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The topological derivative of an arbitrary shape functional is introduced in [29] for 2D elasticity. The
optimality conditions for general shape optimization problems are established in [30] using the shape
variations including boundary and topology variations. The topology variations result in the presence
of topological derivatives in the necessary conditions for optimality. In the present paper we derive the
necessary optimality conditions for a class of shape optimization problems. The topological variations of
shape functionals are used for the numerical solution of inverse problems. The numerical method uses
neural networks. The results of computations confirm the convergence of the method.
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1. INTRODUCTION

In classical theory of shape optimization the first order necessary optimality conditions account
for boundary variations of an optimal domain. On the other hand the relaxed formulation based
on homogenization technique is used [1, 2, 19] in the topology optimization of energy functionals,
the so called compliances in structural optimization. For such a formulation the coefficients of an
elliptic operator are selected in an optimal way and the resulting optimal design takes the form
of a composite microstructure rather than any geometrical domain. On the other hand the so-
called bubble method is used for the topology optimization in structural mechanics [6, 23] which
leads to numerical methods. We refer also to [7, 14, 18] for the related results. Further applications
in mechanics can be found in [5, 15-17]. It seems that in the literature on the subject there is
a lack of general method or technique that can be applied in the process of optimization of an
arbitrary shape functional for simultaneous boundary and topology variations. Such an approach
would be very useful for numerical solution of e.g. optimum design problems in structural mechanics.
In the paper [25] the so called topological derivative (TD) of an arbitrary shape functional is
introduced. Such a derivative is evaluated by an application of the asymptotic analysis with respect
to geometrical singularities of domains [13], for a class of elliptic equations including 2D elasticity

"This is an extended version of a paper presented at the conference OPTY-2001 , Mathematical and Engineering
Aspects of Optimal Design of Materials and Structures, Poznan, Poland, August 27-29, 2001.
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system [25] and 3D elasticity system [28]. TD determines whether a change of topology by creation
of a small hole, or in similar setting of a small inclusion, at a given point x €  would result in
improving the value of the given shape functional. In general, the form of topological derivatives
is established [25, 28] by using the asymptotic expansions of solutions to elliptic systems obtained
by the method of matched (or compound) asymptotics. In the case of cavities in the form of two
dimensional circles or three dimensional balls (in the case of Laplace equations in the form of balls
in R" for an arbitrary space dimension n > 2) the constructive results are obtained [25, 28] by using
the shape calculus combined with the asymptotic expansions of solutions.

In the present paper the approach of [25] is extended to the case of a finite number of circular
holes treated by means of TD combined with simultaneous boundary variations by an application
of the speed method [24] applied to Frechet differentiable shape functionals. Therefore, the general
set of optimality conditions is established for a class of shape optimization problems in more general
setting compared to the classical theory [4, 24].

To deal with various types of domain modification we introduce the following general notation
for different types of variations of shape functionals and of solutions to partial differential equations:

Shape derivative - is used in order to determine the variations of solutions to boundary value
problems resulting from the boundary variations of geometrical domains. In particular, first the
Frechet differentiability of shape functionals is established, and then the speed method is applied
to determine the shape derivatives. We refer to [24] and the recent book [4] for general description
of the speed method and the related results on Frechet differentiability of shape functionals.

Topological derivative — also topological differential accounts for variations of shape function-
als resulting from the emerging of one or several small holes or cavities in the interior of the
geometrical domain. We refer to Section 2.1 for description of topological derivatives of shape
functionals in the case of the Laplace equation.

Domain differential - unifies the influence on shape functionals of boundary variations and, at
the same time, of the nucleation of internal holes or cavities. We refer to Section 2.3 for the more
detailed discussion in the case of the Laplace equation.

In Section 2 optimality conditions are established for general shape modifications, including
shape and topological variations. In Section 3 topological derivatives are given for shape functionals
associated with an inverse problem. The inverse problem is considered for the identification of
small inclusions. The numerical solution of inverse problems uses neural networks. The numerical
procedure is described in Sections 4,5. The results for test examples are provided in Section 5.

2. SHAPE AND TOPOLOGY MODIFICATION

In this section we shall recall certain results concerning the shape and topology derivatives and
formulae for their computation. Let us consider a bounded domain Q@ C R? with the boundary
consisting of a finite number of smooth arcs and vertices. This boundary is divided into three parts:
I'P, TV and T'V. The part I'V will be subject to variation, and for simplicity we assume on it the
homogeneous Neumann condition. As a result we have the model problem

S5 in Q,

U = gp T

ou N (1)
Fooogimd on I'",

o on IV,

on
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with f € H*(Q), gp € H'/2('p), gv € H*?(T'y). The goal functional we shall consider in the
following general form:

J(Q) = /Q [F(u) + G(Vu)] ds, )

where F(t), t € R, and G(q), q € R?, are differentiable functions satisfying additional condition
IG(q)| < A+ Alq/* (A - generic constant),

assuring the existence of (2).

2.1. Shape derivative

First we shall define the shape derivative of J. To this goal we consider the transformation
T(r,") : R?® — R?
defined by
T(1,x) =x + 70(x), (3)

where @(x) is a C*-smooth vector field on R? with the support concentrated on the part of the
tubular neighbourhood of I'Y + B(d), namely the set

U= +B@)\ TNur? + B(20)), (4)

for some fixed small § > 0. Thus the vertices of Q2 do not move and the angles between adjacent
arcs do not change.
Such a transformation has for |7| small enough the following properties:

e T(r,-) is an identity on Q \ U;
e T'(7,-) is a bijection of U onto itself.

The geometry of the problem may be seen in Fig. 1.

FN

Fig. 1. The configuration of the internal hole and variable boundary
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Next we define the boundary value problem for u,, similarly to Eq. (1):

Aae = h in {1z ,

Ur = 9D on FD,

681:: =gN on ]_"N, (5)
ou

BnT =0 on I‘,‘./,

where Q, = T(7,Q), I'Y = T(,T'V). In accordance with this we take
I = I = [ [Flur) +G(Vur)] da, (6)
Q.

where J(0) = J(£2).
Now we may define the shape derivative of J(Q,) at Q (7 = 0) in the direction of the field ©,

SJ(;©) = lim = [J(Q,) - J(Q)]. (7)

70 T
The following result is well known [24]:

Theorem 1. Under the assumptions stated above the shape derivative exists and is given by the
formula

§1®,0)= | [F(w)+G(Vu) + (Vu:V0)|(© n)ds, (8)

where v is the adjoint state satisfying the following boundary value problem: find v € H},() such
that

- [(90-90)do = [ (Fuw)é + (V4G(Tu)- V) do 9)

forallg € Hy(Q)={p € H(Q)|¢=00nTP}.

The assumptions formulated in this subsection are stronger than necessary for the validity of the
above result, but we shall need them later.

2.2. Topological derivative

Let us now take the point x° €  and the ball B(x?, p) C Q. Similarly as in the previous subsection,

we define by ©, = Q\ B(x0, p) the domain with changed topology and formulate the boundary
value problem for u, ,

Au, = f in ,,
Up = gD on I‘D,

0 10
B_nup =gN on 'V, (10)
0

e = 0 on dB(x%,p)uT?,

see again Fig. 1.
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The appropriate value of the functional (2) has now the form
Iy =) = [ 1F(w) +G(Vu) da. (11)
P

The topological derivative of the functional J is defined as a limit

TJ() = 1_i)r(§1+ %‘](—Q) 2
p

In [30] there has been proved the following theorem.

Theorem 2. The topological derivative TJ(x°) exists and is given by the formula

TI) = - [F(u) +G(Vu) + fv+2(Vu- w)] o (13)

xX=

where v is an adjoint variable defined by Eq. (9) and

sl
T o

2m
G(Vu(x%)) / G( asin?6 — bsinfcosf , —asinfcosd + bcos? ) do. (14)
0

Here
ou

:—6:1;—l

so that [a,b] = Vu(x?).

a (XO) ) b= _(XO) )

2.3. Simultaneous topology and shape modification

Having defined both the shape and topological derivatives it is natural to raise the following ques-
tions:

e is the topological derivative additive, i.e. can we use it for approximation of the joint effect of
the finite number of holes simultaneously?

e can the effect of the simultaneous change of topology and external boundary be described by
the combination of shape and topology derivative?

Both of these questions have been answered positively in [30]. Let us make two non-overlapping
holes in the domain € at points x!,x? and of radii p;, ps such that B(x!,p1) C , B(x2,p2) C Q.
Define the solution u,, 5, in Qp, 5, = @\ (B(x!, p1)UB(x2, p2)) in an obvious way and the functional
J(p1, p2) = J(Qp,p,) by the formula (11). Then we have the following.

Theorem 3. For p; , p2 small enough the topological variation of the functional J has the repre-
sentation

J(p1, p2) = J(0,0) + TI(x") - mp} + TJ(x°) - mp3 + 0(pt + p3). (15)
Thus, by analogy to topological derivative, we may call the vector
TI () Py =Yy F Hxh)

a topological gradient. Extension to any finite number of holes is obvious.
Now let us make a hole B(x?, p) at the point x° € Q and simultaneously move the part of the
boundary I'V by means of the transformation T'(7,-) defined by the field ©(x), as in Section 2.1.
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Our assumptions ensure that for p,7 and & small enough the neighbourhood of the hole is not
transformed. The domain €., is defined in an obvious way (hole at x° and 'V transformed to Y
and the corresponding u,, satisfies homogeneous boundary conditions on dB(x°,p) and T'Y. The
functional J is defined as in Eq. (11)

i SRPE v / [F(ups) + G(Vu,)] da. (16)

pT

Using this notation we are able to formulate the theorem justifying the combined use of both
topological and shape derivatives.

Theorem 4. For |7|,p > 0 small enough the variation of the functional J has the representation
J(py7) = J(0,0) + TI(x°) - mp® + ST(Q;©) - 7 + o(|7| + p?). (17)
This theorem justifies the name domain differential for the expression
TJI(x°) - 7p? +SJ(Q;0) - 7.

The validity of the formulae given by Theorems 3 and 4 allow us to formulate new, stronger
optimality conditions, see [30], as well as to approximate the values of J(p; , p2) or J(1, p) for finite
p, 7. We shall use the last fact in the next sections.

The assumption about homogeneous Neumann condition on I'V is used here for simplicity and
may be omitted. However, the condition concerning the constancy of angles at the vertices of 99
and positions of these vertices is important in Theorem 4. The strong regularity of data is also used
in proof.

3. NUMERICAL EXAMPLE OF SHAPE FUNCTIONALS

We consider the following test examples.
We consider four boundary value problems defined in the same domain Q = (0,1) x (0,1). It
means, that fori =1,2,3,4

Aui =if) in Q.
These problems differ with respect to the boundary conditions. For i = 1 they have the form

1
up =1 on {0} x (§ 5 g) ; up =0 on {1} x (0,1); %% =0 otherwise.
For i = 2,3,4 they are obtained from the above conditions applying the successive rotation by the
angle /2.
The shape functionals J; = J;(f) are defined as follows: for izhwwld s =hHa 3.4

Ou; 3 Ou; 2
J(1+3(-1)} =/Qu?dQ, J2+43(i-1)) =/Q((9:E1) dqQ, J(3+3(i-1)} Z/Q (33;2) Q2

In the domain Q, = Q\ B(y,p), y = (y1, ¥2), see Fig. 2, we add the homogeneous Neumann
boundary conditions on the boundary [, of the ball B(y, p). For clarity of further derivations let
us denote

.mm=4%w, i=1934,

P

6u,,,- »
i b ) = a2'
Toi(p) Awadx k1
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X, A

24

y 1 1

1

Fig. 2. The parameters describing opening (inclusion)

The topological derivatives of these shape functionals are obtained from Theorem 2 by direct com-
putation of the function G. To this end we observe that if we take for example G(Vu) = (9u/0z,)?,
then the integrand in Eq. (14) takes on the form

ou Au \ 2
—_ 1 2 ——— - 1 ——
G(Vu) = (sm 0 1(y) s1nt9cos€a 2) (¥)-

As aresult, for 1 = 1,2, 3,4 and k = 1,2 we obtain formulae

£5

TJuily) = e [u? + 4(Vu; - Vwi)] (y),
1-3 8ui * 1 8, 3 T

Tinl(y) = —-2_ 5(8(31) & 5 (322) +4(VU1'V’U1:1) (y)1 (18)
1 [1 0w\ 2, 8L Fui)\ > ]

T Jgia(y) = o 5(6:1) P (852) + 4(Vu; - Vo) | ().

Here w; and v;; are adjoint states computed according to Eq. (9). They are different for any any
i =1,2,3,4 in case of w; and any pair (i,k), k = 1,2 in case of v;; . In other words: in order to
compute these topological derivatives we must solve for every of twelve functionals the state and
adjoint boundary value problems.

The formulae (18) will be used for approximating the effect of the hole of radius p made at the
point y on the value of the functionals Jy;, Jyik , according to the Theorem 3. Namely

Jm(p) ~ JM(O) + TJ'Ui( Yy ) g 7Tp27 i = 1v2’3’47
Joie(p) = Jpik(0) + TIae(y ) - mp?, k=12

In this way, having computed once all the state and adjoint variables, we may very cheaply generate
big sets of approximate values of the functionals for the domains with holes. These sets may be then
used for constructing identification procedure, which on the basis of measured values of functionals
finds the position and size of the hole. In particular, they may constitute training sets for neural
networks.
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4. ARTIFICIAL NEURAL NETWORKS

Research interest in artificial neural networks has been motivated by the observation that the brain
processes data in a different way from the conventional digital computer. The brain, due to “massive
parallelism” of neuronal computations, outperforms the fastest digital computer in complexity of
processing tasks.

In principle, an artificial neural network is a specially constructed parallel distributed processor,
which is designed to mimic the brain functions. It is capable of storing the knowledge and using it
for data processing. Artificial neural networks resemble the brain in two respects [10]:

e knowledge is acquired by means of a learning process,

e the acquired knowledge is stored in the network structure of inter-neuron connection strengths
known as synaptic weights.

The procedure used to perform the network training is called learning algorithm. The task of
such an algorithm is to modify the synaptic weights of the network in an orderly fashion so as to
attain a desired design objective.

Artificial neurons are the basic elements of artificial neural networks. An example [11] of a model
of one artificial neuron from the network is shown in Fig. 3.

Xg=-1
e Activation
X Wil function
Inputs .}\
— Vi Output
X2 f0) H—
Yk
W neuron
XN 2
Synaptic
weights
Fig. 3. Model of k-th artificial neuron
It has a set of inputs z; , x5, ..., z, denoted as the input vector X and a bias zy . Each input
signal z; connected to the k-th neuron is multiplied by an associated weight wgy , wea, ..., weN,

and bias is multiplied by the weight wyg , before they are applied to the summation block, X. Each
weight corresponds to the “strength” of a single biological synaptic connection. The summation
block adds all of the weighted inputs algebraically and generates a net signal vy , which is further
processed by an activation function f(-) to obtain the neuron’s output signal yj [11],

N
vk = flok) = | ) wijzj |, (19)
Jj=0

where N - number of input signals.

Activation function f(-) may be a simple linear or a non-linear function. The most commonly
used activation functions are: threshold function, sigmoidal function, hyperbolic tangent function
and radial basis function. Sigmoidal function is mathematically expressed as [9, 10]

1

fz) = 1+e2"

(20)

A single neuron can perform only certain simple functions. The power of neural computations
comes from connecting neurons into networks. Structure and size of the designed neural network
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output layer

hidden layer

input layer

Fig. 4. An example of multilayer perceptron network with one hidden layer

depends on the complexity of the problem, which has to be solved by the network. A great variety
of network structures is known [10].

The most commonly used network structure, which has been also applied in the presented ap-
proach, is the Multi-Layer Perceptron (MLP). An example of a MLP network is shown in Fig. 4.

MLP network is built from perceptrons grouped in layers [10]. Input signals applied to the
network are transmitted in one direction from the network input nodes to the output layer and
therefore this type of network is called a feedforward network. The network shown in Fig. 4 is
a two-layer network, which has an input layer and two perceptron layers: the hidden layer and the
output layer. Additional superscripts v and y in the network synaptic weights in Fig. 4 indicate the
layers. Hence, the signal of i-th network output Y; is given by the equation [10]

M M N
Yi=f (Z 'wgkyk) =f ngkf Z ij-'Ej , (21)
k=0 k=0 j==0

where N - number of inputs, M - number of neurons in the hidden layer, wy,; — weight of k-th
neuron in the hidden layer for the j-th input, wg’k — weight of i-th neuron in the output layer for
the signal y; , which is the output of the k-th neuron in the hidden layer.

It has been proved, that feedforward multilayer perceptron networks are universal approxima-
tors [12]. Barron investigated an accuracy of function approximation by the use of neural networks
with one-hidden-layer [1]. He characterised sets of functions of many variables, which can be ap-
proximated by networks with n hidden units, within an error proportional to ﬁ :

5. INVERSE PROBLEM SOLVING BY THE USE OF ARTIFICIAL NEURAL NETWORKS

Application of Artificial Neural Networks (ANN), instead of analytical calculations, offers a novel
and powerful tool for inverse problem solving. The inverse mapping G~!, which allows for identifi-
cation of inclusion presented in Fig. 2, is difficult to calculate from the mathematical relations and
therefore was modelled using artificial neural networks. Similarly as in the classical approach, the
inverse mapping G~!, shown in Fig. 5, may be determined unambiguously only when the transfor-
mation G has the property, that each input vector y; , ys, p is transformed into a different values
output vector Ji, ..., J, (one to one mapping).

ANN-based inverse model is built on the basis of relations between the network input and output
vectors. The knowledge about the inverse mapping is stored within the network structure and
network connection weights. Twelve values of functionals Ji, ..., Jio, which ensure unicity of the
solution, calculated by the use of topological derivative method for the square with the inclusion
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y1 — -1 il ym...
- v

Fig. 5. An inverse mapping problem

are the network input vector. The approximated values of the corresponding inclusion’s parameters,
such as radius psim and position (Y1sim , Y2sim), are calculated at the network output. An unknown
mapping of the input vector to the output vector is approximated in an iterative procedure known
as neural network training [10]. The objective of the learning algorithm is to adjust network weights
on the basis of a given set of input-output pairs for a given cost function to be minimised.

In our particular problem feedforward MLP network, sum square error cost function and back-
propagation learning algorithm [10] with Levenberg-Marquardt [9] optimisation method were ap-
plied. This algorithm was implemented by the use of MATLAB software package for mathematical
computations.

Different MLP networks with a single hidden layer were considered and two of them were tested.
The network structure (12-18-3) i.e.: twelve inputs, eighteen processing units with a sigmoidal
transfer function in the network hidden layer and three linear units in the output layer, comprising
291 weights; and network (12-24-3) with 387 weights. Numerical computations that were based on
the topological derivative have provided data both for network training and testing procedures. The
training and testing data were computed for different values of inclusion radius, which were changed
from 0.05 to 0.2 and for the corresponding values of the inclusion position. Position coordinates were
changed in the range

20 <1hi <1-2p;, 2p; < y2i < 1= 2p;.. (22)

Then, the corresponding values of functionals Jy, J;, Jo for four configurations described earlier
were calculated by the use of topological derivative method for each set of inputs. From the available
data sets, 1285 of that correspond to the radii [0.05,0.088,0.125,0.16,0.2] were selected for network
training and 205 for radii [0.075, 0.1, 0.18] were selected for network testing. The latter one is required
for validation of the network true generalization capabilities. The stopping condition for the learning
procedure was the value of sum square error SSE less then 0.02. The network (12-18-3) was trained
by the use of Levenberg-Marquardt algorithm in 69 epochs and the network (12-24-3) in 44 epochs.

Figures 6,7 show graphical representation of the results of network (12-18-3) and (12-24-3)
testing, namely the examples of error distribution for the inclusion identification calculated for the
parameters y; , ¥2, p and the radius p = 0.075. Figures 6,7 depict absolute errors of the identified
parameters. The shapes of error distribution obtained for the networks (12-18-3) and (12-24-3) were
very similar, but the values of absolute errors were different. The largest values of the errors in
position identification can be observed in Figs. 6,7 in the corners of the square.

The maximum values of relative errors for both of the tested networks and their training times
are given in a Table 1. Increasing the number of neurons in the hidden layer has improved the
accuracy by a factor of two, but the learning time has also increased ten times. Computations has
been performed at IBM PC computer with Celeron 300 MHz processor and 32 MB RAM.

Table 1. Maximum values of relative errors for p = 0.075

network structure | dy; [%] | dy2 [%] | dp [%] | learning time [min]
(12-18-3) 12 12 5 24
(12-24-3) 6 6 3 240
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a) y, error for rho = 0.075

b) y,, error for rho = 0.075

Fig. 6. Distribution of the absolute error of the position parameters determination by the network (12-18-3)
for the radius p = 0.075; a) — Ay = f(z1, 22); b) - Ayz = f(z1, z2)



174 L. Jackowska-Strumitto, J. Sokolowski, A. Zochowski

a) y, error for tho = 0.075

b) y,, error for rho = 0.075

Fig. 7. Distribution of the absolute error of the position parameters determination by the network (12-24-3)
for the radius p = 0.075; a) -~ Ay = f(z1, z2); b) — Ay2 = f(z1, 22) (contd. in the next page)
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c)

x 10

radius error for rho = 0.075

Fig. 7. (contd.) Distribution of the absolute error of the position parameters determination by the network

(12-24-3) for the radius p = 0.075; c) - Ap = f(z1, ©2)

Table 2. Maximum relative errors for the network (12-24-3)

p | oy [%] | dy2 [%] | 6p [%]
0.075 3
0.1 3
0.18 3

The maximum relative errors for the network (12-24-3) for three values of p are given in Table 2.

The largest values of the errors in position identification for p = 0.075 are observed in Figs. 6,7
in the corners of the square. For the other radii values, the area of identified position is smaller due

to the relations (22) and the corresponding values of errors are also smaller.

6. CONCLUSIONS

An example of numerical solution of 2D shape inverse problem was presented in the paper. Identi-
fication of the position and radius of the small inclusion in a square, which is difficult to calculate

from the mathematical relations, was computed using artificial neural networks.

The presented experiments indicate, that the approach based on using topological derivative for

producing training data for neural networks, gives promising results.

Application of Artificial Neural Networks (ANN), instead of analytical calculations, offers a novel
and powerful tool for inverse problem solving.



176 L. Jackowska-Strumilto, J. Sokotowski, A. Zochowski

REFERENCES

[1] G. Allaire, E. Bonnetier, G. Francfort, F. Jouve. Shape optimization by the homogenization method. Numer.
Math., 76, 27-68, 1997.

[2] M.Ph. Bendsoe. Optimization of Structural Topology, Shape and Material. Springer, Berlin, 1995.

[3] A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on
Information Theory, 39: 930-945, 1993.

[4] M. Delfour, J.P. Zolesio. Shapes and geometries: analysis, differential calculus and optimization. To be published
in the SIAM series on Advances in Design and Control.

[5] A.V. Cherkaev, Y. Grabovsky, A.B. Movchan, S.K. Serkov. The cavity of the optimal shape under the shear
stresses. Int. J. Solids and Structures, 25, 4391-4410, 1999.

[6] H.A. Eschenauer, V.V. Kobelev, A. Schumacher. Bubble method for topology and shape optimization of struc-
tures. Struct. Optimiz., 8: 42-51, 1994.

[7] S. Garreau, Ph. Guillaume, M. Masmoudi. The topological asymptotic for PDE systems: the elasticity case.
SIAM Journal on Control and Optimization, 39(6): 1756-1778, 2001.

[8] D. Gohde. Singulére Stérung von Randvertproblemen durch ein kleines Loch im Gebiet. Zeitschrift fir Analysis
und thre Anwendungen, 4(5): 467-477, 1985.

[9] M. Hagan, M. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Trans. on Neural
Networks, 5(6): 989-993, 1994.

[10] S. Haykin. Neural Networks: a Comprehensive Foundation, 2nd ed. Prentice-Hall, USA, 1999.

[11] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley Publishing Co., 1990.

[12] K. Hornik, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators. Neural
Networks, 3: 551-560, 1990.

[13] AM. IVin. Matching of Asymptotic Ezpansions of Solutions of Boundary Value Problems. Translations of
Mathematical Monographs, 102, AMS, 1992.

[14] L. Jackowska-Strumitto, J. Sokotowski, A. Zochowski. The Topological Derivative Method and Artificial Neural
Networks for Numerical Solution of Shape Inverse Problems. RR-3739, INRIA-Lorraine, 1999.

[15] T. Lewinski, J. Sokotowski. Optimal Shells Formed on a Sphere. The Topological Derivative Method. RR-3495,
INRIA-Lorraine, 1998.

[16] T. Lewinski, J. Sokolowski. Topological derivative for nucleation of non-circular voids. In: R. Gulliver,
W. Littman, R. Triggiani, eds., Differential Geometric Methods in the Control of Partial Differential Equa-
tions, 1999 AMS-IMS-SIAM Joint Summer Research Conference, Univ. of Colorado, Boulder June 27-July 1,
1999. Contemporary Mathematics, American Math. Soc. 268: 341-361, 2000.

[17] T. Lewiniski, J. Sokolowski. Energy Change due to Appearing of Cavities in Elastic Solids. Les prépublications
de I'Institut Elie Cartan 23/2001.

[18] T. Lewisiski, J. Sokotowski, A. Zochowski. Justification of the bubble method for the compliance minimization
problems of plates and spherical shells. CD-ROM, 3rd World Congress of Structural and Multidisciplinary
Optimization (WCSMO-3) Buffalo/Niagara Falls, New York, May 17-21, 1999.

[19] T. Lewisiski, J.J. Telega. Plates, Laminates and Shells. Series on Advances in Applied Sciences, World Scientific,
Singapore, 2000.

[20] S.A. Nazarov, B.A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries,. De Gruyter
Exposition in Mathematics, 13, Walter de Gruyter, 1994.

[21] S.A. Nazarov, J. Sokotowski. Asymptotic analysis of shape functionals. Journal de Mathématiques Pures et
Apliquées, 82(2): 125-196, 2003.

[22] J.R. Roche, J. Sokotowski. Numerical methods for shape identification problems. Special issue of Control and
Cybernetics: Shape Optimization and Scientific Computations, 5, 867-894, 1996.

(23] A. Shumacher. Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungkriterien,
Ph.D. Thesis, Universitit-Gesamthochschule-Siegen, Siegen, 1995.

[24] J. Sokotowski, J-P. Zolesio. Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag,
1992.

[25] J. Sokotowski, A. Zochowski. On topological derivative in shape optimization. SIAM Journal on Control and
Optimization, 37(4): 1251-1272, 1999.

[26] J. Sokotowski, A. Zochowski. Topological derivative for optimal control problems. Control and Cybernetics,
28(3): 611-626, 1999.

[27] J. Sokotowski, A. Zochowski. Topological derivatives for elliptic problems. Inverse Problems, 15(1): 123-134,
1999.

[28] J. Sokolowski, A. Zochowski. Topological Derivatives of Shape Functionals for Elasticity Systems. Les prepubli-
cations de I'Institut Elie Cartan 1999/no. 35, Mechanics of Structures and Machines, 29(3): 333-351, 2001.
[29] J. Sokotowski, A. Zochowski. On Topological Derivative in Shape Optimisation. INRIA-Lorraine, Rapport de

Recherche No. 3170, 1997.

[30] J. Sokotowski, A. Zochowski. Optimality conditions for simultaneous topology and shape design. Les prepubli-

cations de I'Institut Elie Cartan 8/2001; to appear in SIAM Journal on Control and Optimization, 2003.



