Computer Assisted Mechanics and Engineering Sciences, 10: 339-351, 2003.
Copyright © 2003 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Application of Trefftz method to steady-state heat
conduction problem in functionally gradient materials

Eisuke Kita

Graduate School of Information Sciences
Nagoya University

Youichi Ikeda

Department of Mechanical Engineering
Daidoh Institute of Technology

Norio Kamiya
Graduate School of Information Sciences
Nagoya University

(Received October 15, 2001)

This paper describes the application of Trefftz method to the steady-state heat conduction problem on
the functionally gradient materials. Since the governing equation is expressed as the non-linear Poisson
equation, it is difficult to apply the ordinary Trefftz method to this problem. For overcoming this difficulty,
we will present the combination scheme of the Trefftz method with the computing point analysis method.
The inhomogeneous term of the Poisson equation is approximated by the polynomial of the Cartesian
coordinates to determine the particular solution related to the inhomogeneous term. The solution of
the problem is approximated with the linear combination of the particular solution and the T-complete
functions of the Laplace equation. The unknown parameters are determined so that the approximate
solution will satisfy the boundary conditions by means of the collocation method. Finally, the scheme is
applied to some numerical examples.
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1. INTRODUCTION

Functionally gradient material is the material of which physical property changes gradually from one
surface to the other. Although the material is the composite material which combined the material
of a different kind, there is no joint between different kind of materials because two materials are
mixed on an atomic level. Therefore, the material is hard to break when it is stretched by the outer
force. The field to which functionally gradient material is expected most is a use as super-heat
resistance structure material used for a rocket engine, a space shuttle, a nuclear fusion reactor,
a chemistry plant, and so on.

The steady-state heat conduction problem in the functionally gradient material can be mod-
eled as the boundary value problem of the nonlinear Poisson equation if the heat conductivity
changes gradually. When the boundary-type solution procedures such as boundary element and
Trefftz methods are applied to the boundary value problem of the nonlinear Poisson equation, there
exits a great difficulty due to the inhomogeneous term of the Poisson equation. In the boundary
element formulation, the integral equation derived from the governing equation has the domain in-
tegral term related to the inhomogeneous term and therefore, the domain discretization is necessary.
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For overcoming this difficulty, some researchers have been studying Multiple Reciprocity Method
(MRM) [1, 2], Dual Reciprocity Method (DRM) [3-6], computing point analysis scheme [7, 8] and
so on. In the multiple reciprocity method, the application of the Gauss—Green formula transforms
the domain integral term into the infinite series of the boundary integral terms. It is proven math-
ematically that the solution converges to some value as the number of boundary integral terms
increases. In the dual reciprocity method, the inhomogeneous term is approximated by relatively
simple function. The domain integral term is transformed into the boundary integral term by using
the particular solution related to the inhomogeneous term and applying the Gauss-Green formula.
The inhomogeneous term of the governing equation, in the steady-state heat conduction problem in
the functionally gradient material, includes the derivatives of the unknown function. In the bound-
ary element method, the additional process to approximate the derivatives is necessary, which is
somewhat difficult. For overcoming this difficulty, this paper presents the combination method of
Trefftz method and the computing point analysis scheme [7-14]. Trefftz method is boundary-type
solution procedure using regular 7-complete functions. The solution of the problem is approximated
by the linear combination of the T-complete functions and the unknown parameters are determined
so that the solution satisfies the boundary condition. The authors applied the same formulation for
solving the nonlinear Poisson equation in the previous studies [15, 16]. This paper describes the
application of the scheme to engineering problem.

In the present method, an inhomogeneous term including the derivatives of the unknown function
is approximated by the 5-order polynomial in Cartesian coordinates to derive the particular solution
related to the inhomogeneous term. The use of the particular solution transforms the boundary
value problem of the Poisson equation into that of the Laplace equation. Once the Laplace problem
is solved for the homogeneous solution by the boundary data alone, the solution of the problem is
estimated from the homogeneous and the particular solutions. Since, in Trefftz method, the unknown
function is approximated with the linear combination of the regular T-complete functions, direct
differentiation of the approximate expression leads to its derivatives. This process is straightforward
and easier than the boundary element method. Finally, we shall consider as the numerical examples
the functionally gradient materials of which heat conductivities are a linear and quadratic functions
in order to examine the property.

2. FORMULATION
2.1. Governing equation and boundary conditions

When the heat conductivity A is given as a continuous function, the steady-state heat conduction
problem of the functionally gradient material can be modeled by the governing equation:

V{A\Vu} =0 (in £2) (1)
and the boundary conditions:

u'=q on I,
=3 (L) -
q=7 (on Iy
where ¢ = Ou/0n and {2, I, and I; denote the object domain under consideration, its potential
and the flux ¢ specified boundaries, respectively. n denotes the unit normal vector on the boundary
and (*) the specified value.
Equation (1) can be expanded as follows.

1
Viu+ FVAVu =0, (3)
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where the second term of the left-hand side is defined as

e %ku. (4)

The term b means an inhomogeneous term for the inhomogeneous property of the material. In
the traditional boundary element formulation, the integral equation has the domain integral term
related to the inhomogeneous term.

2.2. Transformation of differential equation

The inhomogeneous term b is approximated by 5-order complete function of the Cartesian coordi-
nates;

b=ci+cxr+cy+- -+ CQOwy4 + 6212/5
= CTI‘, (5)

where ¢ and r mean the unknown parameter and the coefficient vectors, respectively, which are
defined as

¢l = {c1,¢c0,--+ ,ca1}, (6)
vl = {ry,ro, - ,T1}
= {1,2,y,2% oy, v2, 23, 2%y, 32, 0%, 24, 2By, 2y?, ot ot 20, 2ty 28R 2B at 00) (D)

Applying Eq. (5) to (3), we have
Vi +cTr=0. (8)

Assuming the homogenous solution of Eq. (8) as uP and the particular solution related to r; as
u?, the solution of the problem wu is given as

h
u=u"+cuf + coud + -+ + cnuby

= uP + cTu?, 9)
where u? = {uf 3, - ,ub;}T and u” and uf satisfy the following equations.

Viu® =0, (10)

V2 +7; = 0. (11)

Since r; is polynomial, the particular solution uf can be estimated easily.

Substituting Eq. (9) to Egs. (3) and (2), the boundary value problem can be transformed into

vVt =0 (in 02) (12)

(13)

where ¢" = 9ul/On and ¢f = dul /on.
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2.3. Trefftz formulation of two-dimensional Laplace equation

Trefftz method is formulated by using the non-singular T-complete function. T-complete functions
are determined so as to satisfy the governing equation [12];

u* g {uI,... ,usu_l,u;u’...}T
- SR ,%[z#],g[zu],...}T, (14)
where z = z + jy and j = /-1.

The potential u” is approximated by the linear combination of the T-complete functions uj;

ul ~ gt = a1u] + aguy + - + ayuly
= aTu*, (15)
where N is the total number of the T-complete functions and a = {a1,--+ ,an}T denotes the

unknown parameter vector. Direct differentiation of the above equation leads to the approximate
expression of the flux:

¢ ¢ =——=aqi +ag; + - +angy
=alq". (16)

Since the T-complete functions are determined so as to satisfy the governing equation, Equations
(15) and (16) satisfy Eq. (12). They do not satisfy the boundary condition (13) and therefore, the
residuals yield:

R, = u'-wt=aTu*-ah#£0 onFu}

R, = ¢"-g"=aTq*-g" #0 onfyf’
In this study, the unknown parameter a is determined so that the residuals are minimized by means

of the collocation method. The residuals R, and R, are forced to be zero at the boundary collocation
point P;, so we have

Ry(P,) = aTu*(P)-a*(PB)=0 (R-eru)}
Ry(P) = aTq*(R)-g"(P)=0 '

By rearranging the equation, we have

Ka =f, (17)
where
( up o uly |
u* ) u*
K=| M - (18)
B ieas Iin
| q7wq1 qX/qu J
f = {ﬂl"" ,EMuazjla"' )qu}Ta (19)

ui(R) = ufj, ¢ (B) = g, u(P) = 4;,q(P;) = §;- My, and M, mean the total numbers of the collo-
cation points on the boundaries I, and I7, respectively. The row and the column of the coefficient
matrix K are equal to the total numbers of the collocation points and the T'-complete functions,

respectively. Equation (17) is solved by the singular value decomposition [17].
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2.4. Update rule of unknown parameter c

The previous section describes the Trefftz formulation for the boundary value problem of two-
dimensional Laplace equation. The boundary value problem defined by Egs. (12) and (13) includes
the unknown parameter c. Since ¢ depends on the unknown function wu, the iterative process is
necessary for solving the problem. We shall describe here the iterative process.

Holding Eq. (5) at the iteration steps (k) and (k + 1), we have

pik+D) — pTelk+1)

B8 = fTelk)

Subtracting both sides of the equations, we have
pk+D) _ p(k) — pT (k1) _ (b))
= rT Ac. (20)

Ac is determined so that Eq. (20) is satisfied by means of the collocation method at the colloca-
tion points placed in the domain and on the boundary, which are referred as “computing point”.
Equation (20) is held at the computing point Q;

r7(Qi)Ac = bE+D) — p(k)
S b(u(k)) —rTck)
= Ab(Qi).

The above equation is held at all computing point to be assembled as
Dic=T (21)

where D and f mean the coefficient matrix and vector. Equation (21) is solved for Ac by the singular
value decomposition [17].
The parameter c is updated by

cktl) — (k) + Ac. (22)

The convergence criterion is defined as

fiag
£33 ; |Ab(Q:)] < 7, (23)

where 7, is the positive number specified by a user.

The inhomogeneous term includes the derivative of the unknown function u”. In the Trefftz
method, the function u” is approximated by Eq. (15) and therefore, direct differentiation of Eq. (15)
leads to the expression of the derivatives:

Uk = aTu:kk, (24)

where k = z or y and (-) » means'the partial differentiation with respect to k. Since u* is a regular
function, it is easy to analytically differentiate u* with respect to r and 6;
ou*
oz
Ju*
9y

=40 - ,gg[ﬂzu—l],c\\,[uzu—l], RS (25)

o {07"' ’%[jﬂzu_l]ag[j/lz”_l]v"'}' (26)
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2.5. Algorithm of present scheme

The algorithm of the present scheme is as follows:
1. Set k — 0 and assume c(©),

2. Solve the boundary value problem defined by Eqs. (12) and (13) and estimate inhomogeneous
term b at .the computing points.

3. Check the convergence criterion (23). If the condition is satisfied, the results are printed out. If
not so, the process goes to the next.

4. Solve Eq. (21) for Ac.
5. Update ¢ by Eq. (22) and set k « k + 1.

6. Go to step 2.

3. NUMERICAL EXAMPLES
3.1. Exmaple 1

We shall consider as the first example that the heat conductivity A is a linear function in z-
coordinate;

A =d; + dox,

where d; is specified to be 200 and d; is taken as 20, £100, £140. The governing equation, in this
case, is given as

d2 ou

v? _— =
i di + dox Oz

The boundary condition is specified as shown in Fig. 1.

y
A
=
(-1, 1) 7 (1,1)
=0
» X
0
u=200
(-1,-1 " 1,-1)
q:

Fig. 1. Numerical example
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The theoretical solution is as

In [(d1 <+ d2$)/(d1 — dz)]
In [(dl + dz)/(dl — dg)] ’

The analysis is carried out with 15 T-complete functions, 44 boundary collocation and 0, 1, 9 or 17

inner points. The placement of the points is shown in Fig. 2. All boundary collocation and inner
points are taken as the computing points. The initial values of the parameter c; is specified as zero.

u® =200 -

1l o o) o |

X X X
1 © 0 O 4
T T o M = 45
+ X &% X 4 x M =53
1 1 0 M = 61
1 O 0 0 1

X X X
T o (o] o T

Fig. 2. Placement of collocation and computing points

The computational error is estimated at the 25 estimation points which are distributed uniformly
in the object domain. One can take as the error estimator, the absolute error estimator

1 T
E11‘=2—52|u—ue|

or the relative error estimator

1 u
:
Eu_é-s—zyl—uz .

This paper employs the absolute error estimator because u®® is zero on the part of the boundary.

Figure 3 shows the convergence history of 7 in the case of dy = 20. The abscissa and the
ordinate indicate the number of the iteration and 7, respectively. In all cases, n converges at 5
iteration step. The converged value in the case of M, = 61 inner points is much smaller than the
other cases. Figure 4 shows the convergence history of E,. The abscissa and the ordinate indi-
cate the number of the iteration and FE,, respectively. The iteration step at which E, converges
to any value increases and the final value of E, decreases as the number of the inner points in-
creases. At the different values of dy, the analysis is carried out by M. = 61 points. Figure 5 shows
the distribution of u. The abscissa and the ordinate indicate the z-coordinate of the estimation
points and u, respectively. We notice that the numerical solutions well agree with the theoretical
ones.

Figure 6 shows the convergence history of the parameter c; in the case of dy = 20 and M, = 61.
We notice that all parameters ¢; converge to any value at a few iterations. The parameters finally
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10°
10" -~ M= 44
-- M= 45
Tl SO S S - M= 53
— M= 61
-3
10 sl oS
10—5 g - - - -: .‘>. - - ‘- - . . L
10°
| T |
10 15 20

[teration

Fig. 3. Convergence property of n (d2 = 20)

0 5 10 15 20
lteration

Fig. 4. Convergence property of E, (d2 = 20)

converge as follows; ¢; >~ —9.97, co ~ 1.99, ¢4 ~ —0.299, c7 ~ 0.0399 and the other to almost zero.
Therefore, from Eq. (5), the inhomogeneous term is predicted numerically as follows:

boum = €1 + 22 + c3y + C4x2 + cszy + c(;y2 T+ 07333

+egz’y + cozy® + croy® + enat + -
~ —9.97 4+ 1.99z — 0.299z% + 0.0399z3.
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3 100 =
— exact
v d,=200d,= 140
50 — 4 d,=200,d,= 100
e d,=200d,= 20
r d,=200, d,=-100
A d, =200 d,=-140
0
-LI' | | |
-1.0 -05 0.0 0.5 1.0

X

Fig. 5. Distribution of potential value

Fig. 6. Convergence property of ¢; (d2 = 20, M. = 61)

5

-10'#%‘

10 15

lteration

20

The theoretical expression of the homogenous term is calculated from the numerical solution as

follows:
b 38 16 B0
_ dy + doz Ox
200

" In(11/9)(10 4 z)?’
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Fig. 7. Comparison of inhomogeneous term (dz = 20, M. = 61)

The numerically-predicted and the theoretical expressions of the term are compared in Fig. 7. The
labels byym and bgpe, denote the predicted and the theoretical expressions, respectively. We notice
that the predicted term well agree with the theoretical ones.

3.2. Example 2

As the next example, we shall consider that the heat conductivity )\ is a quadratic function of
z-coordinate;

A=di + dox + d3.’I)2.

In this case, the governing equation is given as

da+2d3z  Ou _

v? — =
Ut I+ dyz + dazt Oz

The boundary condition is shown in Fig. 1. The theoretical solution of this problem is given as
tan_l do — 2d3 _ tan—l do + 2d3x
tan ™1 ———d2 oy, . —tan T —d2 1%
\/4dids — d3 \/4dids — d3
The analysis is carried out with 15 T-complete functions, 44 boundary collocation points and 0,
1, 9 or 17 inner points. The placement of the points is shown in Fig. 2. The initial values of the
parameter c; are specified to be zero.

The computational accuracy is defined by the following error estimator estimated at 25 estimation
points which are uniformly distributed in the domain under consideration.

- 1 exr
Eu—252|u .
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The coefficients of the governing equation are taken as d; = 200, d2 = 120 and d3 = 20. The
convergence history of 7 is shown in Fig. 8. The abscissa and the ordinate indicate the number of
the iteration and 7, respectively. We notice that n converges to any values at 10-th iteration step in
all cases. The convergence history of E, is shown in Fig. 9. The abscissa and the ordinate indicate
the number of the iteration and E,, respectively. The number of the iteration at which E, converges
increases and the converged value decreased as the number of the inner points increases. Especially,
in the cases of 9 and 17 inner points, the converged values are almost the same. The distribution of
u in the case of 17 inner points is compared with the theoretical one in Fig. 10. The abscissa and
the ordinate indicate the xz-coordinate of the estimation points and u, respectively. We notice that
the numerical solutions well agree with the theoretical ones.

14 W=
| --- M. = 45
1 --- M.= 83
1 — M. = 61
e 5 ﬁ :
0.01 o
0.001 I
0 10 15 20
[teration
Fig. 8. Convergence property of n
-lv 5
} ---M, =44
i o- M= 45
3 -- M. =83
i — M, =61
g I s o i e Bk e
w 0.1
0.01
........ II
10 15 20
Iteration

Fig. 9. Convergence property of F,
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200 -
150_,3..
5 100_

50—‘_;

-1.0 -0.5 0.0 0.5 1.0

Fig. 10. Distribution of potential value (M, = 61)
4. CONCLUSIONS

This paper describes the application of the Trefftz method to the steady-state heat transfer prob-
lem of the functionally gradient material. Since this problem is governed with nonlinear Poisson
equation, it is difficult to solve the problem by the ordinary Trefftz formulation. For overcoming
this difficulty, this paper presented the following scheme. An inhomogeneous term of the governing
equation is approximated by 5-order complete polynomial of the Cartesian coordinates to deter-
mine the particular solution related to the inhomogeneous term. The boundary value problem of
the Poisson equation is transformed into that of the Laplace equation by introducing the particular
solution. Since the T-complete functions of the Laplace equation are known, the boundary value
problem of the Laplace equation can be solved easily for the homogeneous solution. We considered
as the numerical examples the functionally gradient materials of which heat conductivities are a
linear and quadratic functions. The computational accuracy is better as the number of the inner
points increases. The numerically-predicted expressions of inhomogeneous terms well agree with the
theoretical ones. We may conclude that the validity of the present formulation can be confirmed.

The computational accuracy of the present scheme is dependent on the accuracy for predicting
an inhomogeneous term by polynomial function. When the inhomogeneous term is discontinuous or
strongly nonlinear, the present scheme may not be applicable. On the other hand, the computational
accuracy dose not depend on the number and the distribution of the inner points if only the in-
homogeneous term is predicted accurately. In the numerical examples, the computational accuracy
is relatively good even when no inner points are taken. This is because the nonlinear term can be
predicted by the boundary collocation points alone in the examples. Therefore, we are planning to
apply the present scheme to several problems to study its features.
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