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The paper discusses the problem of designing the stiffest truss with a given and fixed number of joints and
element connections. The design variables are the cross sectional areas of the bars or/and the nodal points
locations. In each case a maximal volume of a truss, constituting an isoperimetric unilateral condition
is prescribed. The nodal force vector is assumed to be independent of the design variables, hence fixed
during the optimization process. The equilibrium problems of the trusses are modeled by the conventional
linear as well as nonlinear finite element analyses taking into account large nodal displacements and
small deformations of members. New optimal layouts of plane and space trusses are presented. These new
layouts are found by using the moving asymptotes algorithm, the simplex method and the optimality
criteria method.

1. INTRODUCTION

Topology optimization of trusses is a classical subject in structural design. In the past decade, the
main effort of the researchers was focused on problems with a large number of potential structural
elements, using the so-called ground structure approach in which the layout of a truss structure
is found by allowing a certain set of connections between a fixed set of nodal points as potential
structural or vanishing members [2]. This means that the positions of the nodal points are not used as
design variables, so for the most part, the interesting and valuable solutions of efficient topologies
can be obtained only in the case of a really large number of potential structural elements. This
has to be done in order to simulate variable nodal positions while finding only the optimal cross
sectional areas of the bars (with zero lower bounds imposed). Consequently, the simplest possible
optimal design problem, namely the minimization of compliance (maximization of stiffness) for
a given total volume of the structure is most often considered. At present, this problem can be
given in a number of equivalent problem statements for which very efficient algorithms are derived
that can handle truss structures with a large number of bars. A drawback of these methods is the
assumption of a constant nodal layout and member connections during the optimization process.
Indeed, many numerical tests confirm that the optimal topologies can be very sensitive to the fixed
layout of nodal points especially if their number is relatively low [2]. Thus, as a consequence, it
seems to be quite natural to consider an extension of the previous problem formulation by including
additionally the optimization of the nodal point position, called the geometry optimization. Thus the
process of finding the optimal topology and geometry of the structure becomes of course much more
complicated — the geometrical design variables enter the problem in a nonlinear, non-convex — and
in some formulations — in a non-smooth manner. But even in this case the tools have been developed
capable of handling this problem with a relatively big number of elements. However, let us notice,
that by combining topology and geometry optimization methods it is possible to avoid the growing
up difficulties by choosing the initial ground structure much more sparse if the nodal positions are
not fixed but also enter the optimization process as design variables. The question appears how far
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the number of elements can be safely reduced and give a still relatively good optimal solutions but
in an easier way and at a lower computational cost? The full answer is unknown, but numerical
experiments suggest that in many cases the significant reduction of the bars in the layout of the
structures does not only facilitate the optimization process but also allows to obtain satisfactory
solutions — competitive in comparison with the well known examples available in the literature.
Another point is which algorithms and numerical tools should be applied. In the paper we devise
new sensitivity formulae for geometrically linear and nonlinear trusses. Having these formulae at our
disposal we can work out a new numerical procedure based on the method of moving asymptotes [15].
These sensitivities formulae can be applied in any gradient algorithm.

Let us consider a truss composed of M members and N nodes, subjected to the conservative nodal
forces Q € RP. The problem of finding the coordinates of nodes X € RP (geometry optimization)
and the volumes V = V(X) € RM of the members (topology optimization) for which the nodal
displacement vector q € RP minimizes the truss compliance Q - q under the condition of the truss
volume being smaller than a fixed volume V' is formulated as follows [1],

M
K(V,X)q = , V>0, Vo<V, XeF ;. 1
VERM XeRD, qcd ( )q Q Z . } ( )

==l

min {Q-q

Here D = d- N (d = 2 in the plane case and d = 3 in the spatial case) represents the number
of the total degrees of freedom of a truss, K = K(V,X) € Mpyp represents its stiffness matrix,
® C RP is a subspace of all vectors in R? with a zero “boundary displacement” components and
F C RP is a region of feasible position of nodes. The dot “-” means the scalar product in RP.
The nodal displacement vector q is treated in Eq. (1) as an additional, independent variable of the
optimization problem. Such approach makes it possible to solve effectively the following equivalent
problem:

min {h(X) | X € F} @

where the function h(-) defined on RP reads

M
K(V,X)q=Q, V20, ZVeSV}- (3)

ex1l

h(X) = min {Q-q

VERM qecd

Due to the condition of volume members being non-negative the formulation above admits van-
ishing of some members. The stiffness matrix of such a truss is in general, semi positive definite.
Finding the value of the function (3) above is equivalent to solving the topology optimization
problem for X fixed. The applied algorithms should treat the nodal displacement vector q as an
independent design variable — thus omitting the need of inverting the stiffness matrix K, as it is
characteristic e.g. for the simplex method, cf. [1]. Thus the values h = h(X) determine the values
of the objective function for the following design variables

V =V(X),q = q(X). (4)

It is well known that the non-linear function A(-) is non-convex and non-smooth, cf. [1]. None
the less the efficient iterative minimization algorithms can also be applied in this case but we can
only expect to obtain local minima of (3).

On the other hand, for the trusses composed of all possible members linking all nodes from
a given set and under the condition of a fixed vector X, an optimal modeling involving the shape of
the truss is still possible, because we can practically eliminate bars and change the initial topology
of the structure — the way the nodes are linked by members. But the computational complexity
problem is associated with the number of unknowns expressed by the formula N(N — 1)/2, which
represents a big number, indeed. For instance, for a truss of N = 1000 this number is of order
500 000.
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Taking the above into account let us note that if the problem (1) is augmented by treating the
nodal coordinates as unknowns, then the reduction of the number of truss members by considering
the layouts in which only the neighbouring nodes are linked turns out to be a compromise approach
giving convergent sequence of approximate solutions tending faster to the true optimal solutions. By
taking the number of truss members smaller the optimal solutions become more sensitive to geometry
changes. Then the number of design variables is essentially smaller thus justifying application of
the conventional gradient methods of the nonlinear programming which work only for moderate
problem size [1]. For instance, in the layout where only neighbouring nodes are interconnected and
N = 1000 the number of design variables is of order 6000. Moreover, such approach is justified
in the geometrically nonlinear cases when the known formulations of the topology optimization
problems [1, 2] do not encompass the case considered. Due to the dyadic form of the stiffness matrix
of a truss the formulae of the sensitivity analysis can be easy derived by using the known theorems
of the advanced calculus.

The objectives of the paper are:

e derivation of the formulae for the gradients of truss compliance in the geometrically linear as
well as nonlinear cases

e application of the derived sensitivity formulae in the moving asymptotes method [15], in the
topology and shape optimization of selected plane and spatial trusses

e application of the simplex method and optimality criteria method [1, 2] in the topology opti-
mization of selected plane and spatial trusses (only in geometrically linear case).

The presented results of the first goal of the paper seem to be new in the case of the X vector
treated as unknown, especially in the geometrically non-linear case. Moreover, the computation of
the gradients with respect to the vector of cross-sections A € RM a5 a design variable is very simple
in the geometrically linear case, so only in the geometrically non-linear case the derived formulae
can be viewed as fully original.

2. THE EQUILIBRIUM EQUATIONS OF TRUSSES IN THE LINEAR AND NONLINEAR
RANGES

Assume the case of a spatial truss, i.e. d = 3. If referred to the global coordinate system the
equilibrium equations can be easy formulated, if one introduces the following linear mapping

&= AR e=1,....M, (5)

defined by the allocation matrix H € My/x2 and the matrix G € M(3.9)x(2.q) defined below. The
component Hle, k] € {1,...,N}, e = 1,..., M, represents the number of a node (referred to the
global numeration) which in the e-th member has locally a smaller number for £ = 1 or higher for
k = 2. The matrix G is symmetric [3] and is given by

$§00.89 1.0 0
L 8.0 -1 .8
e " 00 1
B 0 1 o0 o (6)
P =100 0. 1/ 0
0 86140 0 X1
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Let us define the matrices U” € Myxp, n € {1,..«,N} and G¢ € M@.gxp,e€{l,...,M}:

UHeH); ) = 1 ?f [4,5] = [1,3 - H[e, k] — 2] or [2,3 - H]e, k] — 1] or [3,3 - H[e, k] - 0], 1)
0 in other cases
Bl i il s it Bl
yHle,1]

B [UH[e,ﬂ ] : @
Matrices T* are defined as follows

T = (G°)'GG*, ec€{l,...,M}, (9)
where (-)7 means transposition, while the length of the e-th bar can be then expressed by

Le(X) =VTeX - X, eeT0SSTM. (10)

Introduction of the matrices T¢ allows us to express, for the each e-th bar, the results of the
respective differences between the local Cartesian coordinates of the nodes in D dimensional (global)
vectors. The matrices T® considerably simplify the notion of the assembly process required to
construct global stiffness matrix and load vector. Moreover, the left hand side of the equilibrium
equation (see Egs. (12)-(15) below) can be easily written and interpreted as a result of action of an
operator

B:RMID ., pD (11)

from the space RM*D of the design variables (A, X) € RM x RP into the space RP. Such a global
representation of the equilibrium equation makes the interpretation of the sensitivity analysis results
clear and justifiable.

The elastic equilibrium equation for the geometrically linear case has the form

K(A,X)q(A,X) =Q (12)
where the stiffness matrix K(A, X) € Mpyp is symmetric and is given by
M
i i Aafle -
K(A,X) = ZWT (X) ® T(X). (13)

eEEl

Here a ® b denotes the tensor product of the two vectors a and b, or (a® b)ij = a;b; .
The elastic equilibrium equation for the geometrically non-linear case in the total Lagrange
formulation and for the truss element based on Green’s strain has the form [3]

where, now not symmetric, the stiffness matrix has the form

E-A,
Le(X)
1

Moopry e
K[A,X,q(A,X)] = m)%’ TX®TX+5 "
e==] e=]

M
£ g e
+;WTQ®TX+§

T°X ® T°q

3
M
E-A
ﬁ)(;’; Teq ® Teq. (15)
e=1li ©
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The tangent stiffness matrix turns out to be symmetric; it reads

M
¥ A, ER,
KA, X,q(A,X)] = LX) TeX®TeX+Z T % T*X ® T°q
= :
E - e E'Ae

Teq® T¢

E_:L ®TX+;LC(X)3 q® T°q

M

+> o (Tex a+yTa-a) T, (16)

i L(X 2

Matrix (16) was computed by differentiation of the equilibrium equation (14) written as

C(q) =0 (17)
with respect to the vector q € RP. Here

C:R° > RP, C(q9=K(@a-Q (18)
where for the arbitrary but constant vector (A, X) € RM+P the following notion is adopted

K(q)qg = K[A, X, q(A,X)]q(A, X). (19)
Indeed, by differentiating Eq. (17) with respect to the variable q, it is not difficult to show that

oC oK K 0K
- [3—m(q)q, @A s pola)a] +K(a) = Ky[A,X,q(A X)) (20)

The matrix (16) as well as the two higher derivatives (with respect to q) — second and third —
can be used not only in the static analysis by applying e.g. Newton method in solving a nonlinear
equation (14) but also in a stability analysis via Riks method [4, 14]. The boundary conditions
in Egs. (12), (14) (and matrices (13), (15), (16)) should be properly introduced according to the
standard procedures of the FEM. :

3. SENSITIVITY ANALYSIS

The derivation of the sensitivity formulae, based on the direct method, for the geometrically linear
truss was presented in [5]. In the present paper, the counterparts of these results are considered
for the geometrically non-linear structures and for the completeness of the presentation — also for
geometrically linear case.

The partial derivatives 6(1( ), 6%( -+) of the objective function

f:RMxRP 5 R f(A,X)=Q q(AX) (21)
assume the form

Oaf(A,X) = [0aa(A,X)]"Q, (22)

ox f(A,X) = [9xa(A, X)]"Q. (23)
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Here the abbreviations dp (---) = Oboix) ,0x(-0) = f?X ) , are used. Upon appropriate intro-
duction of the boundary conditions the matrices
[ Oq1 oq :
oA, — (A, X) BAM(A , X)
oaq(A,X) = ; : € Mpxar, (24)
dqp Ogp
X
{ 6A1(A %) 0AM 7R i )J
[ a1 oq
X, ——(A,X) e —— (A, X)
xq(A,X) = : : € Mpxp, (25)
9gp 9qp
L 0X, ax, M X) 0Xp ax, A X)
become the partial derivatives of the vector function
G RM 3 gLy RO (26)
with respect to A and X, respectively, see [5].
In the geometrically linear case we get
9aq(A,X) = -K(A,X) " K, (A, X), (27)
Oxq(A,X) = -K(A,X) ' Kx (A, X), (28)
while in the geometrically non-linear case we obtain
aAq(A)X) == —-Kq[A,X,q(A,X)]_l KZX(A7X), (29)
0xq(A,X) = —Kq[A, X, q(A, X)) Kk (A, X). (30)
For the geometrically linear case we have
I
Ka(A,X) =) e (TX QT X o, (31)
e=1
. §BeA
/ e ! € ey . e e
K% (A,X) = ; .05 (E2X.- T X T°X
M
- Ae e e E-A e e
+e:1Lex) (T°X -q)T° + ;mTX®Tq (32)

while in the geometrically non-linear case one gets

M
E
K/ (A,X) = Z (TeX-q-i-%Teq-q) T°X ® i,

e:l

E ¢ ;
+> E (Tex ‘q+ 5T q) T%q ® i, (33)
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M

-3E-A F- A,
K% (A,X) = e 0 (TCX + T" )T8X®T6X+ ———T°X®Tq
x (A, X) 2 T q a-q Z 3 (x)
e A
AN e

e=1

+Z I (Tex q+ 2Teq q) T, (34)

with i, being a vector of the unit orthogonal basis in RM.
Moreover, the derivatives of the volume of the structure

Q:RM xR 5 R, Q(A,X) = A-L(X) (35)
assume the forms
dAQ(A,X) = L(X), (36)
M
A e
; T.0%) T X. (37)

The partial derivatives of the bar stresses (e =1,..., M)

= ey .
(A, X) = LX) T°X - q (38)
in the geometrically linear case and
A Xt (T"X o Ty q> (39)
TR T 2
in the geometrically non-linear case assume the form
E T
aAU (A,X) e —[aAq(AaX)] Texa (40)
f [Le(X))°
8x0.(A,X) = —— o _(T°X - @) TR4. Teq + — 2 (Oxa(A, X)TX,  (41)
[ ) Pt ) )
[Le(X))* [Le(X)] [Le(X))?
in the geometrically linear case and the following form,
E T
0a0e(A,X) = ———[0aq(A, X)]" (T°X + T*q), (42)
; [Le(X))?
1
(A X) =~ e o (Tex ‘a+ 5T q) TeX
E
BTt (A, X (T°X + T (43)
[Le(X))? [Le(X))?

in the geometrically non-linear case, respectively.
The partial derivatives of the member forces

L L i e 1§ (44)
assume the form

OaF(A,X) = 0e(A, X)ic + Ac Ia0e(A, X), (45)

Ox Fe(A,X) = A, 0x0e(A, X). (46)
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The correctness of the sensitivity formulae (27)-(30), (40)—(43), (45), (46) were additionally
numerically checked by using the mathematical definition of the gradient, e.g. the k-th column of
the matrix (25) (i.e. (28) or (30)) is equal to

dq

k .
« 1o QA X +tig) —q(A, X
: = dxa(a, Xfis] = X - 44,5 (47)
9qp
—(A, X
for “sufficiently” small parameter ¢, with iy (k = 1,..., D) being a vector of the unit orthogonal basis

in RP. Moreover, the relation (47) hints at the appropriate dependence on the boundary conditions
in matrix (25) — the rows with indices labeling the fixed nodal coordinates must be set to zero.
In the geometrically non-linear case, the derived sensitivity formulae should be used with a great
care, because the solution of the (non-linear) equilibrium equation (14) is in general not unique for
a given load vector Q.

4. OPTIMIZATION METHODS

In the paper the three optimization methods are applied:
e Method of moving asymptotes (MMA) [15]

e Simplex method (SX) [1, 2]

e Optimality criteria method (OC) [2]

4.1. Method of moving asymptotes

The design variables are: the vector of cross sections A € RM or/and the coordinates of nodes X €
RP. In general the vector (A,X) € RM+D represents the design variables. Using of the sensitivity
formulae in the MMA necessitates the knowledge of all components of the displacement vector q.
Thus we treat this vector as a function of (A,X) and the problem P of minimum compliance, in
the geometrically linear case, assumes the following form,

AERAI’}’l,i;ICERD{Q g q(A,X) | K(AaX) Q(A,X) = Qa A 2 Amim A L(X) S V) X e F}7 (48)

where L = L(X) € RM represents a vector of member lengths and Amin € RM stands for the vector
of minimal cross sections. Its components are assumed to be positive, which is symbolically written
as Apin > 0. Additionally, the set F of admissible coordinates of the nodes is taken such that the
matrix K be positive definite at each step of the algorithm, so the displacement vector

q(A,X) =K '(A,X)Q (49)

can be found in each iteration loop.
In the geometrically non-linear case, we formulate the problem P similarly,

In.n Q . A, X K A., X., A., X. A, X = Q, A. > A iny

being aware of the rising computational difficulties.
In our problem P, the following iterative scheme generates and solves a sequence of explicit
subproblems:
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Step 0. Choose a starting, feasible point (A° X°) and put the iteration index k = 0.

Step 1. Given an iteration point (A¥, X¥), calculate f(A*, X¥), Q(A¥, X*) according to Egs. (21),
(35) and the gradients Vf(AF, X¥), VQ(AF, X*) solving the equilibrium equation (12) or (14)
together with the use of the sensitivity formulae (22), (23), (27), (28), (36), (37).

Step 2. Generate a subproblem P* by replacing, in P, the functions f(-), (-) by approximating
function f%(-), QF(-), based on the calculations from step 1.

Step 3. Find the solution (Aj, Xj) of the subproblem PF. Substitute (AF+l Xk+1) =
(Ag, Xk), K=k +1, and go to step 1.

The process is usually interrupted when some convergence criteria are fulfilled. The MMA defines
functions f*(-), Q%(-) and gives answer to the question: how the subproblem P* should be solved.
In the past decade, many new versions of the original MMA were proposed. In the paper only the
original form of MMA [15] has been used.

4.2. Simplex method

The design variable are the volumes V € RM of the members. In this case, we treat vector q as an
additional independent variable and the problem P of minimum compliance assumes the following
form,

M
1
i -Q- K(V)g=Q, V>0, YV 2, 51
VE,;?}}‘(,@{zQ q‘ (V)a=Q, V2> ;e } (51)
where
= E
K(V) = ;Ve o)z Be(X) ®Be(X) (52)
is the stiffness matrix (13) and
T (%) PM(X)
B(X)= [B1X), ;- . Bae(X)} = eM 53
() = Bi(X),- B0 = [ T30 -+ T i) | € Mo (53
represents a compatibility matrix with columns B.(X),e=1,..., M.

According to [1, 2] the linear programming (LP) problem (weight minimization)

M
min Z Ve
VERM NeRM i

and dual to (54) the linear programming problem

BN=Q, V>0, Vee({l,...,M} |LeNe[§amaxV;} (54)

Be'q
L

L
3 )

are equivalent to the original problem (51). The equivalence between problems (51) and (54) is
not self-evident [1, 2]. In the above formulations, N € RM represents the member force vector and
o™ > () denotes allowable stress for tension and compression. Due to the fact that (54) and (55)
are linear programming problems, one can easily apply e.g. simplex method to find the solutions.
Putting formally 0™2* = v/E and denoting the solutions of the above LP problems (54), (55) by

max ¢
ner{Q-a

Vee {1,...,M}
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(V*,N*) € RM x RM and q* € ® respectively, the solution (V,q) € RM x & of the original
problem (51) has the following form,

14 M oz
Vv B vV* e=l ‘e *\_ 56
(V,q) ( ¥ q} (56)

In particular, the best minimal compliance is equal to Q - q and the optimal cross sectional areas
of the bars are A, = V./L¢, (e=1,...,M).

4.3. Optimality criteria method

The design variables are the volumes of the members forming the vector V € R™. The problem P
of minimum compliance assumes the following form,

M
Jmin, K(V)a(V) =Q, V2 Vi, Y V= v} , (57)

e=1

min { Q-q(V)

where Vinin € RM stands for the vector of minimal member volumes. Its components are assumed
to be positive, which is symbolically written as Vi, > 0 (which assures positive definiteness of the
stiffness matrix K). For this formulation an effective algorithm called optimality criteria method is
very often used. The method assigns material (volumes) to members proportionally to the specific
energy of each member in order to reach the situation of constant specific energy in the active
bars [2]. Another interpretation of the method can be viewed as a fully stressed design because
in each e-th bar contained in the optimal structure, its stress is maximal among all bars in the
structure (corollary from the Theorem 2.5 in [1]). The k-th iteration step consists of the following
commands [2]:

1. for given VF-1 = (Vek_l)e=1,2,...,M compute displacement qf~! from the equilibrium equa-
tion (12),

2. find Lagrange multiplier A such that

M
E B k—l_B k-1
Zmax{Vek_lﬁ el Py G ,Vmin}=V, (58)
e=1 €
3. update

E B.o*-!.B.gk-!

Vee {1,2,..., M} VS=max{ys £ B Bao Vi (59)
€

5. CASE STUDIES

The described methods are demonstrated for the plane and space truss structures. In some cases of
the topology optimization, the results of the two or three algorithms (MMA, SX, OC) are compared.
In all of the presented examples the ground structures admit the connections to the neighbouring
nodes (see Fig. 1) but the case of all possible connections between all nodes is also presented. Most
of the presented solutions was obtained on the basis of the MMA and this algorithm was mainly
tested.

In Fig. 1 the two examples of the initial layout of the bars are shown, applied in the truss
optimization from Figs. 2-18. These layouts define Cartesian patterns, to be projected by means of
the appropriate mapping onto required type of a shell. In the case of rotational symmetrical grid
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) i ®) Lx

Nr=3 Ly Nr=3 Ly

Ne=5 Nc=5

Fig. 1. Two types of the initial patterns with 15 and 23 nodes in (a) and (b) respectively

shells, the first and last columns of nodes in Fig. 1 (shell meridians) are identified and the number
of rows “defines” the height of the shell (N,, N, Ly, Ly, represent the number of rows, columns
of the nodes, the length of the grid in z and y directions respectively).

The program including statics of the geometrically linear and non-linear trusses was written in
C+-+. Optimization procedures were written in Java. One dimensional optimization procedures and
simplex method were adopted from [13]. Graphical procedures were written in Java language and
in Basic language compiled in MicroStation95 programming environment.

The thicknesses of the bars are scaled in such a way that the thicker and darker line refers to the
greater cross-section. The initial cross sectional areas of the bars are equal to 4.0 - 10=% [m?]. The
components of the vector Apin € RM in Eqgs. (48) and (50) are equal to 1.0- 107 [m?]. The maximal
value of the cross sectional areas of the bars was assumed to be 1.0-10~* [m?]. The maximal volume
V in Egs. (48), (50) is always equal to the initial volume of the truss considered: V = Vit (with
one exception in the example from Fig. 12 where the maximal volume V = 4Vinit). Young modulus
E =20-108 [kN/m?].

5.1. Plane cantilever trusses

In the next examples optimal solutions are presented for only linear analysis of trusses, because the
visible differences in layouts are rather small for the cases of loads that are below the critical values
of bifurcation and limits points, as was mentioned above.

The first example is the cantilever truss (the layout from Fig. 1b, N, = 3, No = 6, Ly = 5.0 [m],
L, = 2.0 [m]). The nodes along the left side of the truss are fixed and the single vertical force =
100.0 [kN] is applied at the middle of the right side of the truss cf. Fig. 2. Initial values of the
compliance for the linear and non-linear cases are equal to 275.7 and 244.9 [kNm] respectively. Best
compliances found by the method of moving asymptotes (MMA) for the linear and non-linear cases
are equal to 111.0 and 114.8 [kNm)] respectively. The convergence of the algorithm and the optimal
layouts of the trusses in both cases are shown in Figs. 3 and 4 respectively. The greater the force

1

\

Fig. 2. Initial layout of the ground structure for transmitting a vertical force to a vertical line of supports
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Compliances in the main loops of the MMA - linear case Compliances in the main loops of the MMA - nonlinear case
compliance compliance
275,74 4 244,93
111,04 - 114,79 .
0,00 17,00 0,00 17,00

Fig. 3. Convergence of the MMA in the linear and non-linear case

Fig. 4. Geometry and topology optimization (MMA). Optimal layouts in the linear and non-linear case

applied, the difference in the optimal layout in both cases turned out to be more distinct as the
numerical tests have shown. However, the load was not taken too big, otherwise the more subtle
and advanced static analysis should have been applied, see [4, 14]. The convergence of the MMA
was generally good especially in the cases when the number of bars was not too big; the layouts
obtained are satisfactory in comparison with the well known exact shapes of the Michell-Hemp
cantilever [9-12]. The default rule for updating the “moving asymptotes” Lj, U; given in [16] were
successfully applied.

5.2. Cylindrical cantilever grid shells

The second example is the cylindrical cantilever grid shell cf. Fig. 5 (the layout from Fig. 1a, N, = 7,
N =7, “radius” of the cylinder = 1.0 [m]). The nodes at the bottom side of the truss are fixed. The
horizontal unit forces = 1.0 [kN] along X axis (horizontal at top view) are assumed to be put at all
nodes (very simplified model of the wind load). The initial compliance is equal to 8.3 and the best
compliance found by MMA is equal to 2.1 [kNm]|. The optimal layout reminds, to some extent, the
tulip like shape of the high-rise, multi-storeyed building, taller than 200 m, recently proposed by
professors W. Zalewski (structural engineer) and W. Zablocki (architect) [17-19] as a counterpart
of the Michell-Hemp cantilever in three dimensions. But this feature is not a rule in the case when
the initial layout of bars is denser, as was observed by the numerical tests. If the number of the
bars is greater, then the shape of the optimal solution becomes nearly identical to its initial shape,
L.e. resembles an ideal cylindrical shell bar structure with the thickness of the bars identical to the
solution found by the topology optimization [6, 7]; the symmetry conditions on the position of the
nodes are not imposed. The shape optimization based on the genetic algorithm also confirms this
trend [7].

In Figs. 6-9 (the layout from Fig. la, N, = 17, N, = 17, “radius” of the cylinder = 1.0 [m])
the various optimal solutions of the similar cylindrical cantilever shell with denser initial grid
layout are presented. The horizontal unit forces = 1.0 [kN] along Y axis (vertical at top view)
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Fig. 6. Geometry and topology optimization (MMA). Initial and optimal layout: top view, right isometric
view, front view and right view
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Fig. 8. Topology optimization (Simplex method). Initial and optimal layout: top view, right isometric view,
front view and right view
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are assumed to be put at all nodes. In Fig. 6 the geometry and topology optimization solu-
tion obtained from MMA is shown with numerical report as follows: initial compliance = 137.8
and best compliance = 82.2 [kNm]|. In Figs. 7,8 only the topology optimization solutions ob-
tained by MMA and Simplex method used in volume minimization (54) (plastic design, fully-

stressed design) and dual volume minimization (55) (Pyeight , Pg,;gh_t, Pvdvé‘félht) in [1] and (4.8),
(4.9) in [2]) are shown with numerical reports of the best compliance 67.0 and 53.6 [(kNm], re-
spectively. The last result (which is the best possible) was obtained from the volume minimiza-
tion (54) and dual volume minimization formulation (55) by Simplex method and on the ba-
sis of Eq. (56) (Theorem 2.8 in [1]). This result confirms also an optimality criteria method
(OC) [2] applied in this case with the optimal compliance = 78.1 [kNm], cf. Fig. 9. In Fig. 10
only the geometry optimization solution is shown, obtained by MMA with the optimal value of

compliance = 135.1 [kNm] which is only a little bit better then the initial compliance = 137.8. Thus
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the dense grid cylindrical layout is probably the stiffest optimal layout in the case of laterally acting
wind forces.

The next example, see Fig. 11, is the cylindrical cantilever shell (the layout from Fig. 1a, N, =7,
N, = 7, “radius” of the cylinder = 1.0 [m]). The nodes at the bottom side of the truss are fixed,
and the vertical unit forces = 1.0 [kN] along Z axis are assumed to be put at all nodes (simplified
model of the dead weight load). First compliance is equal to 0.47 and best compliance by MMA is
equal to 0.12 [kNm)].

5.3. Elliptic paraboloidal grid shells

In the next example, see Fig. 12 (the layout from Fig. la, N, = 3, N, = 3, Ly = 2.0-[m], L, =
2.0 [m]), we consider the elliptic paraboloidal grid shell (rise of arch = 1.0 [m]) with the nodes at
the corners fixed and vertical force = 1.0 [kN] assumed to be put at the middle node. The initial
compliance = 0.015, the best compliance by MMA equals 0.002.

In the next example, cf. Figs. 13, 14, optimal topology of the elliptical paraboloid grid shell (3192
bars) was found. The nodes along the edges of the truss are fixed. The vertical forces along Z axis
are assumed to be put at all nodes. Only the optimality criteria method (58)—(59) was applied in
this case.

Fig. 12. Geometry and topology optimization (MMA). Initial and optimal layout: top view, right isometric
view and front view

5.4. Michell’s grid sphere

In the next example cf. Figs. 15-18 Michell’s grid sphere with a finite number of bars is consid-
ered [12]. Two equal torques M = 1.0 [kNm], replaced by a tangent shear tractions prescribed along
circles with radii given by the latitude a = /2.3, are applied at the poles of the sphere of radius
r = 1.0 [m]. Let or = oc = VE denote the stresses allowed for tension and compression with
E =208 [GPa].
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Fig. 15. Side view of the Michell sphere. Data values for the topology optimization by MMA, OC and
Simplex method
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view

The Michell formula [12] - exact solution — for the minimum volume of the pseudo-continuum
sphere reads

2-M 1 1 T 0
opt __ E e, U a = ’ =
Vexact = p (UT a5 UC) In [tan (4 e 2)] 6.4-107". (60)

Optimal truss volume in the volume minimization problem found by the Simplex method
V;?gltplex ~ 9.0-107% > 6.4-107* =~ V2 is obviously a worse result than exact solution, be-
cause truss considered has only a finite number of bars. The computations confirm the observation
of Michell that the minimum truss consists of the series of rhumb-lines inclined at 45° to the meridi-
ans of the sphere having its poles at north and south. The optimal compliance found, as in previous
example, by Simplex method for dual volume optimization formulation (55) and “rescaling theo-
rem” [1] (see also Eq. (56)) is equal to 1.1-1073 [kNm]. Initial compliance and optimal compliance
found by MMA for topology optimization are equal to 3.2-1073 and 1.2-10~2. Similar result of the

best compliance, equal to 1.9 - 1073 in the case of the OC algorithm was obtained.

5.5. Other examples

In the next example, cf. Figs. 19, 20 the optimal topology and geometry of a “real ground structure”
having a form of a cantilever truss was found by MMA. The initial cross-sections are taken as equal
1.963 - 1075 [m?]. Young modulus E = 200 [GPa]. The single vertical force = 10000.0 [N] is applied
at the middle of the right side of the truss. The initial dimension of a “repetitive” quadratic cell
is 1.0 [m]. Initial and optimal compliance in linear and non-linear case are equal to 92.7, 14.4 and
14.5 [Nm] respectively.

The next example is the three dimensional ground structure, cf. Fig. 21. MMA was applied to
find the optimal topology and shape. The forces in the directions: horizontal and parallel to the
diagonal of the projection of the structure are applied only at the top nodes of the cantilever.

The last example is based on the three dimensional ground structure, cf. Fig. 22. The MMA
method is applied to find the optimal topology and shape. Vertical forces were applied only at the
top nodes of the of the parallelepiped.
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Compliances in the main loops of the MMA - linear case
compliance

Compliances in the main loops of the MMA - nonlinear case

compliance
92,761 92,76 +
14,45 S0, a5 s, ETELON
0,00 197,00 0,00 199,00

Fig. 19. Convergence of the MMA in the linear and non-linear case
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Fig. 20. Geometry and topology optimization (MMA). Initial and optimal layouts in the linear and
non-linear case
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Fig. 22. Geometry and topology optimization (MMA). Initial and optimal layout: top view, right isometric
view, front view and oblique horizontal view

6. FINAL REMARKS

The method of moving asymptotes (MMA) which has been easy implemented in the optimization
of the truss structure as a predominant algorithm, proved to be very efficient and reliable method,
but numerical tests show that in some cases, the MMA was very sensitive to the initial values of the
technological constraints, i.e. the bounds on spatial coordinates of the nodes in truss optimization
defining the set F' (see Egs. (48), (50)). Especially in the solutions of the rotational symmetrical
shell bar structures with greater number of bars, the symmetry of the optimal layout was sometimes
difficult to obtain when the bounds were too wide. The MMA is able to handle not only cross
sectional areas of the bars as design parameters, but also, the geometrical parameters — the nodal
points location. The main advantage of this method — the insensibility to the scaling of the variables,
has allowed to perform numerical procedures for one design parameter: element sizes and shape
variables together. The derived sensitivity formulae have been applied directly in the MMA. The
convergence of the generated sequence of the improved feasible solutions is generally very good
(see Figs. 3,19). The simplex method and the optimality criteria method have been in some cases
additionally used in order to justify the numerical results. In the geometrically nonlinear case the
more advanced static analysis should have been applied (e.g. Riks method [4, 14]) since the graph
of an equilibrium path depends on the design variables. However such procedures are closely related
with the stability criteria (local and global buckling), which is a serious, additional difficulty in any
optimization method. In the geometrically linear case, it is relatively easy to perform higher order
sensitivity analysis. Such formulae have recently been announced in 8]
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