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The paper discusses the problem of designing the stiffest truss with a given and fixed number of joints and 
element connections. The design variables are the cross sectional areas of the bars or/and the nodal points 
locations. In each case a maximal volume of a truss, constituting an isoperimetric unilateral condition 
is prescribed. The nodal force vector is assumed to be independent of the design variables, hence fixed 
during the optimization process. The equilibrium problems of the trusses are modeled by the conventional 
linear as well as nonlinear finite element analyses taking into account large nodal displacements and 
small deformations of members. New optimal layouts of plane and space trusses are presented. These new 
layouts are found by using the moving asymptotes algorithm, the simplex method and the optimality 
criteria method. 

1. INTRODUCTION 

Topology optimization of trusses is a classical subject in structural design. In the past decade, the 
main effort of the researchers was focused on problems with a large number of potential structural 
elements, using the so-called ground structure approach in which the layout of a truss structure 
is found by allowing a certain set of connections between a fixed set of nodal points as potential 
structural or vanishing members [2]. This means that the positions of the nodal points are not used as 
design variables, so for the most part, the interesting and valuable solutions of efficient topologies 
can be obtained only in the case of a really large number of potential structural elements. This 
has to be done in order to simulate variable nodal positions while finding only the optimal cross 
sectional areas of the bars (with zero lower bounds imposed). Consequently, the simplest possible 
optimal design problem, namely the minimization of compliance (maximization of stiffness) for 
a given total volume of the structure is most often considered. At present, this problem can be 
given in a number of equivalent problem statements for which very efficient algorithms are derived 
that can handle truss structures with a large number of bars. A drawback of these methods is the 
assumption of a constant nodal layout and member connections during the optimization process. 
Indeed, many numerical tests confirm that the optimal topologies can be very sensitive to the fixed 
layout of nodal points especially if their number is relatively low [2]. Thus, as a consequence, it 
seems to be quite natural to consider an extension of the previous problem formulation by including 
additionally the optimization of the nodal point position, called the geometry optimization. Thus the 
process of finding the optimal topology and geometry of the structure becomes of course much more 
complicated - the geometrical design variables enter the problem in a nonlinear, non-convex - and 
in some formulations - in a non-smooth manner. But even in this case the tools have been developed 
capable of handling this problem with a relatively big number of elements. However, let us notice, 
that by combining topology and geometry optimization methods it is possible to avoid the growing 
up difficulties by choosing the initial ground structure much more sparse if the nodal positions are 
not fixed but also enter the optimization process as design variables. The question appears how far 

tThis is an extended version of a paper presented at the conference OPTY-2001, Mathematical and Engineering 
Aspects of Optimal Design of Materials and Structures, Poznan, Poland, August 27-29, 2001. 
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