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The solution of inhomogeneous elliptic problems by the Trefftz method has become increasingly more
popular during the last decade [1-3]. One method of solution uses the fundamental solutions as trial
functions and the inhomogeneous part is expressed by radial basis functions (RBFs).

The purpose of this paper is to solve several boundary value problems that have exact solutions. Two
error criteria are used for comparison of the exact solutions and the approximated solutions. The first is
the mean least square global error. The second has a local character, as it measures the absolute maximal
error.

1. DESCRIPTION OF THE FIRST METHOD
Consider a general differential equation,

Vu=f(z,y) in £, and Bu=g(z,y) on 8, (1)

where V2 is the Laplace differential operator, and B is an operator imposed as boundary conditions,
such as Dirichlet, Neumann, and Robin.

Let {P;, = (:;z:,-,yi)}iN=1 denote the set of N collocations points in §2, of which {(cci,y,-)}fv___ll, are
interior points and {(z;, y,-)}i]i Ni41are boundary points.

The right-hand side function f is approximated by RBFs as,

N !
In(@y) = ajo(r)+ > bipk(z,y), (2)
=1 k=1

where ¢ (r;) = ¢ (\/(z —z;)2 4 (y - yj)2> : R — R* is a RBF, {p}._, is the complete basis for

d-variate polynomials of degree < m — 1, and Cf,ll +d—1 1s the dimension of p,,_;. The coefficients
{aj}, {bx} can be found by solving the system,

N l
Zaj(p(rji)+zbkpk(wi’yi)=f(x'i)yi)7 ISZSN,

Jj=1 k=1 - (3)
> aipk(zj, ) =0, 1<k<l,
j=1

where 7j; = \/(:vz - xj)2 + (y; — yj)z, and {xi,y,-}fil are the collocation points on 2 U 912 .
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The approximate particular solutions u, can be obtained using coefficients {a;} and {b},

N N
Up (a:,y) o Za‘_’i¢j (-’E,y) +Zbkwk (.’L‘,y), (4)
j=1 k=1
where
V2d5j(a:,y)=<pj(a:,y), iy = N (5)
V2 (z,y) = px (z,y), for k=1,...,1. (6)

The solution of differential Eq. (1) can be given as,

U= Up + v, (7)
where v is the solution of the boundary value problem in the form:

V=0 in 2 and Bv=g(z,y)— Bu, on 0. (8)

The method of fundamental solutions is used to solve problem (6), meaning that:

NC
v(@y) =Y aln|@-a)+@-w’]. ©)
k=1

Enforcement of the boundary conditions yields,

NC
> cBln [(xi — )’ + (yi — yk)2] = g(zi,¥i) — Bup (i, ¥i) , (10)
k=1

where NC' is the number of collocation points.

The inhomogeneous boundary problem (1) has been solved by numerical implementation of the
solution given by Eq. (7). Function f is approximated as stated in Eq. (2). The radial basis functions
 that are used are defined as follows:

Case I

@(rj) =1+r;. (11)
Case II

G P &
Case 111

@ (rj) =/ +C2 (13)
Case IV

w(ry) = r]2- = r?. (14)
Case V

i\ 4 4r;
@jz{(l_Ej) <1+~(—ll> for 0<r; <a, (15)
0 for r; > a,
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where C is a parameter and r; = \ﬂm = xj)2 + (y - yj)2 for j=1,2,...,N.

For the problems (5) the solutions (respectively to RBF defined in Egs. (11)—(15)) are presented
by Egs. (16)—(20).

Case I
T2 7"3
D=t 16
iS5ty (16)
Case II
£ lns r;-l
= g L 17
a 16 32 )
Case II1I
i 1
21n [c(r?—*—c )2 +c2] [(r?+4cz) (7']2-+c2)2]
P, = — 18
Case IV
rd B
fly 0.0 19
?i 6125 )
Case V
r2 5% 440 5r6 4r7?
o __J_ _J 20 o 0<r <
P; = 4 2?53 1248 T 2965 WETZ 6. (20)
2
(C) for r;>a,
5880 a

where C' is a parameter and r; = \/(m —2;)% + (y — ;) for j=12,...,N.

2. DESCRIPTION OF THE SECOND METHOD
The solution of the Poisson equation,

Viu= Au=§, (21)
may be rewritten using the inverse Laplace operator (see Ref. [4]),

u=A"'f+H, (22)

where A~!f is a particular solution and harmonic function H is the general solution of the Poisson
equation related to the boundary conditions.

The approximation of the source function, the calculation of the inverse Laplace operator and
interpolation of the harmonic function,

H=u-A"1jf, (23)

are used to solve the Poisson problem with its boundary conditions.
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For 2D problems the harmonic functions are in the form:
oo
H(z,y) = Ao+ Y _ [AnFn(z,y) + BnGa(z,y)],
n=1
where functions F),, G, are obtained using the formulae:
ety = ZM Z[F z,y) + iGn(z, )] -
n=0 n! n=0

The infinite series is truncated to a finite number of terms for numerical calculations.
Function f(z,y) is expanded in Taylor series in the domain §2:

ay) Zzankw y

n=0 k=0

Therefore, the calculation of A~!f is equivalent to obtaining A~1(z*y"~):

A= (z,y) (ZZ(L st “—) ZZankA i

=0 k=0 n=0 k=0

(26)

(27)

The expression given above may be calculated by two methods, namely the recurrence scheme

and the transfer of the power series into a series of polyharmonic functions.

2.1. Recurrence scheme
Using the notation,
Qi = z'y,

the following formulae are found:

AQZ] - O, 17.7 = {0> 1}?
AQy = j(G — 1)y’ % = §(§ - )Qij-2, i ={0,1}, j>1,
AQ@] — 1,(2 - l)xl Zy-] — l(’L -_ 1)Qi_27j, 7 > 1, ] = {O’ 1},

AQij = A (z'y) =i — 1)zt2y0 + 5(j — 1)aty? 2
= (i — 1)Qi—2; + 74 — 1)Qi j—2, fif 1.

The following recurrence scheme is obtained after applying the inverse Laplace operator:

1
A_l ii =——————0); . ) > ) =
Q J (7/ + 2)(1 + 1)Q'I-+2,J, v - O’ J {0’ 1})
» 1 JiG—1) - ~ :
[N PO SR N s R G | S W o T Ty > > 9.
Q’U ('L % 2)(1' i 1)Q’l+2,] (Z + 2)(7/ Iy 1)A Ql+2,] 2 12 O) JnZ 2
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2.2. Polyharmonic functions series

Using the transformation

z2+z z2—7Z

— 35
z 2 b y 2i ¥ ( )
the polyharmonic functions series is obtained from power series:
o0 n
f(Z,E) = Z Z cnkzkzn_k ) Cnk = En,n—k:a (36)
n=0 k=0
o0 n o0 n
A7 f(z,2) =A™ (Z . cnkzkE"_k> =% (zkE"“k) . (37)
n=0 k=0 n=0 k=0
The calculation of the inverse Laplace operator yields:
A (22 = 4(i + 1)( + 1), (38)
o Sit1zi+1
A_l =71\ = ) 39
#) 4G+ )G +1) (39)
Therefore:
A'lf(z,?a') — Z Z Zk+1-2n—k+l
e e 4k+1)(n—k+1)
v Crk
. Z Z k=n—k (40)
¥ Zr
e P 4k+1)(n—k+1)
where 2 = 2Z.

2.3. Numerical implementation

The domain 2 is a unit square, divided in a mesh with N nodes. N is equal to the number of basis
functions:

fui(zy) = Re (2427*) (41)
gon(2,) = Im (+777F) . (42)
The basis functions are polynomial of degree n. The number of such polynomials is given by:

(n+1)(n+2)

(43)
The power series is an expansion of a function in a Fourier series. The truncation of the series
to Sy, terms causes error of order O(h™*!). However the condition

S =N, (44)

is not always fulfilled.

If it is not fulfilled, the next terms of the series are taken into account, which does not decrease
the error. The density of the mesh in both z and y direction is the same. Thus N is the square of
a whole number, and the condition is not fulfilled.
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The transformation of function f(z,y) from a complex form into a real form is defined by:

o0 n

Bndh= X 2 el B T Cnk = Cnn—k; (45)
n=0 k=0

Chk - M, Conek = Ann—k — ibn,n—k 1 Gnk + ibnk’ (46)

2 ’ 2 2

oo [n/2] N

Foy) =D [ankRe (z"E"‘k) + byxIm (zk?""“> ] =Y wipk(z,y), (47)
n=0 k=0 k=1

where functions pg(z,y) are of the form Re (zk'z"”‘k), Im (zk?"“k). Functions f,r and g,; satisfy
Eq. (48).

AMfo = AMg. =0, M=k+1. (48)

Therefore, they are polyharmonic functions. Functions f,; and g, are set up in sequence and are
denoted by pg. If the polyharmonic functions are chosen the Eq. (49) can be written for each node.

N
fi= f(zi,vi) Zwkpk(wz,yz > wipri (49)
k=1

The system of equations given above can be written in matrix form,
f=Aw, (50)

where f = {fi},_; Ny A ={Pki}g=1 _ Nxi=1, N+ W = {Wk}r= n- Asmatrix A isill-conditioned,
the solution in the form of Eq. (51),

W= A_lqa (51)
is avoided. The system of equations is solved by the least-squares approximation,
W AIq) (52)

where A’ is the pseudoinverse matrix. The SVD (Singular Value Decomposition) algorithm has
been used to obtain the pseudoinverse matrix. The order of the pseudoinverse matrix, M, is defined
below for each example. Next, the solution of the Poisson equation is found:

A7 f(z,y) Zka 'pi(2,y) .- (53)

k=1

The value of the right-hand side of Eq. (22) is calculated on the boundary. The function is an
harmonic function (i.e. it fulfils the Laplace equation) and satisfies the boundary condition.

3. THE NUMERICAL CALCULATIONS

The exact solution is known for each example considered. Two error criteria are used to confirm the
accuracy of the solutions calculated numerically for the inhomogeneous boundary problem (1). The
criteria used are:

€max — the global maximal error

jug = |

Endax = MIa%
||



Comparison of two types of Trefftz method 667

€ms — the mean square error:

fhax|
max

1 i NP
Ems = —'(:L_—— ﬁ Z (’LL,,'¢ = ’U,g')2. (55)
=1 5

A distance between source and collocation points is introduced (see Fig. 1), to avoid the singularity
of the fundamental solution function. The influence of this distance, s, on the calculated results is
investigated.

O

\

IR R ST At O AR IR, | N . S

Fig. 1. The domain of the problems considered, with source points (x), collocation points (e) and distance
s indicated

All test solutions on problem (1) presented below are implemented on the domain 2 = [0, 1] x
[0,1]. The number of collocation points is NC4=4-NC.

Example 1
The forcing term and the boundary conditions considered in the first set of tests are:
iz = —2(m+y—x2 —y2) oand s u(ayy)=0 00  812.
This function f is represented in Fig. 2. The exact solution of this problem is
u(z,y) = (z—2%) (y—-9?) .
Table 1 shows that there is a very good approximation of the function f by the chosen radial

basis functions. The errors indicated in Table 2 confirm the accuracy of solutions obtained by the
method of fundamental solutions.

The results in Table 3 show that good approximations are obtained for function f and for the
solution of the problem using the second solution method.
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Table 1. Error in the approximation of the function f (Example 1) using Eq. (13) with C = 0.2 and S = 0.1
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Fig. 2. The forcing function f considered in Example 1

c=02 c=0.3

N Emdx €ms Einaoe €ms
9 .2370805 1.4039014E-02 .1930522 1.1877839E-02
16 1465487 6.9253277E-03 .1250229 6.6600363E-03
25 | 8.0822706E-02 | 3.0375984E-03 | 5.5877328E-02 | 2.4247430E-03
36 | 5.4956943E-02 | 2.2723987E-03 | 3.6412984E-02 | 1.3597832E-03
49 | 3.6066055E-02 | 1.2205222E—-03 | 2.0247996E-02 | 6.7211705E-04
64 | 2.5565803E-02 | 6.8597513E-04 | 1.4154106E-02 | 3.8922983E-04
81 | 1.8589854E-02 | 5.2528735E-04 | 1.3733625E-02 | 4.0787607E—-04
100 | 1.2621224E-02 | 3.1476223E-04 | 1.9448578E-02 | 9.9884078E-04
121 | 1.1562243E-02 | 3.0307425E-04 .3016626 1.8310498E-02

Table 2. Error in the solution of the inhomogeneous boundary problem (Example 1) using Eq. (13) with

C=0.2and §S=0.01

NC4 Emax Ems
40 .1608382 5.5307264E-05
44 1292201 3.1719854E-05
48 1046818 1.8679842E-05
52 | 8.5394941E-02 | 1.1243576E-05
56 | 7.0066795E-02 | 6.8975992E-06
60 | 5.7761610E-02 | 4.3014884E-06
64 | 4.7822256E-02 | 2.7213302E-06
68 | 3.9720606E-02 | 1.7441691E-06
72 | 3.3110030E-02 | 1.1319100E-06
76 | 2.7673844E-02 | 7.4239512E-07
80 | 2.3203671E-02 | 4.9194807E-07
84 | 1.9483345E-02 | 3.2965215E-07
88 | 1.6407317E-02 | 2.2292440E-07
92 | 1.3825138E-02 | 1.5184744E-07
96 | 1.1696047E-02 | 1.0508268E-07
100 | 9.8939491E-03 | 7.3039438E-08
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Table 3. Error in the approximation of the function f and of the solution of the inhomogeneous boundary

Ezample 2

problem (Example 1) by the polyharmonic functions method

I U

N Emax Es €max Es
9 | 0.177636E-14 | 0.419004E-15 | 0.111022E-14 | 0.291419E-15
25 | 0.444089E-14 | 0.146664E-14 | 0.324740E-14 | 0.987639E-15
49 | 0.384683E-07 | 0.249855E-07 | 0.794045E-06 | 0.244638E-06
81 | 0.107188E-09 | 0.690977E-10 | 0.380602E-08 | 0.100325E-08
121 | 0.500239E-12 | 0.315880E-12 | 0.291419E-10 | 0.623190E-11
169 | 0.783526E-12 | 0.145587E-12 | 0.114406E-09 | 0.693674E-11
225 | 0.981989E-11 | 0.172815E-11 | 0.132993E-08 | 0.856409E-10
289 | 0.191589E-09 | 0.424966E-10 | 0.433373E-07 | 0.245210E-08
361 | 0.228393E-09 | 0.349009E-10 | 0.465720E-07 | 0.237231E-08
441 | 0.116393E-09 | 0.171079E-10 | 0.208942E-07 | 0.114409E-08

0 o

Fig. 3. The function f considered in Example 2

The forcing term and the boundary conditions considered in the second set of tests are:

£ (,) = —62 6y - [%_4@-[3)2_4(3,_

#) |- (25 -

and
u(z =0) = —y3 + exp
u(z=1)=-1-33+exp
u(y=0)=— +exp
u(y=1)——3—21

o2

y—p_
o

)]
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The exact solution of this is given by:

i = g [— (x;ﬂy— (%)2] :

The calculations have been performed for a = 0.8,3 = 1.0.

The relatively good approximation obtained for function f using the radial basis functions in
form (14) is shown in Table 4. The approximate solution is obtained with good accuracy, as well
(see Table 5). The method based on polyharmonic functions gives correct results as well.

Table 4. Error in the approximation of function f (Example 2) using Eq. (14)

N Emax Ems
9 | 7.5146712E-02 | 9.6021872E-04
16 | 1.7227121E-02 | 2.3231516E-05
25 | 8.7877037E-03 | 5.3437820E-06
36 | 4.7276118E-03 | 1.1288827E-06
49 | 3.1483271E-03 | 4.1058800E-07
64 | 2.1704060E-03 | 1.5483226E-07
81 | 1.6283009E-03 | 8.1189093E-08
100 | 1.3087024E-03 | 5.4078491E-08

Table 5. Error in the solution of the inhomogeneous boundary problem (Example 2) using Eq. (14)

S'=:0:1 =02
NC4 Emax Ems Emax Ems
40 | 7.9539537E-02 | 5.6686299E-06 | .4505327 | 1.2065574E-02
44 | 6.3766003E-02 | 2.8746017E-06 | .3959395 | 9.3843434E-03
48 | 5.1620245E-02 | 1.5791411E-06 | .3498760 | 7.3275114E-03
52 | 4.2119622E-02 | 9.2406077E-07 | .3107251 | 5.7355100E-03
56 | 3.4580350E-02 | 5.6736548E-07 | .2772464 | 4.4959807E-03
60 | 2.8546453E-02 | 3.6514962E-07 | .2484514 | 3.5268692E-03
64 | 2.3673892E-02 | 2.4660204E-07 | .2235594 | 2.7675193E-03
68 | 1.9696236E-02 | 1.7170593E-07 | .2019358 | 2.1715669E-03
72 | 1.6443253E-02 | 1.2598420E-07 | .1830722 | 1.7035156E-03
76 | 1.3768792E-02 | 9.7632373E-08 | .1665487 | 1.3359719E-03
80 | 1.1592865E-02 | 8.2259589E-08 | .1520147 | 1.0473205E-03
84 | 9.7477436E-03 | 6.8561199E-08 | .1391798 | 8.2065666E-04
88 | 8.2062483E-03 | 5.7730514E-08 | .1278061 | 6.4283743E-04
92 | 6.9289207E-03 | 5.2247330E-08 | .1176900 | 5.0338404E-04
96 | 5.8757067E-03 | 5.0956356E-08 | .1086649 | 3.9408455E-04
100 | 4.9625635E-03 | 4.2635062E-08 | .1005799 | 3.0844563E-04

Table 6. Error in the approximation of function f and of the solution of the inhomogeneous boundary

problem (Example 2) by the polyharmonic functions method

f U

N P €s Erdax €s
9 | 0.413358E-01 | 0.141564E-01 | 0.734870E-01 | 0.258774E-01
25 | 0.573608E-03 | 0.240479E-03 | 0.569809E-02 | 0.155127E-02
49 | 0.290117E-04 | 0.674678E-05 | 0.615327E-03 | 0.934286E-04
81 | 0.122508E-05 | 0.226701E-06 | 0.462798E-04 | 0.465700E-05
121 | 0.356011E-07 | 0.698316E-08 | 0.210827E-05 | 0.174717E-06
169 | 0.870991E-09 | 0.197388E-09 | 0.764353E-07 | 0.580927E-08
225 | 0.146693E-10 | 0.598147E-11 | 0.170468E-08 | 0.210702E-09
289 | 0.113862E-09 | 0.262872E-10 | 0.200133E-07 | 0.122892E-08
361 | 0.136557E-09 | 0.202417E-10 | 0.220465E-07 | 0.112510E-08
441 | 0.747972E-10 | 0.904118E-11 | 0.160978E-07 | 0.717009E-09
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Example 3

The forcing function (represented in Fig. 4) and boundary conditions used in the third set of tests

are:

f (z,y) = sin (pz) sin (gy)

1
The exact solution of the problem is given by u (z,y) = __2—-i-—q_
p

tions have been made with p = 47 and ¢ = 4.
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&7 LT
WY
ARSI

20 4
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and  %(z,y)=0 -on 2.
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!

5 sin (pz) sin (qy). The calcula-

Fig. 4. The function f considered in Example 3

The method based on RBFs yields good approximations for the function f (Table 7) and for the
solution (Table 8). Unfortunately, the second method considered involves quite large errors (for a
low number of terms in the series). The accuracy of the method improves when the number of terms
in the series is increased. Errors equivalent to those obtained with the first method are obtained

with much higher computational effort (Table 9).

Table 7. Error in the approximation of function f (Example 3) using Eq. (12)

N €max €ms
9 | 3.829774TE-03 | 5.5551723E-06
16 | 3.8297747E-03 | 5.5551723E-06
25 | 3.6047916E-03 | 3.3331335E-06
36 | 3.8796824E-03 | 3.4999107E-06
49 | 3.8297747E-03 | 5.5551723E—-06
64 | 3.8645109E-03 | 3.6241070E—-06
81 | 2.9166634E-03 | 3.3797976E-06
100 | 3.5523642E-03 | 2.8986317E-06

Example 4

The forcing function and the boundary conditions used in the fourth set of tests are:
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= _7517r sin - sin fog sin Jny sin Y + 7i sin ke sin 77r_:1: sin o sin 5—
W= 4 1 e e 1 4 1
+ 157‘. sin E sin s sin 37r_y sin 57ry
8 6 4 4 4

which is shown in Fig. 5 and

u(z,y) =0 on O£0.

Table 8. Error in the solution of the inhomogeneous boundary problem (Example 3) using Eq. (12)

S=0.1 S =0.01
NC4 Emax Ems Emax €ms
40 | 1.9332042E-03 | 1.0661457E-06 | 1.7715383E-03 | 8.1745145E-07
44 | 1.9331488E-03 | 1.0658896E-06 | 1.7990620E-03 | 8.5465740E-07
48 | 1.9330464E-03 | 1.0656197E-06 | 1.8206269E-03 | 8.8522694E-07
52 | 1.9330051E-03 | 1.0654901E-06 | 1.8378687E-03 | 9.1057933E-07
56 | 1.9329484E-03 | 1.0653621E-06 | 1.8517866E-03 | 9.3163737E-07
60 | 1.9328984E-03 | 1.0652531E-06 | 1.8631699E-03 | 9.4926457E-07
64 | 1.9328718E-03 | 1.0651947E-06 | 1.8725926E-03 | 9.6412441E-07
68 | 1.9328465E-03 | 1.0651412E-06 | 1.8804518E-03 | 9.7670932E-07
72 | 1.9328296E-03 | 1.0651030E-06 | 1.8870661E-03 | 9.8743840E-07
76 | 1.9328208E-03 | 1.0650836E-06 | 1.8926734E-03 | 9.9662930E-07
80 | 1.9328108E-03 | 1.0650618E-06 | 1.8974541E-03 | 1.0045408E-06
84 | 1.9328005E-03 | 1.0650438E-06 | 1.9015539E-03 | 1.0113739E-06
88 | 1.9328016E-03 | 1.0650424E-06 | 1.9050946E-03 | 1.0173172E-06
92 | 1.9327921E-03 | 1.0650226E-06 | 1.9081606E-03 | 1.0224898E-06
96 | 1.9327842E-03 | 1.0650072E-06 | 1.9108255E-03 | 1.0270049E-06
100 | 1.9327875E-03 | 1.0650145E-06 | 1.9131614E-03 | 1.0309825E-06

Table 9. Error in the approximation of function f and of the solution of the inhomogeneous boundary

problem (Example 3) by the polyharmonic functions method

u

N Emax Es Emax Es
9 | 0.100000E+01 | 0.497009E+00 | 0.100000E+01 | 0.497009E--00
25 | 0.100000E+01 | 0.497009E+00 | 0.100000E+01 | 0.497009E--00
49 | 0.118764E+4-01 | 0.458319E+00 | 0.108636E-+01 | 0.449941E+-00
81 | 0.595988E-+00 | 0.164325E+00 | 0.109684E+01 | 0.272626E+4-00
121 | 0.102074E+01 | 0.157416E+00 | 0.432835E+01 | 0.495499E--00
169 | 0.262946E+4-00 | 0.378430E-01 | 0.163024E+01 | 0.154012E-+00
225 | 0.459867E-01 | 0.646133E-02 | 0.386610E+00 | 0.323181E-01
289 | 0.161664E-02 | 0.377384E-03 | 0.164938E-01 | 0.179782E-02
361 | 0.122916E-02 | 0.117503E-03 | 0.200465E-01 | 0.123574E-02
441 | 0.181308E-02 | 0.232300E-03 | 0.287571E-01 | 0.183550E-02

The exact solution of this problem is given by:

Trx 3y

o5y

T
u(z,y) =sin 5 sin = sin —Z—sm T

The fourth example is the most difficult to solve using the RBF method. As the RBF approximation
of function f is weak, the approximation of the solution is found with a mean-square error of 0.07%,
as it is shown in Tables 10 and 11. Better results are obtained by using the polyharmonic functions
method, as shown in Table 12.
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Fig. 5. The function f considered in Example 4

Table 10. Error in the approximation of function f (Example 4) using Eq. (11)

N Emax €ms
9 .2494453 1.3925240E-02
16 .3627093 2.3694286E-02
25 2055577 - 1.2584967E-02
36 .1416468 7.1109487E-03
49 | 9.7312033E-02 | 3.9964966E-03
64 | 6.8293795E-02 | 2.3214698E-03
81 | 4.9052790E-02 | 1.6569750E-03
100 | 3.6350735E-02 | 1.0619513E-03
121 | 2.7965140E-02 | 7.3561346E—-04

Table 11. Error in the solution of the inhomogeneous boundary problem (Example 4) using Eq. (11)

NC4 Emax Ems
44 | 9.4121024E-03 | 6.7816587E-04
48 | 9.3666166E-03 | 6.9940113E-04
52 | 9.3953684E-03 | 7.1001839E-04
56 | 9.3951300E-03 | 7.2642759E-04
60 | 9.3854666E-03 | 7.3569641E-04
64 | 9.3674809E-03 | 7.2640716E-04
68 | 9.3659833E-03 | 7.2793610E-04
72 | 9.3794465E-03 | 7.2665303E-04
76 | 9.3651935E-03 | 7.1856938E-04
80 | 9.3597248E-03 | 7.4665528E—-04
84 | 9.4242990E-03 | 7.3481060E-04
88 | 9.3083978E-03 | 7.3053350E-04
92 | 9.4419494E-03 | 7.2038569E-04
96 | 1.0760002E-02 | 2.8416610E-04
100 | 8.2345903E-03 | 2.0362045E-04
104 | 3.0615605E-02 | 9.1372227E-04
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Table 12. Error in the approximation of function f and of the solution of the inhomogeneous boundary
problem (Example 4) by the polyharmonic functions method

f U

N Emax Es Emax Es
9 | 0.170473E+01 | 0.786619E+00 | 0.886872E+00 | 0.362267E+00
25 | 0.151951E+00 | 0.520982E-01 | 0.316564E+00 | 0.130616E+00
49 | 0.228969E-02 | 0.826573E-03 | 0.137148E-01 | 0.389959E-02
81 | 0.128367E-03 | 0.384912E-04 | 0.143264E-02 | 0.303525E-03
121 | 0.334161E-04 | 0.719358E-05 | 0.806700E-03 | 0.903163E-04
169 | 0.159148E-05 | 0.338289E-06 | 0.559346E-04 | 0.507279E-05
225 | 0.553304E-07 | 0.137933E-07 | 0.248618E-05 | 0.232883E-06
289 | 0.147530E-08 | 0.538832E-09 | 0.643891E-07 | 0.806947E-08
361 | 0.561437E-09 | 0.712967E-10 | 0.430671E-07 | 0.287679E-08
441 | 0.207241E-09 | 0.248911E-10 | 0.338868E-07 | 0.163343E-08

The localisation of the absolute local error is shown in Fig. 6. The largest errors occur at the

corners of the region considered.

Fig. 6. The local error distribution for the solution of Example 4

4. CONCLUSIONS

The examples presented in this paper show that quite accurate approximations are obtained for
the forcing function f in the Eq. (1) using radial basis functions. Such approximations yield good
results for the solution of the inhomogeneous boundary problem using the method of fundamental
solutions.

The second method considered is quite interesting. It represents a new approach to the solution
of the problem using the inverse operator. As it has been shown, the method gives very good
approximations for the solution, with one exception.

Generally speaking, both methods are adequate procedures to solve the inhomogeneous elliptic
problems.
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