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Standard higher order finite elements often perform unsatisfactory in contact problems. The major dif-
ficulties are caused by uneven distribution of nodal forces resulting in oscillating contact pressures. The
paper presents a new approach that eliminates this drawback. The weight functions are chosen in such
a way that even distributions of nodal forces are obtained. It is achieved by applying piece-wise linear
functions. Two new 2D isoparametric quadratic elements are derived: 6-node triangle and 8-node quadri-
lateral, and tested in many examples. The new elements have unsymmetric stiffness matrices, but the
provided examples show their good performance in contact problems.

1. INTRODUCTION

Contact problems are common in many engineering applications and a lot of progress has been
achieved during recent years (see e.g. [3] for additional references). However, it seems that standard
higher order elements experience difficulties in many rather simple cases (see e.g. [5]). One possible
explanation of these problems is that the resulting nodal forces are unevenly distributed giving
oscillating pressures. In extreme cases can even tensile forces appear whereas in reality contact
pressure occurs. In the general purpose finite element program ABAQUS the 6-node triangular
finite element CPS6M gives smooth nodal force distributions, but it is patented and no information
is available about its design [1]. The present study follows the same line of reasoning and examines
possibilities to obtain even pressure distributions by modification of weight functions.

In solving a problem by applying FE method, the weight functions play an important role. They
sometimes decide how good or accurate results will be achieved. The weight functions can be defined
in different ways leading to diverse methods, such as the point collocation method, the subdomain
collocation method, the least-squares method, or the Galerkin method, etc. (see e.g. [9]). Accuracy
of each method depends severely on problems solved. The Galerkin method is most popular when
solving elliptic equations and results in symmetric stiffness and mass matrices which leads to lower
computational costs. However, other weight functions are also used when required. For example,
exponential weight functions are employed when considering incompressible gas liquid flow in [10].
In this paper the major focus is on contact problems, either static or dynamic, by using quadratic
elements. The standard elements constructed according to the Galerkin method result in uneven
normal pressures and tangential shear stresses along the contact area. As shown in examples, it can
be concluded that the values of contact forces at corner nodes are around half of those at midside
nodes.

In this paper a new weighted residual method for 2-D frictional contact problems is proposed.
The starting point of this new method is to make use of piece-wise linear weight functions and
quadratic shape functions to establish FE formulations. An obvious implication is that the stiffness
and mass matrices will not be symmetric. Therefore, from the theoretical point of view the proposed
formulation is more expensive than the Galerkin method. However, in many formulations considering
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friction (see e.g. [3, 11]) the resulting matrices are unsymmetric anyway so in practice this drawback
may not matter at all. In any case, if the results turn out to be more accurate, the extra consumed
time will be well spent.

Many examples will be presented further in the paper. The first one explains how the method
works compared to the Galerkin method in a simple structure consisting of two elements. Several
other examples show the performance and efficiency of the developed new method in 2-D contact
problems.

2. WEAK FORMULATION

For 2-D problems, the displacements, strains, stresses, tractions and body forces do not depend on
z-coordinate. In this paper problems under plane stress, plane strain and axisymmetric conditions
are considered. The basic differential equations of motion, including dynamic loads but without
damping, can be written in matrix notation as

Vs + pii+b = 0, ' (1)
where
0 0
il . el
e Oz dy ) ) ey
vl= is the matrix differential operator, s = [04; oyy 04y]" is the stress vector,
o0 0
B e e
dy Oz
p is the material density, u = [u, uy]T is the displacement vector and it = 8%u/0t?, whereas

= [bz by]" is the body force vector.
The corresponding weak formulation of a 2-D problem is

8 T
/(vv) stdA+/vTiiptdA=/thtdF+/vatdA, 2)
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where v is the virtual displacement vector, A is an area of interest of thickness ¢(z, ) with boundary

L andtsits, ty] is the traction vector.
The displacement vector u is approximated by

u = Na (3)

in which N is the shape function matrix and a is the vector containing displacements at nodes, so

u = Na. (4)
Assumlng small deformatlons and plane stress or plane strain conditions, the strain vector
e = [z Eyy Yzy)” is derived from the displacements using the kinematic relation

e=Vu. (5)

Therefore, defining B = 6N, the stress vector for an elastic problem takes the form
s = DBa, (6)

where D is the constitutive matrix.
Let us express the virtual displacement vector with help of weight functions as

v = W, (7)

where W is the matrix of weight functions and ¢ an arbitrary vector of the same size as a.
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Defining
B=VW (8)

and substituting Egs. (4), (6) and (7) into Eq. (2) results in the FE method equation

Mai + Ka = f, : (9)
where
K = /ETDBtdA (10)
A

is the stiffness matrix,

M = /WTNptdA (11)
A

is the mass matrix and

f=/WTttdF+/WTbtdA (12)
r A

is the force vector.
Let us consider the natural frequencies of vibration, i.e without external forces, f = 0. Each
displacement executes harmonic motion in phase with all other displacements. Therefore

a = asinwt,

i =—w?asinwt,

(13)

where a is the amplitude of nodal displacements and w is the natural circular frequency. Equations
(9) and (13) yield the following eigenvalue problem

(K —w’M)a = 0. (14)

Matrix B depends on which method is adopted to define weight functions. If weight functions
are taken the same as shape functions, that is, Galerkin method is applied, W = N and B =B.
This paper proposes another method to define weight functions for 2-D triangular and quadratic
elements concerning contact problems, which thereby leads to a new way to calculate stiffness and
mass matrices.

3. DERIVATION OF WEIGHT FUNCTIONS

The basic characteristic of the method is to use weight functions which are piece-wise linear over
the element while shape functions are kept quadratic as in the standard formulation. Let us start
from a 6-node isoparametric triangular element, shown in Fig. 1 in the parent domain, to describe
the principles of the method in deriving the weight functions.

In the element shown in Fig. 1, node 1 is at the origin of the coordinate system. Line segments
1-2 and 1-3 are along z- and y-axis, respectively, and have unit lengths. Nodal point 4, 5 and 6 are
located at the middle points of line segments 1-2, 2-3 and 3-1 respectively. The element consists of
four subelements: Ay, Ay, A3 and Ay.

The explanation about how the weight functions are defined in the method is presented in Fig. 2,
in which weight functions of nodes 1 and 4 in the 6-node triangular element are shown.

As Fig. 2 shows the weight functions are created according to the following principles: 1) The
weight function of a node is non-zero only over the adjoining subelements to the corresponding
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Fig. 1. 6-node isoparametric triangular element in parent domain

Fig. 2. Weight functions of node 1 and node 4

node in the triangular element, for example, w, weight function for node 1, is non-zero only over

the subelement A;; 2) The weight function of a node is linear over its non-zero domain; 3) The

weight functions must be continuous over the element; 4) The value of a weight function is 1 at the

corresponding node and 0 at all the other nodes. According to these principles six weight functions

for every node in the triangular element are defined as
{ wy = 1-2z—-2 in A,

15
wp = 0 in Az, Az, A4; ( )

wy = 2r—1 in A,
wy = 0 in A, Az, Ag;

wg = 0 in A, A, Ay

wy = 2z in A,

2—-2x—2y in A,
wy = 0 in A3,

W4

{ wy = 2y—1 ?n As, (17)

Wy = 1—2y in A47
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wg-= 70 in A,
Wy = 2y in Ag, (19)
ws = 2z in As,
Loy = 22+2y—1 in.Aa
4 weg = 2y in A,
We = 0 in Ag, (20)
ﬁ we = 2—2x—2y in As,
\ W = 1-2zx in A4.

4. STIFFNESS MATRIX

The stiffness matrix is expressed by Eq. (10). The element stiffness matrix K€ for a 6-node triangular
element can be calculated by a similar formula

K® = /ETDBtdA (21)
Ae€

in which A€ is the area of the triangular element, ¢ is the thickness of the element, and assuming
isotropic linear elasticity the constitutive matrix is expressed by

1224 0

E
3 . = v 1 0 , (22)

0 0 —;—(1——1/)

where F is the Young modulus and v is the Poisson ratio.

B matrix contains derivatives of the standard quadratic shape functions, whereas B contains the
derivatives of the weight functions Egs. (15)-(20). However, since the derivatives of weight func-
tions are not continuous over all the element, but constant within each subelement, the numerical
integration should be performed over each subelement and the results added together according to

4
K=Y / B,"DBtdA;, (23)

i=1 A

where B; is B in the corresponding integration domain A;. It is obvious that the stiffness matrix
K¢ derived by this method is unsymmetric.
The mass matrix M€ can be derived in the same manner as the stiffness matrix.

5. 8-NODE QUADRILATERAL ELEMENT

The weight functions for a 8-node quadrilateral element could be derived in a similar way as for
the 6-node triangular element. However, in this paper the main focus is on the discussion of the
merits of the derived 6-node triangular element. Therefore, the stiffness and mass matrices for a
8-node quadrilateral element will be set up from the matrices of two 6-node triangular elements.
The procedures could be completed as follows: firstly, build a 9-node structure which consists of two
6-node triangular elements, as shown in the left side of Fig. 3; and then remove internal D.O.F. by
static condensation in the linear static problem or by Guyan reduction in the eigenvalue problem
4], resulting in an 8-node quadrilateral element shown at the right side of Fig. 3.
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6. INITIAL STRESS MATRIX

Fig. 3. Creation of 8-node quadrilateral element

Initial stress matrix K, is usually developed to calculate critical load of a structure. By solving

~

(K + AK,)d = 0,

(24)

where d is the displacement vector identifying the buckled shape, but not its magnitude, the critical
(buckling) load is associated with A, the lowest magnitude eigenvalue of Eq. (24).

The derivation of initial stress matrix is described in detail in e.g. [2] or [7]. However, since this
paper focus on new weight functions for 2D triangular and quadratic elements, the derivation of
initial stiffness matrix must be modified in the same way as the derivation of stiffness and mass
matrices was. Therefore, the initial stress matrix can be expressed by

K, = /éTSthA, (25)
A
where G and S matrices are calculated in the usual way, while G is modified as follows
! dw1 dwn i
dx 0 dz 0
dwy dwy,
e _d? dy :
G = (26)
o % o G
dz dz
dw1 dwn
i dy dy |

and n is the number of nodes.

7. NUMERICAL EXAMPLES

In this section a simple example will be presented first to explain how this method works in compar-
ison with the Galerkin method and then more numerical examples will be investigated to explore
the properties of the method developed in application to contact problems. The algorithm has been
performed by inserting a user subroutine into the general purpose finite element program ABAQUS.
The user subroutine calculates element stiffness and mass matrices based on the described method,
the right hand side force vector as well as stresses and strains at the integration points. For the
purpose of comparison the corresponding results either from standard ABAQUS element or from
reference papers are also presented.
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7.1. Simple structure with two elements

Let us present a simple example, which explains how the method works. The structure in Fig. 4 is
taken into account. It is a square with unit side length and thickness. It endures unit distributed
load on its upper side and is constrained on the y-direction along its lower side. It is meshed into
two 6-node triangular elements with 9 nodes altogether.
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| 1 |

1 1

Fig. 4. The simple structure with two triangular elements

The results concerning reaction forces at constrained nodes are given in Fig. 5 for the weight
functions based on the new method and on the Galerkin method, respectively. On the right side of
Fig. 5, which shows the results from the Galerkin method, the reaction force at central node is four
times larger than the reactions at the other two nodal points. Therefore, if there are more than two
elements located along the boundary surface (in real analysis this is always the case), the values
at corner nodes will be half the size as those of those at midside nodes. That is, the reaction force
obtained from the Galerkin method is nor evenly distributed along the boundary surface. In fact
the distribution of vertical reaction forces has a sawtooth shape. On the contrary the new method
will lead to even distributions, which is reasonable, as shown on the left side of Fig. 5.
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Fig. 5. The reaction force calculated from the new method and the Galerkin method
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7.2. Elastic block on a rigid surface

This example was, for the first time, presented by Oden and Pires [8]. Wriggers et al. have also
used this example in [11]. The problem considers an elastic block pressed against a rigid surface
and at the same time pulled by a tangential force uniformly distributed along its right lateral side
as shown in Fig. 6. As in the original example friction is not present for the first and last elements
in the contact area, i.e. perfectly smooth boundary condition is assumed under these two elements.
Young’s modulus F, Poisson’s ratio v and the coefficient of friction are taken equal to 1000 per
length square, 0.3 and 0.3, respectively.

Py
o $i-b Lo P e R
2 Px
K
A 36 L
7 & 7

Fig. 6. The elastic block on a rigid foundation

The example has been analysed by two kinds of elements: 6-node triangular element and 8-
node quadrilateral element. The latter is derived by condensing two 6-node triangular elements as
explained in the previous section. The standard ABAQUS elements adopted to make a comparison
with 6-node triangular element are CPS6 and CPS6M whereas CPS8 is used to compare with 8-node
quadrilateral element. The elastic block is meshed with 400 6-node triangular elements and with
200 8-node quadrilateral elements, respectively.

400
350 —: user element A
*: cpsém I
300 ——: cps6
|
contact normal pressyre | \
250 SR i K i
NN I\ noh -
200 \ !

15

100_’ i Vo

Contact stresses

X-Coordinate

Fig. 7. Stresses along the contact area calculated with 6-node triangular elements
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Figures 7 and 8 give comparison of contact stresses. For CPS6 and CPS8, both contact normal
pressure and tangential shear stresses look like a sawtooth. The results based on the user defined
element according the method fit with those obtained from CPS6M very well.

400
= _usereelement

Z5Cps '

300 contact normal pressure

200

100

Contact stresses

-100

_200 1 1 1 1 1 1 1 J
0 -

X-Coordinate

Fig. 8. Stresses along the contact area calculated with 8-node quadrilateral elements

7.3. Contact of an elastic body and a parabolic rigid punch

This example also originates from Oden and Pires [8]. In this example, an elastic body is indented
by a parabolic rigid punch and subjected to applied normal tractions t, as shown in Fig. 9. Young’s
modulus, Poisson’s ration and the coefficient of friction are taken equal to 1000 (non-dimensional
units), 0.25 and 0.6 respectively.

T

L 4
1

&

Fig. 9. Indentation of an elastic body, subjected to normal traction, by a parabolic rigid punch

For the purpose of comparison with results of Oden and Pires 8], the elastic body is meshed in
the same way. The mesh consists of 76 8-node quadrilateral element. The normal force, which is
defined to cause an indentation of depth d = 0.25, is approximately 215. The applied total tangential
force is 10% of the normal force. The stresses on the contact area from Oden and Pires, standard
element CPS8 and from user element are given in Fig. 10.
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Fig. 10. Stresses distribution along the contact area

7.4. Rigid punch acting on an elastic body

This example is adopted to check reaction forces along the contact surface. The problem was studied
by Jarzgbowski and Maciejewski [5]. The dimensions and mesh of the elastic body are shown in
Fig. 11. The body is constrained on its both lateral sides and on the lower side. The plate is placed
at the centre of the elastic body’s upper side. The mesh is constructed in such a way that smallest
elements are exactly under the rigid plate and the elements along the edges have the largest possible
dimension. Young’s modulus, Poisson’s ration and the friction angle are taken equal to 1.2 - 108 kN
per length square, 0.25 and 20, respectively. Unit thickness is assumed. The applied pressing force
is 40 kN.

0.3

L 1.0

1

AV_

Fig. 11. Profile and mesh of the elastic body

Jarzebowski and Maciejewski pointed out that the 8-node element predicted erroneous distri-
butions of nodal forces and should be avoided in the case of contact problem [5]. However in our
study, the 8-node rectangular element created by the method gives satisfactory results in this con-
tact problem. Results from ABAQUS standard element CPS8 and from user element are presented
in Figs. 12-14.
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Fig. 12. Stresses distribution along the contact area

Fig. 13. Reaction forces along the contact area using CPS8

Fig. 14. Reaction forces along the contact area from user element
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7.5. Contact of a changing cross-section column and rigid surfaces

In this example a changing cross-section column which can be created by rotating the section, shown
in Fig. 15, around axis ab is considered. The column has four surfaces contacting with rigid surfaces.
Young’s modulus, Poisson’s ratio and the coefficient of friction are taken equal to 2.1 - 10® kN per
length square, 0.3 and 0.3, respectively. The density of the column is taken the same as that of
steel, 7856 kg/m3. The pressing load is applied in such a way that the downward displacement of
the contact surface 4 is equal to 1 mm.

contact surface 4

f
0.2 contact surface 3

0.2 - contact surface 2

T
I NSNS S
Immma

o
N
T

contact surface 1

TTIT

.05 0.1

Fig. 15. Profile and mesh of the section

The mesh of the section consists of 759 8-node axisymmetric elements. The section is constrained
along the axis of rotation in the horizontal direction. The results in form of contact stresses along
every contact surface are given in Figs. 16-23.

2500
G ¢
1500
1000
500

0 . . .
0 0.02 004 006 008 01 012 0.14 016 0.18 02

Fig. 16. Normal pressures along contact surface 1

Application of this method in dynamics has been also checked in this example. Table 1 gives the
first six eigenvalues calculated by using different elements. As Table 1 shows, the method developed
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Fig. 19. Tangential shear stresses along contact surface 2
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Fig. 20. Normal pressures along contact surface 3
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Fig. 21. Tangential shear stresses along contact surface 3
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Fig. 22. Normal pressures along contact surface 4
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Fig. 23. Tangential shear stresses along contact surface 4

in the previous sections works quite well: the maximum difference in the first six eigenvalue between
user element and standard ABAQUS elements CAX6 and CAXS is less than 0.3%.

Table 1. The first six eigenvalues from different elements

Mode No. 1 2 3 4 5 6
CAX6 36389. | 1.9319E+-06 | 3.8114E+06 | 3.9787E+06 | 5.7680E+06 | 7.6025E+06
6-node user | 36386. | 1.9317E+06 | 3.8104E+06 | 3.9763E+06 | 5.7636E+06 | 7.5964E+06
element
CAX8 36386. | 1.9320E+06 | 3.8113E+06 | 3.9784E+06 | 5.7679E+06 | 7.6010E+06
8-node user | 36390. | 1.9310E+06 | 3.8080E+06 | 3.9723E+06 | 5.7537E+406 | 7.5789E+06
element

7.6. Buckling load of a beam

This problem originates from Kleiber and Wozniak [7]. A thin simply supported beam in plane stress
state is taken into consideration. This type of modelling makes it possible to analyse the in-plane
deformation of the beam only. The geometry and mesh for half the beam, that allows to analyse
the first mode of buckling, are given in Fig. 24. The second (antisymmetric) mode of buckling is
analysed with the same mesh, but different boundary conditions as shown in Fig. 25. The thickness
of the beam is 0.1 m. Young’s modulus E and Poisson’s ratio are 2.07-10!! N per square meter and
0 (as in the beam theory), respectively. A horizontal concentrated load P is applied at point A.

w800

0.32m |/
Il

Fig. 24. Mesh and boundary conditions for symmetric in-plane buckling of a simply supported beam
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Fig. 25. Mesh and boundary conditions for antisymmetric in-plane buckling of a simply supported beam

Let us note that the classical Euler beam buckling stress is given in this case by the formula

n’m?EIl
AL?

in which I is the moment of inertia, L is the length of the beam, A is the cross-sectional area and

n is the mode number. For the first mode o, = 2660 MPa, whereas for the second mode o, =

10640 MPa. The calculated buckling stresses using ABAQUS standard element CPS6, modified
element CPS6M and 6-node user element are given in Table 2.

Ocr =

(27)

Table 2. Critical stresses (N/m?) for the first and second mode using CPS6 and 6-node user element

Mode 1 2
CPS6 2.6208E+09 9.8096E+09
CPS6M 2.6105E+09 9.6683E-+09
6-Node User 2.5608E+09 9.1833E+09
Element

The difference from the analytical results is 3.7% and 13.7% for the first and second mode,
respectively. However, notice that the critical values obtained from the new element are on the safe
side, what can be advantageous in many applications.

8. CONCLUSIONS

The paper proposes a new method to establish piece-wise linear weight functions for 2-D quadratic
elements: 6-node triangular element and 8-node quadrilateral element. Derivations of stiffness and
mass matrices of a 6-node triangular element by using this new method are presented. The stiffness
and mass matrices of an 8-node quadrilateral element are also derived by condensing two 6-node
triangular elements. Numerical examples considering contact problems are given and the results are
compared between different methods showing good performance of the proposed method concerning
mostly 2-D contact problems.
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