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This paper is a continuation and development of the dissertation [1]. Complex folded-plate structures with
holes are analyzed using the Trefftz-type finite elements, which appears very effective. The shape functions
of these elements (Trefftz functions) fulfill respective differential equations. Then, a certain optimization
algorithm is proposed, in which an optimized structure can have a large number of parameters used as
optimization variables. Therefore, in particular stages of the proposed procedure, less important variables
can be eliminated. The choice of the active variable set is based on investigation of sensitivity of the
objective function and constraints on small changes of these variables.
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1. INTRODUCTION

The paper deals with analysis and optimization of folded-plate structures, however, a large
part of the considerations below concerns more general engineering problems. The main pur-
pose of the work is to enhance an optimization algorithm in the case of a wide class of 3D
thin-walled structures with openings (Fig. 1). This improvement can follow four directions:

L. Possible minimization of computational time of a single solution inside optimization loops, .
II. Modifications of the objective function and constraints,
ITI. Selection of variables in particular stages of the optimization algorithm,

IV. Enhanced search for minimum of the objective function.

Until now, the authors investigated only the first three areas [2-5], however, the last -iv- direction
is just now being explored (in the present paper the standard gradient procedures are applied).

The most effective improvement of the discussed optimization procedure is visible after appli-
cation of the Trefftz-type finite elements. In Fig. 2 we can see a hybrid element of this type, first
proposed in [6]. Inside the element an analytical solution of a differential equation is proposed in
the form (example 2D elasticity):

u(x) = uP(x) + N(x)c, (1)

where u” is a particular solution, N is a matrix containing the Trefftz functions and c is a vector
of unknown coefficients.

*Partially supported by FNP (Polish Science Foundation).
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Fig. 1. Examples of 3D plate structures with openings

g o cisygbe? i(x)=Nx)d

© — fixed number of DOF
A —optional number (M) of DOF

u(x) =u’ (x)+ N(x)c

Fig. 2. Hybrid element for plane elasticity

Simultaneously, along the boundary I, a frame function u(x) is defined (Fig. 2). After analytical
calculation of tractions from Eq. (1):

t(x) = tP(x) + T(x)c. (2)
The following system of equations can be introduced [7]:
6tT(u —)dI =0,
A g (3)
suttdr= [ suTtdr +4dr,

Ie Fet

where § means virtual increment, t are imposed tractions and r are equivalent nodal forces. Egs. (3)
lead to relation between, ¢ and d, and finally to the well known finite element form:

r =kd +r?, (4)
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where r? is a known vector and k is a symmetric, positive definite stiffness matrix

k=GTH!G,
G= | T'TNdr, H= | TTNdrI,

S -, (5)
= [ NTtPdI'— [ NT8dI'-G™H'h, h= | TTuPdr.

e Lg I'e

The above element was investigated in detail in numerous papers, e.g. [7-9], also in the folded-
plate version [1, 10]. Its application in optimization procedures is presented in Sec. 3.

2. FOLDED-PLATE STRUCTURES

Spatial structures with large flat panels are widely used in engineering design. These structures
can serve as welded girder or box beams supporting big cranes, spans of bridges, folded roofs
or flat-walled containers (see Fig. 1). Their common feature is the presence of abrupt change of
direction of the outward normal vector while moving along the sides of the non-coplanar panels. In
these structures, usually subjected to arbitrary external loads, both bending and membrane effects
should be taken into account. Figure 3a presents orientation of a flat panel in 3D space with a local
and global coordinate system introduced. In case of the analysis of isotropic linear elastic structures
the unknown, modeled displacement field can be expressed as follows:

u n e~ o uP
wEation R Do oI 0 {C’b}+ TN (6)
w Jj=1 0 Nfl’)j J wP

Here, the components {u,v}T correspond to the in-plane displacements (membrane part) and

T
the component {w} is the out-of-plane deflection (bending part). The vector {N m N{)’J‘} contains

uj?
the T-complete functional set for the membrane part while N;’w is the j-th T-function for the

T
bending part (the Kirchhoff plate theory is applied). The components a’, cg} are the unknown

coefficients and the last vector is the respective particular solution of the analyzed boundary value
problem.

A main difficulty, which arises in formulation of the folded plate element, is meeting the con-
formity conditions between common edges of non-coplanar panels. So far, several concepts for that
purpose have been proposed [11, 12]. In case of the T-element formulation (in its p-version) the above
problem influences a form of the applied frame function. In the corner nodes only three displace-
ments {u,v, w}T are implemented as nodal degrees of freedom. In the mid-side nodes the number of
degrees of freedom is equal to M. This optional number includes parameters describing a constant
rotation (,, normal to the edge and higher terms both of displacements {Au', Av* ,Awi}T and
normal rotations A¢}. Such a formulation allows to avoid necessity of introduction of a so-called
‘drilling’ degree of freedom [11]. :

The customary force-displacement relationship (4) can be rewritten in a decomposed form as
follows (valid for linear, isotropic structures):

1o e k™ B dam ! e (7)
sie] gk ofsed fog b d®  cads <8

Here, index m corresponds to the membrane part while index b is responsible for the bending

part. The above equation is valid for each flat panel, which can be modeled by only one T-element. In
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Fig. 3. T-element for folded-plates a) and exemplary mesh for 3D structure with holes b)

case of more complex, spatial structures — Figure 3 — the force-displacement relationship is expressed
in a global coordinate system.

The resulting displacements and stresses for each flat panel are obtained analytically with the
use of T-functions in any point within each element.

In case of the standard T-elements the system of T-functions consists of polynomials, which are
easily generated. A more complex form of T-functions should be applied when we consider special
T-elements, from which a T-element with a circular hole inside is a typical example. In this case the
set of T-functions can be expressed in polar coordinates (r,#) and must include terms with both
positive and negative exponents of the radius r.

Fig. 4. Part of infinite plate with stress-free circular hole

The formulae shown below present several terms of the T-function set used for the bending state
in the case of the stress-free inner boundary I's of the hole (Fig. 4) [7):
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L

Ny =lnp+ —FI—p%, 8

i sRet ra T (8)

Ny ={p®— 3_i_—'up_1 cos @ N3 = {p%— :)’Lp"1 sin @ 9)
1—p ’ 1—p -

The next terms can be generated with the help of the following functions:

A ERTRNR N
fk(p) — k l_ﬂp pk~2 k pk7

(10)
gr(p) = pF*2 ~ k—:lp" % % i’f—zpik
where p is the Poisson ratio, p is the non-dimensional radius (p = r/a) and k = 2,3, ... and:
Niy1 = fr(p)coskd, N2 = gi(p)sink, (11)

Niys = fr(p)sink,  Nipa = gk(p) cosk,

where | = 4(k — 1). For simplicity the index denotations — b, m — in Egs. (8, 9, 11) are omitted.

3. PRESENTATION OF OPTIMIZATION ALGORITHM

In structural optimization procedures a basic, gradually modified solution must be repeated very
many times inside the optimization loops. In case of complex spatial structures, many various
design variables can influence an optimal shape of a structure. It usually results in growth of the
optimization space and significantly increases time of calculations in each optimization loop. As
it was mentioned before, a considerable decrease of the computational time in comparison to a
standard FE solution is observed after application of the Trefftz hybrid element approach.

The benefits of application of the T-elements are presented in the example of 3D-plate structure
with holes, which is shown in Fig. 5. For that purpose two comparative studies were performed,
first with the T-elements applied, and then with the classical FE ANSYS® solution [13]. In all the
present investigations the authors applied a unified objective function - a total volume V' of the
structure and a stress constraint in the strong form:

h = Iglear;zcao(a:) < ho, ho = 210 £ 5 [MPal, (12)
where o and hg are the equivalent and admissible stresses respectively. The tolerance in (12) means
that the constraint becomes active when the value of h reaches any point inside the acceptable range.
It is worth noting that also other types of objective functions and weak-form constraints were earlier
taken into account [4].

The analyzed structure, simply supported at both ends, was subjected to an external constant
pressure load imposed symmetrically with respect to the B — C' line on the 2nd and 3rd section of
panels (see Fig. 6):

e 1st section of panels: py; = 0.0 [N/mm?],
e 2nd section of panels: pyy = —0.3 [N/mm?),
e 3rd section of panels: py3 = —0.4 [N/mm?).

Due to the symmetry of the applied load and the structure geometry, a set of only six design
variables was chosen for optimization:

e radii of holes: 1, r2, r3,
e thickness of ribs: t1, ¢2, ¢3.
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Fig. 5. Optimized simply supported girder
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Fig. 6. Mesh of T-elements applied

Admissible values of the design variables were limited by the size of the panels (maximum radii
of holes) and by the estimated local buckling conditions (minimum thickness of side ribs):

rl e (10,45), r2€(20,62), r3 € (30,65), t1,t2,¢3 € (2.0,6.0). (13)

Additionally, the step-wise change of the design variables was assumed, with the step equal to
1 [mm)] for the hole radius and 0.5 [mm] for the rib thickness. In case of the T-element approximation
the whole structure was modeled with the use of only 44 large elements (Fig. 6). This resulted in a
relatively small number of nodal active degrees of freedom — Nacr = 1571 (maximum polynomial
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degree k = 11). In case of application of the standard FEM, the number of applied elements was
many times higher. This was caused mainly by presence of the holes in the central panels. Because
of these strong stress concentrators, the finite element mesh had to be locally refined around the
holes. To obtain results acceptable from the engineering point of view (Zienkiewicz — Zhu error
estimator lower than 5%), the mesh with Nacr = 140000 had to be applied.

In case of the folded-plate structures the maximum stress may appear both on the top or bottom
sides of panels. Hence the number of points, in which the value of equivalent stress should be
controlled is almost doubled in comparison with the number of nodal points applied in the mesh (only
certain narrow zones located along the lines of folds are excluded from this analysis). This drastically
increased the calculation time for each optimization loop and the total time of optimization. For
ANSYS® calculations [13] it was equal to ca. 10 [hours], while in case of T-elements it was only
1 [hour].

The rough scheme of optimization algorithm is presented in Fig. 7. The size of holes in the
central panels for the starting structure was assumed on the base of engineering formulae suggested
for calculations of structures with holes [14]. In the above scheme the applied stop condition needs
a certain comment. It acted and finished the procedure in two cases:

e when in several consecutive steps (optimization loops) decrease of the objective function was
negligible or of sufficiently small oscillating form,

e when the design variables approached their upper or lower limits.

In the analyzed girder mainly the latter form of the stop condition was active.

Starting structure /

Te

N

No

h<h,
Yes

Local increase of V
Minimization of V' to fulfill constraint (12)
(structure volume)

No

Condition of stop

Fig. 7. Scheme of optimization algorithm

Table 1 presents the comparison of results which were obtained for the classical FE and Trefftz-
type calculations. As it can be seen, both results for the starting and final structure remain in
satisfactory agreement. Additionally, the zones of maximum stress are located at the same areas
for the starting and final structures in both types of calculations. The observed reduction of total
volume approaches 16%.

Figure 8 presents comparison of distributions of equivalent stresses along the line B — C' ob-
tained in the optimal structure for calculations made with the classical FE (Nact = 140000) and
T-elements (NacT = 1571) respectively. Again, the presented results are in good agreement along
the whole line.

The next numerical study also concerned the structure presented in Fig. 5. The starting values
for radii of holes and thickness of panels were assumed the same as in the above presented analysis.
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In this case, however, the structure was subjected to three different load systems, which simulated
movement of a trolley (10 [kN]) along the girder. The weight of the trolley was applied to the whole
upper panel of the 1st section (case 1, Fig. 9), then the 2nd and the 3rd one (case 3, Fig. 10)
The approximate dead weight of the beam and the weight of additional equipment was taken into

Table 1

Maximum stress ogoy [MPa]

£1/t2/t3 = 2.0/2.0/2.0

Values of design variables | Classical FE | T-elements
Starting structure:

rl/r2/r3 = 20./30./40. 213.27* 208.06*
t1/t2/t3 = 4.0/4.0/4.0

Optimal structure:

r2 /12713 226./61.765. 214.98** 210.96**

*

- maximum localized on the top panel,

** — maximum localized on boundary of hole with radius r1.

| | |

210 .
| ANSYS
— — T-element

/
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Fig. 8. Distribution of equivalent stresses along the line B — C'

account in the following way:

e st section of panels: py; = —0.05 [N/mm?],

e 2nd section of panels: pyo = —0.10 [N/mm?],

e 3rd section of panels: py3 = —0.15 [N/mm?|.

The distribution of resulting vertical displacements for cases 1 and 3 are shown in Figs. 9 and 10.

The following set of variables was now chosen for optimization (see Fig. 5):

radii of holes r1, r2, r3,
thickness of ribs t1, ¢2, ¢3,
thickness of top section panels g1, g2, g3

)

thickness of bottom section panels d1, d2, d3,

thickness of panels with holes s1, 52, s3.
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Uy (AVG) -.966587
RSYS=0
DMX =.9693
SMN =-.966587 -.859099
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Fig. 9. Load case 1 illustration and respective distribution of resulting vertical displacements (in [mm)]) for
starting structure
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.713456
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.2038450
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Fig. 10. Load case 3 illustration and respective distribution of resulting vertical displacements (in [mm]) for
starting structure
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The symmetry of the structure was also taken into account. The step-wise change and the
admissible values of the design variables r1, 72, r3 and t1, t2, t3 were assumed as previously. The
remaining part of the set varied between 2.0 [mm]| and 6.0 [mm] with the 0.5 [mm)] step-wise change
of their values. In the performed study, again a total volume V of the girder was the objective
function and a stress constraint was modified with respect to the form given in Eq. (12) (hg slightly
higher):

h= mlax(lglearbzc oo(z)) < ho, ho = 215+ 5 [MPa]. (14)

Index 7 in the above equation corresponded to the number of existing load cases.

The discussed example was much more complex than the first analyzed problem (15 design vari-
ables and 3 load cases). Hence, a certain simplified sensitivity analysis was here applied to accelerate
the optimization process. For that purpose the authors studied both the sensitivity of the objec-
tive and constraint functions on small changes of the design variables. The results of this analysis
suggested elimination of certain groups of the variables in consecutive stages of the optimization
process. Figures 11 and 12 present the results of sensitivity investigations of the objective and con-
straint functions, respectively, performed at the beginning of the optimization algorithm. These
results suggested grouping of the design variables into certain subsets, which could be concluded in
the following way:

e parameters dl, d2, d3 should be considered in the first stage of minimization procedure,

e parameters rl, 72, r3 should be used in the last step of the minimization process,

e parameters gl, g2, g3 should be used to reduce the value of the constraint function in case of
crossing over its admissible value,

e parameters t1, t2, t3 should be considered after parameters s1, s2, s3.

The first two conclusions were justified by results of the sensitivity of the objective function and
the last two by the sensitivity of the constraint function.

WV Vy + M)~ V(xy— Ax)

o 2Ax —glizh(xo+Ax)—h(x,,—Ax)
ox 2Ax
laektibel of Badicl vl b L1k i A T T T el TTTTTTT =
r1r2r3 1 t2 t3 s1s2s3d1d2d3g1g2g3 r1r2r3t1t2 t3 s1s2s3d1d2d3g1g2g3
Fig. 11. Sensitivity measure of objective function V' Fig. 12. Sensitivity measure of constraint function h

The above observation suggested introduction of certain modification to the optimization algo-
rithm given in Fig. 7. In the performed analysis the applied scheme got the form as in Fig. 13 in
each optimization stage.

Table 2 given below presents the order of optimization steps which were used in the optimization
stages. This order was suggested by observation of behavior of the sensitivity measures.

The Table 3 presents the values of the equivalent stresses which were obtained for the starting
and final structure. These results were obtained with the T-element approach. The reduction of the
total volume reached now 31% .
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Fig. 13. Scheme of the modified optimization algorithm

Table 2

No. of optimiz. step

1.

Reduction of thickness of bottom panels

Increase of thickness of top panels

Reduction of thickness of panels with holes

Reduction of thickness of ribs

o el g

Increase of diameters of holes

Table 3

Structure

Parameters

Maximum stress oge2* [MPal

eq
T-element approach

Starting

d1/d2/d3 = 4.0/4.0/4.0
91/92/93 = 4.0/4.0/4.0
s1/s2/s3 = 4.0/4.0/4.0
£1/2/t3 = 4.0/4.0/4.0
r1/r2/r3 = 20./30./40.

209.32*

176.44**

217.30***

Optimal

d1/d2/d3 = 2.0/2.0/2.0
91/92/g3 = 4.5/4.5/4.5
s1/s2/s3 = 3.0/2.0/2.0
£1/t2/t3 = 2.0/2.0/2.0
rl/r2/r3 = 23./49./65.

190.59*

217.44**

197.66°**

* — results for

*

>k

1% load case,

* — results for 2™ load case,
* — results for 3™ load case.
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4. CONCLUDING REMARKS

The observed reduction of calculation time for a single optimization loop in case of the T-element
approach drastically influences the total time of the optimization procedure. This justifies the appli-
cation of the T-elements to optimization of complex 3D plate structures with stress concentrators.
The T-element approach will give more profits in case of optimization problems with higher number
of design variables included. In this case additional decrease of calculation time can be observed
when applying the sensitivity-based reduction of number of optimization variables [2, 4].

Further investigations will generally follow two main directions:

¢ the development of T-elements for folded plates with other stress concentrators, e.g. V- or U-
notches;

e application of probabilistic-type procedures to the optimization.

Especially, certain preliminary results in the latter field (application of evolutionary algorithms
or simulated annealing) encouraged the authors to investigate this area.
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