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Trefftz and RBF-based formulations
for concrete beams analysis using damage models
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In this work a hybrid-Trefftz formulation and a meshless approach based on the use of radial basis functions
(RBF) are applied to the analysis of reinforced concrete beams. Resorting to the Mazars model, the
concrete is represented by an elastic medium with progressive damage. In the hybrid-Trefftz formulation
a stress field that satisfies a priori the equilibrium equations on the domain is used. The displacements on
the static boundary are independently approximated, resulting in a governing system where the operators
have to be integrated over the domain of the problem. In what concerns the meshless approach, radial
basis functions are used to approximate the displacement fields but, as a collocation procedure is used,
no integrations are required. A numerical example illustrates the results obtained with both techniques.

1. INTRODUCTION

The mesh requirements usually associated with traditional finite element methods may be dimin-
ished in, basically, two ways: by using boundary-type formulations (such as the BEM and, in a
certain way, Trefftz techniques) or by establishing approximations based on nodes instead of based
on elements (meshless methods).

The hybrid-stress Trefftz model used here is based on the direct approximation of the stress
resultants using self-equilibrated and compatible states in the domain [1, 2]. This finite element
model is similar to the one previously derived by Pereira [3]. From a structural engineering point
of view, the main advantage of this numerical model when applied to the analysis of concrete
structures is that locally equilibrated solutions are always obtained, ensuring then the conditions
for the application of the static theorem of plasticity.

Several meshless methods have been devised in recent years, namely, the Smooth Particle Hy-
drodynamics [4], the Diffuse Approximation [5], the Reproducing Kernel Particle Methods [6], the
Partition of Unity Method [7], the Element-Free Galerkin method [8], the hp-clouds Method [9]
amongst others. Although the approximations are found without establishing a connection between
nodes, some sort of background cell structure has to be used on most of them for domain integra-
tions.

In this work a truly meshless approach, which totally avoids the need for a background cell
structure (due to the use of the collocation approach and to the use of radial basis functions to
build the global approximation), is used. Although relatively unknown, RBF collocation based
approaches have been successfully applied in the solution of various partial differential equations
problems [10-12].
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The application to damage analysis of concrete beams is, in this work, carried out by using the
Mazars model. This model was chosen basically due to its simplicity: a single variable is required to
define the local damage and the number of material parameters is kept to a minimum. Numerical
tests on a simply supported beam are presented and the results compared to other numerical and
experimental ones available in the literature.

2. REINFORCED CONCRETE BEAMS: FORMULATION
2.1. Beam cross-section analysis
2.1.1. Strain

Using the Bernoulli hypothesis, the longitudinal strain at a given cross section is given by € = €+ zy;,
where x and € are, respectively, the curvature and the longitudinal strain of the fibers over the
origin of z axis. Assuming a constant distortion, , over the entire cross section, the following may
be written

€ = Ee, (1)
where
€
€ | eigesi()
e—{’y}, E—[O 0 1] and e=1¢ x (2)
K
2.1.2. Stress

The generalised stresses in the section are defined by

§ = / ETodfn, (3)
n

where (2 is the cross sectional area of the beam and

e % e c={j}. @)

2.1.3. Constitutive relations

In the Mazars [13] model, the local damage is characterized by the scalar variable 0 < D < 1. For
the uniaxial case it takes the form

o = (1 — D(e))Epe, (5)

where the damage variable, D, is a linear function of the basic variables, Dy and D¢, through the
coefficients, ar and ac,

D(e) = arDr + acDc. (6)

Assuming that the fibers are subjected to an uniaxial state of stress at all points, ar = 1 and
ac = 0 for pure tension and ar = 0 and a¢ =1 for pure compression.
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The basic damage variables are given by
s b EdOLE T AE) Ar _ . €a(l—Ag) Ac
A £  eBr(—cw)’ At € ~ eBc(Fca)’ (7)

where A7, By, Ac and B¢ are material dependent parameters, € is the equivalent strain and eqp is

the maximum elastic strain.
The equivalent strain is given by

if €>0,

~ €
e—{ —v3/2¢ if € <0,

where v is Poisson’s ratio of the concrete. If € < €49, then D = 0.

The rate relation of (5) is given by
= (1 =3 D(E))Eoe = DE()E,

with
. O€ .
D= g(a aea
where

F = arFr + acFc

and

eqo(l — Ar) ArBr
2 eBr(€—€qw)’

Fr(€) = Fo() =

€do(l — Ac)

AcBc

€2 eBc(é—eao)

For the reinforcement steel bars, a linear elastic relation is assumed,

Oy = tFg€,.

The constitutive relationship takes the form

o = Ce,
where
e [ E(ﬁgmat g ] ,
with
o _BE . B (1= D(e)) Eo
21 +v) E,

if mat = concrete,

if mat = steel.

(8)

Replacing (14) in definition (3) and taking into account both materials, concrete and steel, it is

possible to write
h/2

[ B
—h/2

h/2
b fii?
h/2
h/2
b / (1-
—h/2

\

)) Ep edz + E; Z.Qsze“
= 1

(€)) Eg edz + E; Zzl 2s; €54
i=1

D(e)) Go v dz

e

(16)
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where b and h are, respectively, the cross section’s width and height, n is the number of reinforcement
steel bars, {2s; is the cross sectional area of the i-th steel bar and z; is the coordinate of the center
of the i-th steel bar. It is important to remark that, for the sake of simplicity, only rectangular
cross sections are being considered. However, the generalisation of the definitions and the equations
presented here for other cross sections is straightforward [3].

Using definition (1), it is possible to rewrite (16) in the following matrix form

s=ke with k = keoncrete + Ksteel, (17)
with
h/2 Eoy Eoz O
kconcrete = b / (1 = D(e)) | Eoz Eo zh> 0 dz, (18)
—Hhf3 0 0 Go
n .Qsi Qsi Z 0
ket =FE5 > | sz Qsi22 0]. (19)
1=1 0 0 0

When the shear deformation is neglected, the third equation in (16) is no longer valid. In this case
the shear stress resultant, V', may be recovered only by equilibrium conditions.

When an incremental analysis is to be implemented, it is necessary to write the constitutive
relationship in the following form:

[ ON ON ON 7
0 0Jx Ok
' oM OM OM
ds =krde with kp= 9 9x On (20)
ov oV ov
| 0 Ox Ok
Finally, from (16) and (1) the following definition for the tangent stiffness matrix may be obtained:
k7 = KT concrete + KT steel (21)
with
h/2 Eq Eoz2 0 9 D(e)) Epe Eoez2 0
KT coricrete = b (1=D(e)) | Eoz Ep2? 0 | — e Eoez Epez* 0 dz, (22)
—h/2 0 0 Gy Goy Goyz 0
n QS,’ .Qs,' zZi 0
kTsteel = Es Qsi zZi Qsi 21-2 0 . (23)
i=1 0 0 0

2.2. Beam analysis

This section summarises the relationships that characterizes the behaviour of the beam represented
in Fig. 1.

2.2.1. Equilibrium equations

The equilibrium equations in the domain, in terms of the generalised stresses (or stress resultants),
may be written as:

Ds+f=0 in (V) (24)
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Fig. 1. Beam displacements and applied loads

where,
d
—- 0. 0
= Pz
d
D[]0 (0 bese and fi=4 W ¥, (25)
L dz s
0 ers -1

where p;, p, and m are, respectively, the longitudinal and transversal loads and the bending moment
per unit length of the beam.
The static boundary conditions may be stated as follows:

Ns=t, on Ig, (26)

where matrix N collects the components of the unit outward normal vector and t., represents the
applied forces, with

ng 0 0
N=10 0 ng|{. (27)
0 n, O

2.2.2. Compatibility equations

The relationship between the generalized strains, e, associated with the generalized stresses, s, and
the generalized displacements, 8, associated with the loads, f, is obtained from the conjugated
relation of (24)

e=D* in (V) (28)
with
d
= g bz
PD*=¥% 0 ¢ = and =k 6 ¥, (29)
L :
dz

where dz, 0, and 6 represent, respectively, the longitudinal and transversal displacements and the
rotation. The kinematic boundary conditions may be stated as

=561 on T, (30)

where d., represents the prescribed displacements.
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2.2.3. Constitutive equations

The constitutive relationship may be written in the stiffness or the flexibility forms, (17) or (31),
respectively.

e=kls=fs. (31)

When a linear elastic behaviour is assumed for the material, definition (18) leads directly to:

1 e
—_ 0 0
EyA 0 0 Ep A 1
Kconcrete = 0 Eo I 0 5 kc—olncrete == 0 'E_I 0 . (32)
0 0 GoA : g 1
Go A

3. HYBRID—TREFFTZ STRESS MODEL

In this section, the hybrid-Trefftz stress model is presented. For the sake of simplicity, the material
will be assumed to exhibit linear elastic behaviour.

3.1. Approximation criteria

The hybrid-stress model [1] is based on the direct and independent approximation of the stress
resultant field, s, in the domain of each element and of the displacement field, 8, on the static
boundary.

s=8S,X+sp V), (33)

6 == U‘)’ q'y (FG‘)' (34)

In Egs. (33) and (34), matrices S, and U, collect the approximation functions and vectors X and
q, the corresponding weights. The vector s, may be used to model particular solutions, such as
body forces or residual stresses.

The columns of the approximation matrix S, define linearly independent stress resultant fields
induced by stress functions that solve the homogeneous Beltrami-Mitchell equations [1, 14]. Conse-
quently, those stress resultant fields are self-equilibrated and are associated with elastic, compatible
displacements, U,, that solve the homogeneous Navier equations,

(DkD*6+f=0 (V).
It is then possible to verify [15] that:

DS, =0, (35)
S, =kD*U,. (36)

When body forces are applied in the domain of the element, the particular solution s, is required
to satisfy a priori the equilibrium equation

Ds,+f=0 in (V), (37)

and must also be associated with an elastic, compatible displacement field.
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The generalised strains, v, and boundary tractions, Q,, are defined by (38) and (39), which
correspond to the dual transformation of approximations (33) and (34), respectively.

Wi B /Sf,e dv, (38)
Q= / B4, dE, (39)
The above definitions are so chosen as to ensure that the pairs of discrete dual variables, (X, v)

and (q,, Q,) dissipate the same energy as the continuum fields they are used to represent.
In beam elements, the hybrid—Trefftz approximation (33) may be written in the following form:

0 0 1
N T T X1 no
e
L L L -

In can be easily verified that Eq. (36) leads to the following definition for matrix U,

] i
O P 7
o FoA
U T $2 + $3 H b _ :1:3 0 41
o=l AT T 5. 6Bl L GoAL GEoIL ' (41)
z 2 z? 0
Eol " 2E.IL SESIL )

The approximation of the displacement fields on the boundary of each beam element may be written
in the following form

0z 1#°0°0 Q1 0z 1 00 q4
0, =10.1 0 %@ |; 0, =190.1 Q q | - (42)
0 (2=0) 001 q3 0 (z=L) 0 01 a6
The nodal displacements ¢; are identified in Fig. 2.
q3 (3
q2 gs
TG —y
e —
&

Fig. 2. Nodal displacements
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3.2. Hybrid—Trefftz Stress Elements
3.2.1. Equilibrium

The hybrid-Trefftz approximation (33) ensures the equilibrium conditions in the domain a priori.
The static boundary conditions are imposed in the following weighted residual form:

/U$ (Ns — t,)dI, = 0.
Replacing in the previous equation the approximation (33), it is possible to verify that:
/ UJ NS, X dI, + / U Ns, dle = / 1o 2o

The equilibrium conditions in the discrete model may then be written as follows:

A'Ff X = Q'y - nypa (43)
where

A, = / (NS,)T U, dry, (44)

= / Ul Ns,drl,. (45)

In the case of beam elements, matrix A, may be easily computed replacing definitions (40) and
(42) in (44) to yield:

0 0 —-17
1 1
E @ °
-1 0 0
Ay = (46)
0 0 1
1 1
717 "
) 1 0 |

3.2.2. Compatibility

The weighted residual enforcement of the compatibility condition (28) may be written as follows:
/sT -D*§)dV =0 = /STedV /STD*édV

Replacing the definition (38) in the equation above and integrating by parts the second term results
v=- /(D S,) T 6dV + /(N Sv)" Uyq,dl, + /(N Su)T 8, dI,.

Taking into consideration (35) and using the approximation (34), it is possible to obtain the discrete
description of compatibility conditions:

v=A,q,+ vy, (47)

where

P = / (NS, )T 8, d1 (48)
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3.2.3. Elasticity conditions

Assuming linear elastic behaviour, the weighted residual enforcement of condition (31) leads to the
following definition

/SE(e—fs)dV:O = v=/sEfsUde+/sEfs,,dv.

The elasticity conditions in the discrete model may then be written in the form

with
F = / STfs,dv, (50)
Vo = /sffs,,dv. (51)

Using Trefftz constraints, it is possible to obtain a boundary only integral expression for the
flexibility matrix F. Replacing definition (36) in (50) and integrating by parts to exploit condition
(35), the following expression is found for matrix F.

F= / U NS,drI. (52)

The application of (52) to the beam element and neglecting the shear deformation (GA = o), leads
to the usual definition:

F- 7. 3

R A
s
F= : 53
6B 3BgI O (53)
L
L 0 0 EpA |

3.2.4. Governing system

The elementary governing system (54) is obtained combining the discrete descriptions of equilibrium
(43), compatibility (47) and elasticity (49).

i o o0
¢ 2 :

-AL 0 a, ~Q, =0,

The global governing system is assembled by direct allocation of the elementary systems by requir-

ing adjacent elements to share the same boundary displacement approximation (34). This procedure

does not involve the summation of elementary contributions, typical of the conventional displace-

ment finite element model. The global governing system has a structure quite similar to the one
presented in (54) [15].

3.2.5. Model for the analysis of non-linear problems

When a non-linear model for the material is considered, the elastic constitutive relations (49) and
the linear governing system (54) are no longer valid. At cross section level, the flexibility format for
the constitutive relations may be written as follows,

e = f'(s), (55)
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where f*(s) is a non-linear function depending on the current state of stress distribution.
The weighted residual enforcement of (55) leads to

/sT —f*(s dV—0:>v—/STf* dv. (56)

The evaluation of the second term of (56) requires the use of a numerical integration scheme.
The non-linear governing system may now be written in the form:

/sTf* X))dV — Ay q, — Vo + Vpe = 0,
(57)
T i
—A, X+Q,-Q,, =0

4. HYBRID—TREFFTZ IMPLEMENTATION

In this section, the algorithms used in the physically non-linear analysis of concrete beams are
described in detail. For the solution of the non-linear governing system (57) an incremental and
iterative scheme based on the Newton-Raphson technique has been adopted. At the end of load
step j, the current values of X(;y and q, (j) satisfy the following equations:

/ Sy £*(s(X)()) AV — Ay Gy (j) = V4 (j) + Vpe(s) =0

"A X6) + Q) = Q) =0

To obtain a solution for the next load increment, it is necessary to implement an iterative technique
to compute the final values for X(;,1) and 4y (j4+1)- For initial solution we may use the results at
the end of the previous load step, meaning that:

(58)

0 - : 0 s 0 —
UG+ = WGy Xy =XG) = S = 80)- (59)
At a given iteration, i, the residuals may be written as follows

Ra(X{j41) @ (1) = / Sy £*(8(X){j41) AV = Aq d} (j41) = Vo (54+1) + Ve (1), i

1 T
Ra(X{j) = —AY X{j41) + Qq (541) — Qup (i)

Applying the Newton-Raphson technique, the correction terms AX* and Aq,y result from the so-
lution of system (61)

OR, ORy 7°
i
DRg1 10y |-apiley R2(Xo+1>>
0X OJaq,
The derivatives involved in the definition of the Hessian matrix are defined by:

OR, 0 T o8 N ds Py—1
a—i_a—x(/svf(s)dv>_/s = (£(6)) g dV = /s,UkT S, dV, (62)
(9 Rl 8 R2 i 8 R2
—=-A,; —=-A_; !
8q7 Y 9 a X v i 8q7 O (63)
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Replacing (62) and (63) in (61), it is possible to obtain:

1
/sEk;lsvdv ~A, AX T
[Aqy} E

~Ra(Xj4m)

) ] . (64)
T
= 0
The iterative correction of the variables X ;1) and Q. (j41) is ensured by the following equations
. o i s i+l _ i '
sy = G A 5 Xy =Xy +AXS )

For each load step, the iterative scheme here adopted may be summarised as follows:

1. Initialise variables: qg(j_H) = Gy ()5 X?jﬂ) == X(J-); e e
2. Evaluation of load quantities, v, (j11), Vpe(j+1)) Qy(j+1) and Qo (54107
3. diter =0

4. while ||R||; > TOL or ||R||, > TOL

(a) Evaluate residual vectors, Ry and Rp, using (60)
(b) Evaluate Hessian Matrix in (64)

(c) Solve linear system (64)

(d) Update variables according to (65)

(e) iter =iter +1

5. End of the iterative procedure; X ;1) = X@ell), and q, (j4+1) = qf:‘f§+1)

z
In the algorithm previously described, the evaluation of both integrals / SEedx and
0

L
/ SE k}l S, dz requires the use of numerical integration schemes. For this purpose, the Gauss-

Lobatto quadrature rule [3] is used. It is possible to write:

L 1 Nyob

/ sfedx=/ STeL/2d¢ =) S (x(&))y eiwi L/2, (66)
0 -1 =T
L 1 Nirob

/ ST k-18;dz =/ STk;!S, L/2dé = > S (z(&))y k7S (&)vwi L/2, (67)
0 =1 i=1

In (66) and (67), Npob denotes the number of Lobatto points used in the integration, §; indicates
the location of the i-th point and w; stands for the corresponding weight.

In the implementation followed here, the shear deformation effect is neglected. This means that
k is always assumed to be zero and the definition for the tangent stiffness matrix has to be modified
as follows

x 0 1,1 .12

k g 4 k ) k )

kT = £ 0 with kT T [ k:(rZ,l) kf(rg’g) ] ) (68)
001 00 T T
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where k(Ti’j ) is computed according to (22) and (23). The corresponding inverse, necessary to obtain
the entries of the Hessian matrix, may be written as:

| 0
lip = ) & 1. (69)
0

0 0

To compute (66) and (67) it is necessary to obtain the values of the generalised deformations e;
and the definition of the tangent stiffness matrices, kr;, for the cross sections with coordinates
z; = (1 + &) L/2. The computation of these quantities requires the implementation of an iterative
procedure. For each cross section, this algorithm may be stated as follows:

1. Compute the generalised stresses N and M using definition (40);

2. Initialise strains € = ..., X’ = ... and Ry = Ry = 1.0;
3. iter =0
4. While |[Ry| > TOL or |Ry| > TOL;
(a) Evaluate N and MEr replacing € = €*" and x = x!*" in (17)

a)
(b) Evaluate k7 replacing € = € and y = X”‘" in (22) and (23)
(C) RN it Nzter N
) R
)

calc
( d u‘,er =M
(e

calc
ompute the Newton-Raphson correction

(i ]iter[ Az ]“‘"‘_ [ —RN]
T AX'*/ —Rpy
(f) Update variables
Eiter+1 Ezter + Agiter and Xiter+1 ther Axiter

(g) iter = iter +1

—e-zter

5. End of the iterative procedure; e; = [ iter ], and kp; = ki_ﬁ"

The computation of k7 is also performed using the Gauss-Lobatto’s quadrature rule.

5. RADIAL BAsis FUNCTIONS WITH COLLOCATION

The main characteristic of the radial functions is that they exhibit radial symmetry: apart from
the distance between the RBF center and a generic point, these functions depend only on some
prescribed parameters. Their supports may be global or compact. In this work a globally supported

RBF was used: the multiquadric (MQ) given by ¢(||z — z;||) = /(z — z;)2 + ¢} where ¢; # 0 is an
adjustable local shape parameter.

Boundary value problems are, basically, solved by using weighted residuals techniques whereby an
approximate solution is sought that best fits the governing equations and the boundary conditions
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in the standard form:
Lu=F, (70)

where LT = [LI LB] collects the differential operators and FT = [FI F B] the prescribed values in
the domain and boundary, respectively.

This fit may have a localized character (collocation) or a global one (or global in a certain region)
in the way of Galerkin or other global forms of weighted residuals.

As what concerns collocation techniques using RBF two variants may be referred: asymmetrical
or Kansa’s collocation [10] and symmetrical collocation or collocation in the Hermite sense [11, 12].

5.1. Asymmetrical collocation

The interpolation of a given function (or data set), s(z), using RBF, may be found in the following
form:

N

s(@) =) ¢lle = zjl)ay, (71)

J=1

where N is the number of radial basis functions used in the approximation.

The unknowns, «;, are the weights of the radial basis functions. These may be obtained from
the solution of the following system of equations, assuming the function is known at a given set of
points, z;:

N
s(zi) = f(z:) = ) a;o(||zi — zj)- (72)

Azl

The resulting system of equations is non-symmetrical and full. Some degree of sparsity may be
added to the system if forms of domain decomposition are considered.

In some cases, it may be convenient to prescribe the function s(z) at more points than strictly
necessary resulting from this an overdetermined system of equations. In this last situation, a criteria
has to be used to find the solution, e.g., the least-squares method.

The extension of this type of interpolation to boundary value problems is immediate. All is
needed is to apply the (boundary and domain) differential operators to the previously defined
approximation.

The following system may then be written:

N

LIup(zs) = Y axLIg(|lzs — exl), (73)
k]:vl

LBup(z;) = Z arLBY(||z; — ekl (74)
k=1

5.2. Symmetrical collocation

The essence of the method consists in the application of the differential operators for each pair of
collocation point-RBF center to an approximation that already takes into account the operators.
By choosing points and centers to coincide a symmetrical system of equations arises.

The following approximation

N-M N

un(@) = Y axllig(le—el) + Y awLBig(llz — exl), (75)

k=1 k=N-M+1
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is used, where ¢; represents the center of the kK RBF, N — M is the number of RBF centers in the
domain and M is the number of RBF centers in the boundary.
The equations obtained for the interior (domain) collocation points are

N-M N
LIfup(z;) = Y okLIFLIH(|lz5 —exl) + Y oxLI7LBRo(|lz; — exll), (76)
k=1 k=N-M+1

and for the boundary collocation points one has

N-M N
LBYup(z;) = Y axLBFLIp(lzj —exl)+ >, oxLBILBio(|lz; —exl), (77)
k=1 k=N-M+1

where L%g(||lz —¢||) is the function of € obtained when L acts on g(||z — €||) as a function of z and
then evaluated at z = z; and L§g(||z —¢l|) is the function of z, obtained when L acts on g(||z —¢l|)
as a function of € and then evaluated at € = g.

6. RBF IMPLEMENTATION
6.1. Irreducible form of the governing equations

In order to obtain a governing system of order as low as possible, a minimum number of variables
should be approximated directly.
Neglecting the effect of shear deformation of the section, k = 0, the compatibility Egs. (28) take
the form
dé doé. d?s
0 — __z- E — .__E- —_— - & = 78
dz’ ‘T & “ dz? i
Substituting this result in the elasticity relations (17) and assuming non-varying stiffness along the
beam axis, the following definitions for the axial force and bending moment are obtained

dé d2s

s 1 oo AP 4 ) B (il
N = B +k ( de), (79)

dé d?s

(@) 20 (22) o202
M=k dw+k ( dx2>, (80)

where k() is the (i, ) element of the section stiffness matrix given by (17).
Substituting these results in the equilibrium equations yields for the shear force

d?s d3s
= Ay = (22) [ -2
V=Ek 12 +k ( I3 ) +m, (81)
and the two governing equations in the domain
d 5 d3s,
D272 L p(12) ( =3 ) + pg =0, (82a)
d (5 ds
2,1 2,2 £
k1) 2 + k(322 (— dxf) +p, =0. (82b)
The solution of the above equations requires three conditions to be imposed at each boundary point:
ba= By Cob e NN (83a)
6,=06, or V=V, (83b)
=0 or M=M, (83c)
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where N, V e M are given by (79), (81) e (80) and “— stands for prescribed quantity on the
boundary. If the domain is decomposed into several regions, then appropriate continuity conditions
are required:

L (84a)
& — % =0, (84b)
9t — 6% =0, (84c)

N'— N® =Ny, (84d)
Vi—ve =V, (84e)

M — M* = M, (84f)
(84g)

where the indexes 7 and 47 identify the cross sections of two contiguous regions and 7\71, V;and M;

represent concentrated loads at interface I.

6.2. Governing system

A numerical solution to the problem defined by Egs. (82), (83) and (84) may be found, as stated
before, by the use of asymmetrical collocation. In this case, the variables are approximated as follows:

N, Ns,
ba(x) =Y P d(lz —zil),  8(z) =) o ¢z — =), (85)
i=1 i=1

where z; represents the coordinates of the RBF points, N5, and Njs, are the number of RBF used
to approximate each component of the displacement field.

In order to rewrite the problem in the form presented earlier (70), the domain and boundary
differential operators take the following definitions, respectively:

d? d3
L) L2 (o
y dz? k ( dx3)

L= (86)
3 4 ,
k(2,1)d_ £(2:2) gr—
dz3 dz?t
and
i 1 0 .
0 1
i
dz j
d d
= £ s Tl 25 ) 5 Sl
LB k dg k daf : (87)
d d
Y e R
- dz? : d:c23
d d
(21) — (2i2) ek S5
# » dz . < d$2> _
Similarly way, the vector of the unknowns and the right-hand side vector are:
w6, & T (88)
and
FE2 A0 Dy b Tl =gl b0 0. N V M1 (89)

for domain and the boundary, respectively. For simplicity, the continuity conditions have been
omitted in the above definitions.
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The application of the operators to the approximation (71) used in this work (the same could
have been done for approximation (75), that is, the symmetrical form) requires several derivatives to
be computed. In this work all derivatives were carried out symbolically with the use of MATLAB [16]
rendering quite simple the task of determining the entries of the system of equations:

Ax=7. (90)

If the number of collocation points is chosen in such a way that the governing system matrix is
square, then the solution will satisfy exactly all the boundary and continuity conditions and the
compatibility equations in the domain. The equilibrium equations will be satisfied only at the
collocation points.

6.3. Implementation

Similarly to the hybrid—Trefftz implementation, an incremental and iterative procedure had to be
devised. In this implementation, the secant method was used to solve the non-linear problem. The
incremental form of (90) can be written as

A A = AT, (91)

where Age is the system matrix evaluated using the section stiffness matrix given by (17), which is
equal to the first term of the k7 concrete given by (22).
The algorithm is the following:

1. Compute, for a given number of collocation points in the domain, the number of
required RBF centers and the associated coordinates;

2. Form the vector AJF of the parametric load, given by AFT = [FI FB];
3. Initialize the unknowns vector, ¢y = 0;

4. Initialize the stiffness matrix of each cross section at the collocation points, given
by (17). As &y = 0, at all collocation points € = 0 and D = 0;

5. Incremental process: FOR inc=1:number of increments;
(a) set the residual vector ¥ = AF;
(b) iterative process: WHILE ¢ > TOL;
i. FOR all collocation points: compute the deformations e and the stiffness
matrix of the section given by (17).
ii. Compute the system matrix;
iii. Solve the resulting system of Egs. (90);
iv. Update the solution, ¢ = & + A«;
v. Compute the updated residual vector, v;

The integration of the constitutive relationship (17) is achieved by using Gauss-Lobatto quadra-
ture rule.

7. NUMERICAL EXAMPLE

Consider the simplified model of a simply supported beam with a rectangular cross section presented
in Fig. 3. The axis origin is located at the geometric center of the cross section.

The concrete parameters for the Mazars damage model (wich were found experimentally [17]) are
the following: Ar = 0.995, By = 8000, A¢c = 0.85, B¢ = 1050, €49 = 0.00007, Eo = 29200 - 10° Pa
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and v = 0.2. The stress-strain curve associated with these parameters is plotted in Fig. 4a. The
corresponding damage-strain curve is indicated in Fig. 4b. For the steel reinforcement, the following
data is assumed: elasticity modulus Es = 196000 - 106 Pa, tensile steel area Ay = 3x 7 x 0.01?/4 m?
with 0.02 m concrete cover, compressive steel area Az, = 2 x 7 x 0.0052 /4 m? with 0.015 m concrete
cover. In the analysis of this structure with the hybrid-Trefftz model, two elements are considered.
A total of 12 discrete variables are involved in the approximation; 6 generalised stresses, X, and 6
nodal displacements, q,. The load was applied in 10 increments of 4 kN each. For the numerical
integrations defined over the cross section and along the bar, 10 Lobatto points have been considered.
The numerical model used here was implemented in MATLAB [16] environment.

In the analysis carried out with the RBF implementation, and to ensure a correct modelling of
the point load, the domain was also divided into two subregions, with the interface at the cross
section where the load is applied. In this example, a total of 44 unknowns (corresponding to the
use of 8 radial basis for each component of the displacement field in each of the two regions) was
considered. The values used for the parameter ¢; in the multiquadric RBF were: c; = 1.0 for the
first region (between the left support and the concentrated load) and ¢; = 0.6 on the second region
(between the concentrated load and the right end of the beam). Ten Gauss-Lobatto points were
used to integrate the constitutive relations (17). The load increment was equal to 2.25 kN.

The load-displacement diagram obtained with both numerical schemes is plotted in Fig. 5. In
this diagram, the evolution of the load is plotted against the value of the transversal displacement
measured at the end of the beam, z = 1.2m. In the same figure, the results obtained with an hp-
cloud implementation [18] are also presented. It is possible to verify that all these numerical results
are quite similar and are quite close to the experimental measurements described in [17].

Figure 6 correspond to the solution obtained with the hybrid-Trefftz approach and shows several
contours obtained at the end of the loading process for the damage variable. A negative value in
this plot means the damage occurs due compression.

Figure 7 shows the damage distribution at the end of each load step considered in the analysis.

As
1, Smm%: _c
P 0,3m
i_ Ast
2mm
7777
: 0,8m o by Dyl i sk
I | =1 0,12m
z
Fig. 3. Beam: geometry and boundary conditions
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i e € [1073]
o = (1 - D)Eqge. Damage variable variation with strain

Fig. 4. Constitutive relation of the concrete for the Mazars damage model
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8. CONCLUSIONS

In this work, applications of a meshless collocation technique based on radial basis functions and
of a hybrid-Trefftz technique to the analysis of a non-linear structural problem were presented and
assessed.

The non-linearity of the constitutive relationship assumed for the concrete, the damage model
of Mazars, requires the use of an incremental and iterative scheme and this is basically what pre-
sented more difficulties in terms of implementation (when compared to a linear problem). Due to
the particular aspects of each formulation (displacements are approximated in the RBF approach
whereas generalised stresses are approximated in the hybrid-Trefftz technique), two inherently dif-
ferent incremental and iterative approaches were implemented.

The results obtained with both techniques are similar to the experimental ones and other numer-
ical studies (the Hp-clouds method) available in the literature which further confirms the possibility
of using both techniques as tools to study the behavior of this type of non-linear structural problems.

It may be referred that the RBF technique is slightly easier to implement than the Trefttz
technique but it should also be stated that the mathematical foundations of the Trefftz technique
are, at this stage, more sound than the RBF technique in what concerns (mathematical) proofs of
convergence and stability.
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