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The paper is concerned with a class of generalized structural optimization problems for which not only
stiffness, damping and mass parameters but also loading and support parameters are unspecified and
subject to sensitivity analysis and optimization. Both, viscous and complex modulus damping models are
used. Single concentrated force and coupling of a force with a concentrated moment, which lags by /2, are
considered. The latter case corresponds to an excitation induced by a rotational machine with eccentricity.
Steady-state periodic vibrations are studied. Response functionals in the form of displacement amplitudes
are discussed. Numerical examples of beam and plate structures illustrate the theory and demonstrate the
accuracy of the derived formulae for sensitivity operators.
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1. INTRODUCTION

The class of problems where position of support was unspecified and subject to optimization was
first formulated in [7] and [9] and the optimality conditions were derived for prescribed static load.
The problem when the loading distribution was subject to optimization was first considered in [6].
Since then many papers have appeared, where optimal position and stiffness of supports were
studied. Position of supports providing optimal response in eigenvibrations was discussed in [10].
Position and stiffness of intermediate support resulting in bimodal eigenvibrations was studied in [1].
Optimal placement of supports of beams subjected to harmonic load was solved in [4] accounting for
complex modulus damping. Minimum weight design of planar trusses and frameworks under multiple
dynamic loads was studied in [8], where modal decomposition and proportional damping approach
were used. Sensitivity analysis with respect to variation of parameters of dynamic loading allowing
for viscous and complex modulus damping was presented in [3]. Considerations were confined there
to transverse loads and displacements.

The present paper further extends the study presented in [3] by introduction of two dynamic
forces, vertical and horizontal. The latter one lags by m/2 in order to model the action of a rotating
machine. Section 2 contains derivation of sensitivity operators allowing for viscous and complex
modulus damping. Continuous formulation and the adjoint variable method are used. The methods
known in the literature require that in the case of viscous damping the integration of motion
equations of the adjoint problem is carried out for prescribed terminal conditions, employing time
integration in inverse direction. In the approach presented in the paper we avoid this inconvenient
inverse integration. The sensitivity operators are expressed in an explicit form of amplitudes and
phase angles of dynamic quantities, which can be obtained by the use of professional FEM programs.
Numerical examples solved with the use of ABAQUS FEM system are presented in Section 3.
Section 4 contains concluding remarks.

tThis is an extended version of a paper presented at the conference OPTY-2001, Mathematical and Engineering
Aspects of Optimal Design of Materials and Structures, Poznan, Poland, August 27-29, 2001.
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2. SENSITIVITY OPERATORS

Consider a beam or plate type base structure subjected to dynamic loading of a machine. The
machine is modelled as a rigid body with the center of gravity at the height h,, (Fig. 1).

The vertical and horizontal components of the dynamic force are induced in the point at the
height hp and at the vertical symmetry line of the machine body. We assume a point-wise periodic
action of the machine on the base structure in the form of concentrated force Ry, and moment R,
at the point z, . We assume that the machine is connected with the base structure by a visco-elastic
hinge. We also allow for viscous damping in the base structure. Complex modulus damping will be
discussed, too. The considerations will be referred to thin beams and plates following Bernoulli and
Kirchhoff assumptions, respectively. Let Q and q denote generalized stress and strain, respectively.
In the case of a plate Q = [M11, My, Mip) and q = [u11, u 22, u,12], whereas in the case of a beam
they simply represent the bending moment and curvature. Linear physical law is assumed Q = kq.
In the case of a plate,

kijkl = L 1 —v%)6ibj1 + 166 1

z]kl—1_2(T:_V—2)[( — V)05 + vdi0k), (1)
and in case of a beam k = E1. For the simplicity of presentation we derive the sensitivity operators
using the beam model of the base structure, then z, is the 1D point vector along the beam. Figure 2a
presents a close-up of the beam at the point of action of the machine. (Figure 2a can also represent
a section of a plate type base structure.)

Fig. 1. Model of the machine

We introduce the following control parameters specifying the dynamic subsystem in the point r:
position z, , mass m, , moment of inertia I, stiffness parameters ky, and k,, in vertical and angular
directions, viscous damping parameters ¢, and c,r (Fig. 1). The subscript r tells that a quantity
refers to the point r at = z,. We also introduce the distributed control parameters: mass m(z),
bending stiffness k(x) and viscous damping ¢(z) in the beam. All quantities denoted by star in
Fig. 2a refer to the structure with perturbed values of control parameters. Hence, u(z) and u*(z)
denote the displacement field of the beam for original and for perturbed values of control parameters,
respectively. Furthermore, u, denotes the displacement of the original beam at the point z, , whereas
uy and uy. denote the displacements of the perturbed beam at points z, , and x,+ , respectively.

Assume the response functional as a function of vertical and angular displacements of the machine
yr and ¢, , respectively, and integrated displacements of the beam u(z),

o L
G = /0 {fl[yr(t)]+fz[<pr(t)]+ /0 f3[u(:1:,t)]dq;}dt, -
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Fig. 2. Close-up of the beam structure; a) primary structure, b) adjoint structure

where f1, f2 and f3 are arbitrary, differentiable functions and T is a time period. Variation of Eq. (2)

dfl df2 Ofs
G = / {dyr dtpr dp +/ _BT(Sde} dt. (3)

Note that dy, and dp, represent implicit variations of vertical and rotational displacements of
the machine due to variations of all control parameters, among others due to the displacement of
the machine from z, to z, . To transform Eq. (3) to explicit form we introduce an adjoint structure,
which is identical with the primary one (Fig. 2a without star) with the exceptions that the damping
parameters are

Cyr = —Cyr Cor = —Cor i lE) =cafal (4)
and the adjoint loadings are '

dfi dfs 0fs
Pt = — BS =P vhp s ) = —.
yr dy, ) or P d(Pr p (z) 9u
We can apply either the moment P7. or the horizontal force Py, = P, /hp (Figs. 1,2b).
Let us write the virtual work equation using adjoint forces (Fig. 2b) and variation of kinematic
fields of the primary structure (Fig. 2a),

(5)

t1
{RZT(UN —up) + R&r(“r*,z £ ur,z)
0

L
+ [ 16 - mie - i)t - 0) - kel - ) dm}dt o ©)

where ¢ denotes generalized strains and u,, = du/dz for z = z,. In the case of a beam ¢ =
d?u/dz? = u,y, . Conversely, using variation of primary forces and adjoint kinematics we obtain

t1
k a a * a a
/ {Ryr* Upx — Ryru,,. -+ R(pr*’u,r*,z g R(pr'u,,.,x
to

L
+ /0 {l(p — m*@* - c*0*) — (p — mii — cu)]u® - (K*¢* — kq)q"} dz} dt=0. (7)
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We develop the perturbations in Taylor series retaining only linear terms (Fig. 2). Hence

Ups — Uy = Ou, (def.) Uy — Uy =-OUy — U 0%y ; (8)
* ey * e =

uT*’x = 'U'r,:c e (S’U,T,z (def) u"ﬂ -2 u"ﬂ £ JU’T,E 22 ur,zz‘smr ) (9)
a @i g a R e

Ups — Up = Up 0Ty Ups g = Up g = flig 1, 0F; . (10)

Note that the curvatures are discontinuous at z = z,, therefore we distinguished between left-
side u;, and right-side u;, derivatives in Eqs. (9) and (10). Subtract Eq. (6) from (7) and introduce
Egs. (8), (9) and (10). The terms with du and di integrate partially. This way one arrives at

T
/ {(5Ryru,‘f = Ry, 6ur + (Ryrup 5 + Ry tr 5)0z,
0

+ (5R¢7-’U,g’z = Rgr(sUT’z + (R(prur T + Ra 1. wm)&zr

L
- /0 [p®6u + u® (idm + udc + q°qdk)] dz

L
+ / (—umdi + mi®du — u®cdi + c*iuu) dm} dt=0. (11)
0

The last integral vanishes. To prove it we integrate by parts the terms containing variation of
velocity and acceleration keeping in mind Eq. (4),

T T
/ (—uméi + mi®du) dt = [—u®mdu + uméu)t + / (—i*mdu + mi®du) dt =0, (12)
0 0
T T
/ (—ucdi + c*udu) dt = [—u®cou]} +/ (4%cdu + c*uéu)dt = 0. (13)
0 0
The balance equations for the mass (Fig. 1) are
Pyr - MyYyr _Ryr =0, (14)
(Pzr — mptdp)h — Iy — Ryr = 0. (15)
The force and moment in visco-elastic spring are
Ryr = kyr (yr — ur) + cyr(Yr — Ur), (16)
R<pr = kcpr(‘Pr = 'U'r,z) G Czpr(()br 33 ar,z) . (17)

To transform implicit variations R, and du, to explicit forms we write again the virtual work
equations, this time for the concentrated mass. First we write the work of adjoint vertical forces on
variations of primal displacements,

(Pyr = mrijy)0yr — Ry 0up — [kyr (y7 — up) + ¢ (47 — 7)) (Syr — Sur) =0, (18)
and conversely, using variations of primal forces and adjoint displacements,
(=0 e — meGiir)y2 — SRyt
= [0kyr (yr — ur) + kyr (8yr — Our) + deyr (97 — tr) + cyr (69r — 00,)] (¥ —ul) =0.  (19)
Subtract Eq. (18) from (19) and integrate by parts the terms with 4 and . We arrive at

j g
/ (6Rypu? — B2, 6u,) dt

/ { 5yr = ?jrygdmr =2 [5kyr (yr = Ur) 4 (5Cyr (yr = dr)](yg = ug)} dt. (20)



Sensitivity analysis for variable dynamic load parameters 143

Following the similar way for moments as we went deriving Egs. (18)-(20) we obtain
T
/ (0Ryrup , — Ry, Ouyz) di

/{ ¢ hpdp, — Wrhmptdm, — ¢roroly

= [6ktpr (or — “r,x) -+ 5C<pr(‘nbr o ur,z)](‘Pg £ “?,z)} di. (21)

Introducing Eqgs. (20), (21) and (5) into Eq. (11) we finally arrive at the sensitivity operator

T L
0G = / {P;r‘syr + Py hpépr + / p* Jde} di
0 0

T
= / {(—ijryf — Wrhmepy)0m, — Gropdl,
0

s (R!ﬂ‘ug,:c 3 RZTUT,I = Rwrugiz L Ra r—zz)de
= [5kyr(yr —ur) + 6cyr(gr — 1)) (yr — uy)
T [‘5kgor(90r = “r,z) a3 5c<pr(¢r = ﬂr,x)](‘Pg = “g,z)

L
- / (u®idm + uude + q*qok) dm} dt. (22)
0

The operator (22) expresses the variation (3) of the response functional (2) as an explicit function
of variations of all control parameters. It has quite general form and can be used to many special
cases. The functions f and f3 in Eq. (2) represent structural response expressed by the vertical and
angular displacements of the machine. If we are interested in displacements of the base structure, we
need only to apply the adjoint force Py, and /or moment Pg, at the base structure. The operator (22)
will still take into account that the pomt z, , where dlsplacements are measured, moves together
with the force by dz, . If we are interested in the displacement in a fixed point zo, we can still use
the form (22). We only need to apply the adjoint force or moment at this point zg, and neglect in
Eq. (22) the terms: Ry, u,, and Ry,

Let us assume now that the loads are harmonic with the period T, namely Py, = Pyr cos(wt)
and Py, = P,y cos(wt — ¢) with w = 27/T.

Consider the steady state vibrations. Then the displacements u, y and w and their derivatives are
harmonic functions with the period T, too. However, due to viscous damping, all terms in Eq. (22)
have different phase angles ¢. In fact, even the displacements of different points of the beam have
different phase angles, hence u(z,t) = 4(z) cos[wt — ¢(z)]. This is a serious difficulty. One cannot
simply express Eq. (22) in amplitudes of forces and displacements, as was presented in the literature
for undamped structures, when the phase angles were equal to zero. Nevertheless, we can integrate
analytically all terms with respect to time when the time domain is equal to the period T, as was
shown in [3] and we arrive at the formula where all terms in Eq. (22) are expressed in amplitudes of
forces and displacements multiplied by the cosines of the difference of the respective phase angles.
For brevity we rewrite only the first part of Eq. (22), denoting amplitudes by - :

’I‘$$

3G = (5,92 cos(¢1 — o) — WrhmP?® cos(¢ds — $4))dmy — Grf cos(ds — ¢6)0Ly + - -- (23)

The form (23) is very convenient for numerical application using professional FEM codes, because
all quantities can be easily computed. The numerical examples presented in Section 3 illustrate the
theory, prove the correctness of sensitivity operator (23) and demonstrate its accuracy when it is
applied with typical FEM program.

Let us now briefly discuss the case when the damping is introduced in the form of complex
modulus. This model of damping is suitable for harmonic vibrations. One can express the amplitudes
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of displacements and forces in the time-independent form, where the phase angles are represented
in complex plane. Defining properly scalar products we can follow precisely the same way writing
virtual work equations as above and arrive at the sensitivity operator very similar to Eq. (22) with
the exception that there is no time integral and there appear multipliers w and w?. Compare [3-5]
where the sensitivity operators for different problems using complex modulus damping were derived.

Let us focus our attention on sensitivity of displacement amplitude. We start from the functional

il
G'= / —y2dt (24)
04
where
Yr = Jr cos(wt — @) . (25)

Henceforth * will denote amplitude. Introducing Eq. (25) into (24) and integrating it we obtain

1  §
G=/ = 92 cos?(wt — ¢) dt = — 2. (26)
s B 4

Variations of Eqgs. (24) and (26) take the form

T T
5G = / By dt = 729,67, (27)
0
Hence
Yo (28)
SR i

Basing on Egs. (3), (5) and (27) we assume the adjoint force equal to y, , namely
P =y, = § cos(wt — 3), (29)

and substitute Eq. (22) for 4G in Eq. (28) to obtain the variation 9, . According to Eqs. (24)
and (27) the domain of time integration was the period T

3. EXAMPLES
3.1. Example 1

Consider a simply supported plate excited by vertical concentrated dynamic force. Technical pa-
rameters of the system are as follows: lengthxwidth of the plate 6.00x4.00 [m], thickness of the
plate 0.16 [m], Young modulus E = 27e6 [kPa], Poisson ratio v = 0.1667 [-], mass m = 720 [kg/m?],
damping ¢ = 0.0c; . :

The first two eigenfrequencies of the plate are: f; = 16.219 [1/s], f» = 31.098 [1/s]. The dynamic
load with frequency f = 28 [1/s] is P(t) = 10 cos(2728t) [kN].

The amplitude of displacement of the point under the force was computed for different force
locations and plotted in the form of contour lines in Fig. 3.

The aim of the example was to demonstrate, that the amplitudes of vibrations strongly depend
on the force position. Small variation in the position of the machine can improve or deteriorate
the structural response. Directional sensitivity derivatives for this structure can be computed from
Eq. (23). For example we compute directional sensitivity derivatives of displacement amplitude for
the point A(z1, z2) = (1.5; 1.0), due to variation of force position. In this case Eq. (23) reduces to

§iis = (Pf + P ,)ds (30)
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4,00m

Fig. 3. Contour lines of displacement amplitudes under the force

where s is a scalar measure in arbitrary considered direction in the plane z, z2 .

Variations of displacement amplitude were computed for three particular cases: sy aligned
with z;, so aligned with z2 and s3 in diagonal direction. Using sensitivity operators (30) for these
directions we arrive at

§ais, = (—0.640e—4) b3, [m],
biis, = (1.914e—4) ds [m], (31)
diis, = (0.860e—4) ds3 [m].

For evaluation of Eq. (30) we introduce the adjoint load (29), setting ¢ = 0.
We compare the results with the total Finite Difference Method, for the perturbations: ds; =
0.10 [m], 6s5 = 0.10 [m], és3 = 0.10v/2 [m]. FDM provided respectively

biis, = (—0.596e—4) dsy [m],
§iy, = (2.002e—4) 65y [m], (32)
6iis; = (0.916e—4) ds3 [m].

The agreement can be considered as satisfactory.

3.2. Example 2

Consider a clamped-clamped beam excited by different dynamic forces. The parameters of the
system are as follows: length of the beam 6.00 [m], bending stiffness ET = 16 398 [kNm?], stiffness
for tension EA = 1063 540 [kN], mass m = 2011.54 [kg/m], damping ¢ = 0.10cr .

The first two eigenfrequencies of the beam are: f; = 8.930 [1/s], fo = 24.616 [1/s]. We consider
the following specific cases of dynamic loading for different frequencies:

— vertical load P(t) = 1.0cos(2m ft) [kN],
~ bending moment M (t) = 0.8 cos(2r ft — 7/2) [kNm],
— simultaneous action of P(t) and M (t).

Our aim is to find variation of displacement amplitude in the middle point of the beam
su(z = 1/2) due to variation of the force position dz,. We will solve the problem for different
force locations z, . The solutions are shown in Fig. 4.
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Fig. 4. Displacement amplitudes in the middle point of the beam 4., , as function force position

3.3. Example 3

Consider a beam structure shown in Fig. 5. The structure is subjected to concentrated harmonic
loads: Py (t) = 0.1cos(10xt) [kN] and P,,(t) = 0.1 cos(107¢—7/2) [kN]. Following parameters of the
system are assumed: concentrated mass m, = 100 [kg], Young modulus E = 205e6 [kPa], Poisson
ratio v = 0.3 [-], damping ¢ = 0.0c, .

~ Element 1: bending stiffness EI = 16 398 [kNm?], stiffness for tension EA = 1063 540 [kN], mass
m = 155.6 [kg/m)].

- Element 2: ET = 1590552 [kNm?], EA = 3537890 [kN], m = 5.2e—7 [kg/m].

Our aim is to compute the sensitivity of the displacement amplitude at the point = z, , due to
variations of concentrated mass dm, and forces position dz, . Note that both, the force position and
the point of considered displacement move simultaneously by éz, . For the sensitivity di, we apply
adjoint vertical force Py, = 1 - cos(107t — ¢1). For the sensitivity dii,, we apply adjoint moment
P, =1-cos(107t — ¢o), where ¢ and ¢ are respective phase angles of primary structure. We use

B,
L x" |
P.(t L
| 2 (0)
S
S0
. J @ @
JAN
?u lu,
! 2,00m | 4,00 m I

Fig. 5. Beam structure with variable position of concentrated mass and forces
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the sensitivity operators (23) and compare the results with the total Finite Difference Method. For
the total FDM we introduce perturbations ém, = 5 [kg] and dz, = 0.05 [m].
Using derived operators for variation of concentrated mass we arrive at

G ..= (—j}rg}f cos(py — cos ¢a) — wrhp? cos(¢ps — ¢4)) m, , (33)
o, = [(—2.5439e—2) - (2.5249e—7) - cos(—11.59 — 168.41)

— (5.8142e—3) - 0.8 - (6.4737e—8) - cos(—11.59 — 151.54)] m, = (0.672e—8)dm, , (34)
Sirp = [(—2.5439e—2) - (6.4739e—8) - cos(—28.46 — 168.41)

— (5.8142¢—3) - 0.8 - (4.3676e—8) - cos(—28.46 — 151.54)] 6m, = (0.178e—8)dm, . (35)

FDM provided respectively

5, = (0.68e—8)dm, , (36)
§iiy.» = (0.182e—8)dm, . (37)

Using derived operators for variation of force position we arrive at
4G = [Pyrﬁ‘r‘,z cos(-) + P;,ﬂr,z cos(-) + Portidt, cos(-) + Pgyily g cos(-)
—my (ﬁrﬂﬁyz cos(+) + 4%y 5 cos(-)) — hzmr(ﬂr,mﬂﬂzm cos(-) + i“z‘;,ma;m cos(~))] 5y (11 438)

After substitution of the quantities obtained from ABAQUS program,

dt, = (12.226e—6)dz, , (39)
Oty = (—4.925e—6)d; . (40)
FDM provided respectively

o, = (11.96e—6)dz, , (41)
0ty z = (—5.154e—6)dz; . (42)

The agreement can be considered as satisfactory.

4. CONCLUDING REMARKS

Sensitivity derivatives accounting for variations of design parameters of a loading subsystem and
a basic structure were derived allowing for viscous damping and complex modulus damping. The
sensitivity is expressed by amplitudes of stress and kinematic quantities of the primary and adjoint
structures and by the cosines of the respective phase angles. All these quantities are easily obtainable
from professional FEM programs. For steady state vibrations of primary structure the adjoint
problem is a steady state type, too. Numerical examples solved with ABAQUS program illustrate
the practical use of derived formulae and the accuracy. The sensitivity operators derived in the
paper can be used in optimal design or in identification problems. The optimal loading conditions
correspond to minimal vibrations and may by used in designing dynamic systems composed of
a dynamic machine, vibro-isolation and basic structure. In structural identification the optimal load
position may correspond to maximum structural response.
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