years, the boundary element method has been applied to piezoelectric
problems [5-10]. Most, if not all, of the existing boundary element formulations for piezoelectricity
used the fundamental solutions, i.e. singular Green’s functions, as the weight functions. This leads
to the difficulty in evaluating the singular boundary integrals. To this end, Trefftz-type boundary
element methods, which adopt non-singular Trefftz functions as the weight functions and/or trial
functions, are advantageous alternatives. Trefftz methods as boundary solution techniques have long
been recognized and are applicable to a wide variety of engineering problems [11-18]. According
to the different choice of trial functions, Trefftz methods can be classified into indirect and direct
methods. In Trefftz indirect methods, the trial functions are taken from the complete solution set.
Depending on the choice of the weight functions, they may lead to the Trefftz collocation method
(TCM) and the Trefftz Galerkin method (TGM). In Trefftz direct methods [13-16], the weight
functions are taken from the complete solution set whereas the trial functions can be conventional
interpolation functions — an example being the piecewise Lagrange polynomials.

In this paper, the general solution and the complete solution set for plane piezoelectricity are
derived. With the trial functions chosen from the complete solution set, the Trefftz collocation
method is formulated by enforcing the boundary conditions at discrete boundary points. Numerical
examples are presented to show the efficacy of the formulation.

2. GENERAL SOLUTIONS

In this section, the governing equations for piezoelectrics are first summarized. The procedure leading
to the general solution is then outlined.
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2.1. Balance equations

04,5 + fi =0, 1)
Di;—q=0,
where 0;; and D; are, respectively, the stress tensor and the electric displacement vector; f; and ¢

are respectively the body force and the free charge densities. Subscript commas denote the partial
differentiation with respect to the coordinates.

2.2. Constitutive relations

0ij = Cijki€kl — €kij Bk,
D; = ejpi€p + €ix Bk,

(2)

where €x, Ex, Cijki, ik and €, are the strain tensor, the electric field, the elasticity tensor measured
under constant electric field, the piezoelectric tensor and dielectric tensor measured under constant
strain, respectively.

2.3. Strain-displacement and electric field-electric potential relations

where u; and ¢ are the displacement and the electric potential, respectively.
2.4. Boundary conditions

But A4y TL08 ol
ui="1u; . on Iy, @)
Dini =000 ol s

¢ = ¢ on & oy
where ¢; is the traction, w is the surface charge and n; is the unit outward normal vector. The barred
quantities indicate that their values are prescribed. It is assumed as usual that I3UI, = I, wUly =T
in which I" denotes the entire boundary of the problem domain.
As most of the commonly used piezoelectrics are transverse isotropic, only this class of material
symmetry will be considered. With direction 3 taken to be the poling direction and under the
electromechanical plane strain conditions, the constitutive relations in (2) reduce to:

ou ow 0¢
Oz =Cliz— +cCi3— t+e31—

ox 0z 0z’
oo ek i edeiouns. (il
Tzz = C % + —82 + 8_(15
2z = Cu | 5o+ 5o €155 (5)
B ou Ow 09
D; = es (5 S 2 %> ey,
ou ow 0
D, = €315 + €335~ Gssa—f,

in which z = z;, 2 = 3, v = w; and w = u3. Substituting (5) into (1) and neglecting the body
force and free charge densities, the governing equations can be expressed as: :
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Au=0 (6)
where
§ 32 82 62 62
Clig—g +Cuzs (c13 + ca4) 9205 (e15 + e31) 522
u= 'Z A= (c —{-c)a2 c—ai+c—(22— e——az—+e—8-2—
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Introducing a displacement function ¥ and solving (6) yield [19]:
ot ot
i Bt b
( 1 55382 T 261:5‘7,3) !
ot ot -
(B164+B o255 + B3 a4>w (7)
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where
B = cizers —esrcas, B3 = (c13 + caa) €33 — (€31 + €15) cas,
B¥ = —cre15, B3? = —[ci1e33 — c13 (e31 + e15) — casenn] , B3 = —cyqess,
B = eycuds B3 = ci1c33 — c13 (c13 + 2¢44) B3? = ca3c44.-
Substituting (7) into (5) yields
o° 0°
Oy = (m“52_3_§ T+ m125;g> W,
65
M2 55, 3) ¥,
(8)

8°
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where
m11 = c11 (e3scaq — c33€15) + c13 (c13€15 — cases1) mig = ca4 (c33€31 — C13€33) ,
ma1 = c11 (e33¢4a — c33€15) + €13 (c13€15 — case31) Moy = c44 (C33€31 — C13€33) ,
m31 = —ci1 (e33caq — c33e15) — €13 (C13€15 — Caa€31) , 32 = —caq (c33€31 — C13€33)
my1 = —ci1 (e15€15 + €11¢44)

my2 = e15 (2e15¢13 — c11€33 + c13e31) — €11 (c11¢33 — 2c13¢44 — C13€13)
my3 = €15 (€33€13 — C33€31 — €15C33) — €11C44C33 ,
ms1 = e31 (e15€13 — €31¢44) — €11 (€33€15 + €33C44)
ms2 = 2e31€33 (C13 + c44) — €31¢33 (€31 + e15) — e33 (essc11 — e15¢13)
+ €33 (c13¢13 + 2c13€44 — C11C33)
ms3 = cq4 (—e33€33 — €33C33) .
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The displacement function ¥ satisfies the following sixth-order linear partial differential equation:

8° o° ix 0°
< 928 +b8248m2 +caz28 4 da 6) . y
where ,
a = —C44 (633633 =k 633633) )

2
b= fess — c33caa€11 + ge33 — (e1s + e31) 33,
2
¢ = fer1 — c1caa€ss + (g — cr1e33) €15 — caa (€3, + 2e15€31)
d = — (c11c44€11 + C11€15€15) -

Inbandc, f=c3 (013 + 2644) —ci1c33 and g = 2¢13 (e31 + 615) + 2c44€31 — c11€33. Factorization of
(9) gives:

3
32 62 )
2 5
e <6x 0z
where zx = \¢z (k= 1,2,3) and )\% are the three roots of the cubic equation

aX® -2+ cA—-d=0. (11)
By applying the generalized Almansi’s theorem [20], the solution of (10) can be expressed as:
U=0 +W+W for M\ #A2+£X2 (12)
where ¥, (k = 1,2, 3) satisfy
0? 0?
' 1
(8902 0z 2) k=0 (13)
By introducing the new functions
3y,
ns 14

the order of the derivatives in (7) can be reduced and the general solution for the plane strain
piezoelectric problem can be simplified to

. , [ (MBI +3B3Y) o/6z
{ woo=3 | (BY - B+ \NB§?) 0/0z | v, (15)
¢ ) *=| (B - X2BPE + MBP) 0/0

which leads to
3
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To recapitulate, the plain strain piezoelectric problem has been reduced to one of finding the
complex potentials ¥ (k = 1,2,3) which satisfy the following Laplace equation:

9? 0?
(a—z Sk 8—‘22) Y = 0. (16)

3. COMPLETE SOLUTION SETS

It is well known that the complete solution sets of the standard Laplacian equation for interior and
external domain problems are respectively [21]:

Bi=11l.Re(Z"), ImlZ%): n-=1.2.3...}

17
B, = {1, Invz2+ 22 Re(Z7™"), Im(Z™"); n= 1,2,3,...}, (10

in which Z = (z+1iz); Re and Im denote the real and the imaginary parts of a given complex expres-
sion, respectively. Thus, the complete Laplacian solution set of (16) for interior domain problems
is:

By, = {1, Re(Zy), Im(Z); n=1,2,3,...}, (18)
which leads to
n . .
Ye = Ao+ Y [cirRe(Z}) + BiIm(Z})] . (19)
=1

Similarly, the complete Laplacian solution set of (16) for exterior domain problems is:

Boy, = {1, 1n,/:1:2+z,%, Re(Z; "), Im(Z."); n= 1,2,3,...}, (20)

which leads to
Yr = Ao+ o In /22 + z,% - Z [aikRe(Z,i) 4 ﬂiklm(Z,i)] : (21)
i=1

In (19) and (21), Zx = (z + izx) whereas Ay, ook, aix and [y are generalized coefficients.
By substituting (19) and (21) into (15), the complete solution set of the plane strain piezoelec-
tricity can be obtained for interior and exterior domain problems, respectively.

4. TREFFTZ INDIRECT FORMULATIONS

Generalizing the Trefftz indirect method to the plane piezoelectric problems, the trial solution is
taken to be

Sl o
i={@ @ ¢} = Nisi=Na, (22)
i=1
where N;’s are the elements from the complete solution set, N = [Ny,...,N,,] and a =
{a1,...,an,}" is the coefficient vector to be determined. Let (Fy, 7z, o) be the stress compo-

nents and (5z, EZ) be the electric displacement components derived from u by virtue of (5), then
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te = Mgl + NyTaz, by = NgTey + 204, and & = —nzﬁw - nzﬁz can be grouped and expressed
symbolically as:

p=[ % @] =Ma (23)

Since the trial functions satisfy the balance equations in (1) exactly, only the boundary conditions
(4) need to be enforced. In the Trefftz indirect method, the boundary conditions can be enforced
by minimizing the following residuals:

Ri=u-u on I, R;=p-Pp on I}, (24)

in which @ = ['d w E]T and p = [fz ’(D]T denote the vectors of the prescribed values on the
boundaries I'y and Iy, respectively. The two residuals can be minimized by means of the collocation
method or the Galerkin method which leads to the Trefftz collocation method (TCM) or the Trefftz
Galerkin method (TGM), respectively [11, 12]. In TCM, the residuals are forced to be zero at
selected points X;’s along the domain boundary I, i.e.

ﬁ(X,) — _’II(XZ) or fx(X,) = fz (Xl) y
117(X1) = 'u—)(Xz) or ’{z(xz) = Ez(X,) ; (25)
6(X) =d(Xi) or (X)) =w(X;) for i=1,...,n

where n. is the total number of the collocation points. Substituting (22) into (25) yields the matrix
equation

K¢ = f¢, (26)

where dim(K€) = 3n, x dim{a}. Generally, the total number of equations (3n.) to be solved
exceeds the number of unknown coefficients (dim{a}). Under this circumstance, an approximate
solution of the over-constrained equation system can be obtained by the least square method which
pre-multiplies both sides of (26) with the transpose of K¢. The implementation of the TCM is
simple since the collocation at the boundary points is directly used to build the discrete set of
equations governing the problems. However, a large number of collocation points may be required
for attaining a reasonable accuracy in practical applications. Moreover, the equation system is over-
constrained and matrix K€ is not symmetric. These shortcomings can be alleviated or overcome by
TGM [11, 12, 15] which, however, will not be discussed in this paper due to length limitations.

5. NUMERICAL EXAMPLES

The numerical tests are conducted in this section to validate the developed TCM. The commercially
available PZT-4 ceramic is considered. Its non-zero constitutive coefficients include c¢;; = 139,
c13 = T4.3, c33 = 113, cyy = 25.6 [GPal; e;5 = 13.44, e3; = —6.98, e33 = 13.84 [Cm~?]; and
€11 = 6.0, €33 = 5.47 [nC(Vm)_l] [22].

5.1. Bending of a piezoelectric strip

This problem considers an 1.0 x 1.0 [mm] clamped piezoelectric strip with electrodes at z = +h/2,
see Fig. 1. The strip is subjected to a linearly varying stress at the right edge and its lower electrode
is earthed. The problem is solved by taking the first seven terms in the complete Laplacian solution
set in (18). Moreover, three collocation points are located uniformly on each side of the strip. It can
be seen in Table 1 that the computed displacements and electrical potential are identical to exact
solutions. The predictions are not sensible to the offset of the collocation points from the corners.
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Fig. 1. Bending of a piezoelectric strip (e denotes collocation point)

Table 1. TCM results for the bending of a piezoelectric strip

u x 107 w x 107 ¢ x 108
Location (z, z) [m] [m] V]
[m,m] Exact | TCM | Exact TCM | Exact | TCM
(0, 0.0005) 0.1980 | 0.1980 | -0.1369 | —0.1369 | 0.0 0.0
(0.0005, 0) 0.0 0.0 -0.3961 | -0.3961 | 0.2222 | 0.2222
(0.00025, 0.0005) | 0.2971 | 0.2971 | -0.2607 | —-0.2607 | 0.0 0.0
(0.0005, 0.00025) | 0.1980 | 0.1980 | -0.4056 | —0.4056 | 0.1667 | 0.1667

5.2. Infinite piezoelectric plane with a circular hole

An infinite piezoelectric panel with a circular hole of unit radius is subjected to a far field uniform
traction in the z direction o3° which is taken to be 10 as shown in Fig. 2. Sixty collocation points
distributed uniformly along the periphery of the hole are employed. Different number of the terms
Np from the complete Laplacian solution set in (20) is employed and the computed stress con-
centration factors are listed in Table 2. Comparing with the exact solution [23], the errors of the
TCM decrease monotonically from 2.96% to 0.26% when Np is increased from 17 to 29. Figure 3
compares the exact distribution and the computed distribution (Ng = 29) of o, along the z axis.
The two distributions are practically indistinguishable.

o, =10

EEERERARN

I

Fig. 2. Infinite piezoelectric medium with a circular hole
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Table 2. Effect of Np on the stress concentration factor (analytical solution is 2.671)

Np 17 19 21 23 25 2. 29
Stress concentration factor | 2.592 | 2.592 | 2.658 | 2.658 | 2.679 | 2.679 | 2.678
Error (%) 2.96 2.96 0.49 0.49 0.3 0.3 0.26
28
Exact
---TCM

Fig. 3. o, versus r on the line § = 0 (Np = 29)

6. CONCLUSION

The Trefftz method is developed for the plane piezoelectricity in this paper. The general solution
and the complete solution set are first derived. By utilizing truncated complete solution set as
the trial solution, the Trefftz collocation method is formulated. As compared to the conventional
boundary element method which adopts the fundamental solutions, the Trefftz method does not
involve any singular integrals. The numerical examples given in this paper validate the efficacy of
the formulation in solving plane piezoelectric problems. Particularly, the present method serves as
a good candidate for dealing with the stress concentration problems in piezoelectricity.

Acknowledgment

The financial support of the Research Grant Council of Hong Kong in the form of a CERG (project
number: HKU 7083 /00E) is gratefully acknowledged.

REFERENCES

[1] Z. K. Wang, B.L. Zheng. The general solution of three-dimensional problems in piezoelectric media. International
Journal of Solids and Structures, 32: 105-115, 1995.

[2] H. J. Ding, B. Chen, J. Liang. General solutions for coupled equations for piezoelectric media. International
Journal of Solids and Structures, 33: 2283-2298, 1996.

[3] M.L. Dunn, H.A. Wienecke. Green’s functions for transversely isotropic piezoelectric solids. International Journal
of Solids and Structures, 33: 4571-4581, 1996.

[4] E. Pan, F. Tonon. Three-dimensional Green’s functions in anisotropic piezoelectric solids. International Journal
of Solids and Structures, 37: 943-958, 2000.

[5] J. S. Lee and L. Z. Jiang. A boundary integral formulation and 2D fundamental solution for piezoelastic media.
Mechanics Research Communications, 21: 47-54, 1994.

[6] H. J. Ding, G. Q. Wang, W. Q. Chen. A boundary integral formulation and 2D fundamental solutions for
piezoelectric media. Computer Methods in Applied Mechanics and Engineering, 158: 65-80, 1998.



Trefftz methods for plane piezoelectricity 627

[7] P. Lu, O. Mahrenholtz. A variational boundary element formulation for piezoelectricity. Mechanics Research
Communications, 21: 605-611, 1994.

[8] T. Chen, F. Z. Lin. Boundary integral formulations for three-dimensional anisotropic piezoelectric solids. Com-
putational Mechanics, 15: 485-496, 1995.

[9] E. Pan. A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Engineering Analysis with
Boundary Elements, 23: 67-76, 1999.

[10] M. Denda, J. Lua. Development of the boundary element method for 2D piezoelectricity. Composites Part B:
Engineering, 30: 699-707, 1999.

[11] I. Herrera. Trefftz method. In: C. A. Brebbia, editor, Topics in Boundary Element Research. Springer, New
York, 1984.

[12] A. P. Zielinski, O. C. Zienkiewicz. Generalized finite element analysis with T-complete boundary solution func-
tions. International Journal for Numerical Methods in Engineering, 21: 509-528, 1985.
[13] Y. K. Cheung, W. G. Jin, O. C. Zienkiewicz. Direct solution procedure for solution of harmonic problems using
complete, non-singular, Trefftz functions. Communications in Applied Numerical Methods, 5: 159-169, 1989.
[14] Y. K. Cheung, W. G. Jin, O. C. Zienkiewicz. Solution of Helmholtz equation by Trefftz method. International
Journal for Numerical Methods in Engineering, 32: 63-78, 1991.

[15] W. G. Jin, Y. K. Cheung, O. C. Zienkiewicz. Application of the Trefftz method in plane elasticity problems.
International Journal for Numerical Methods in Engineering, 30: 1147-1161, 1990.

[16] W. G. Jin, Y. K. Cheung, O. C. Zienkiewicz. Trefftz method for Kirchhoff plate bending problems. International
Journal for Numerical Methods in Engineering, 36: 765-781, 1993.

[17] E. Kita, N. Kamiya, Y. Ikeda. Boundary-type sensitivity analysis scheme based on indirect Trefftz formulation.
Advances in Engineering Software, 24: 89-96, 1995.

[18] J. Jirousek, A. Wroblewski. T-elements: a finite element approach with advantages of boundary solution methods.
Advances in Engineering Software, 24(71-88), 1995.

[19] H. Q. Zhang. A united theory on general solutions of systems of elasticity equations (in Chinese). Journal of
Dalian University of Technology, 3: 23— 47, 1978.

[20] R. A. Eubanks, E. Sternberg. On the axisymmetric problem of elastic theory for a medium with transverse
isotropy. Journal of Rational Mechanics and Analysis, 3: 89-101, 1954.

[21] I. Herrera. Boundary Method: An Algebraic Theory. Pitman, Boston, 1984.

[22] S.B. Park, C.T. Sun. Effect of electric field on fracture of piezoelectric ceramics. International Journal of Fracture,
70: 203-216, 1995.

[23] H. Sosa. Plane problems in piezoelectric media with defects. International Journal of Solids and Structures,
28: 491-505, 1991.



