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The paper deals with optimal design of thin plates. The plate thickness assumes two possible values: hs
and h; and the plate volume is given. The problem of minimizing the plate compliance needs relaxation.
The relaxed formulation was found by Gibiansky and Cherkaev in 1984 [13]. In the present paper a finite
element approximation of this problem is presented in the framework of rotationally symmetric bending
of circular and annular plates.

The problem is composed of a nonlinear equilibrium problem coupled with a minimum compliance
problem. The aim of the present paper is to analyze the forms of the optimal solutions, in particular,
to look into the underlying microstructures. It is proved that in some solutions a ribbed microstructure
occurs with ribs non-coinciding with both the radial and circumferential directions. Due to non-uniqueness
of the sign of an angle of inclination of ribs the appearance of this microstructure does not contrasts with
the radial symmetry of the problem. In the degenerated problem when the smallest thickness h; vanishes
the above interpretation of the inclined ribbed microstructure becomes incorrect; in these regions one
can assume that the plate is solid but with a varying thickness. The degenerated case of hy = 0 was
considered in the papers by Rozvany et al. [26] and Ong et al. [25] but there such a microstructure was
not taken into account. One of the aims of the paper is to re-examine these classical and frequently cited
results.

1. INTRODUCTION

The subject of the paper is the following problem of optimization of thin two-phase plates: there
is given an isotropic material of Young’s modulus E and Poisson ratio v. A plate made of such
a material should occupy a plate domain, with a reference plane (2, assuming two possible thick-
nesses: ho and hy , with hg > hy , in the domains Q, and Q; , respectively. The plate volume is fixed
to be equal V. The plate is symmetric with respect to its middle plane Q. Let us assume for the
time being that this plane is parametrized by a Cartesian coordinate system (z1, 2) with the basis
(e1, e2). The plate is subjected to a transverse loading ¢ = q(z), z = (z1, z2). The plate deflection
w is determined by the variational equilibrium equation:

/M“ﬂnaﬁ(v)dm = / qudz Vv e H(Q). (1)
Q Q

tThis is an extended version of a paper presented at the conference OPTY-2001, Mathematical and Engineering
Aspects of Optimal Design of Materials and Structures, Pozna, Poland, August 27-29, 2001.
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Here, H(2) represents the space of kinematically admissible deflections v. The small Greek indices
run over 1,2. Moreover,

M = D ), rpw) = — @)
e e 0z)0z,

Tensor D = (D"‘ﬁ’\“) has the isotropic representation

D(x) = 2k(z) L1 +2u(z) I (3)
where

Eh3(z) Eh3(z)
- —_— e 4
Mo S i l) Suae (4)
= h, ifzey,

h(m)‘{ hy iz € . (5)
The tensors I , I, have the following components in the basis e, ® eg ® e\ Q e, :

oo = Lo, o

IP% = 2 (500 4 g4 5%8) _ Zgo0gM. (7)

2 2

The tensor of flexibilities d = D! has the following representation,

d(z) =2K(z)I; + 2L(z) I, (8)
where

=15 E= 11 9)
According to Eq. (5) the functions K(z), L(z), k(z), u(z) are determined by the quantities

o B _ _E(hs)® _ _E(he)?

Ka—l/ka, La—l/[l;a, ka—m, /laa—-24(l+u) (10)
The compliance of the plate, defined by the formula

C= / qw dz, (11)

Q

is determined by the division of the domain € into the subdomains Q,, where h = h,. Let us
remind that the plate volume is fixed,

/ h(z)dz =V (12)
Q
or

hi Q1] + ha [Q| = Vo, (13)

where |2, | means the area of the domain Q, .
The classical problem of optimum design of elastic two-phase plates is formulated as follows.
Given are: (2, the boundary conditions, hs, h;, E, q, v. The problem reads:

minimize C' under the condition of the volume being fixed by Eq. (12);

the function w entering Eq. (11) satisfies Egs. (1)-(2) with D given by Egs. (3)-(5) (Po)
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The problem above is ill posed in the sense that in general it admits no solution. Furthermore,
the possible solution is not stable with respect to the small perturbations of the data of the prob-
lem. Moreover, this phenomenon is confirmed by numerical experiments. Such a behaviour of the
problem (P,) is not exceptional, similar phenomena are observed in many layout optimization prob-
lems, see Cherkaev [9]. Thus the problem (Pp) necessitates a reformulation; in the mathematical
literature such a reformulation is called relaxation. The history of discovering of relaxation by ho-
mogenization has recently been written by L. Tartar [28]. The ideas of Tartar were inspiration of
the subsequent papers in which the question of formulation of the relaxation setting for the layout
optimization of plane elasticity and for the Kirchhoff plates bending problem was effectively solved,
see Gibiansky and Cherkaev [13], Lurie and Cherkaev [23], Kohn and Strang [16] and Allaire and
Kohn [1, 2]. The relaxation of the problem (FPp) was for the first time discovered by Gibiansky and
Cherkaev [13]. There the formulation was based upon the complementary energy principle and the
final setting involved moments as unknowns. This setting has been transformed to the displacement-
based formulation by Lewiriski and Telega [19, Sec. 26.6]. This formulation will be recalled in the
next section. Let us note that in papers by Rozvany et al. [26] and Ong et al. [25] the authors
considered similar problems in the case of circular one-phase plates under rotationally symmetric
loadings; the case of one phase means that h; = 0. The authors of [25, 26], inspired by the paper of
Kohn and Strang [16] concerning the optimization problems within linear elasticity, assumed that
the optimal plates have a ribbed 2nd rank microstructure with ribs lying along the radial and cir-
cumferential directions. This means that then these directions coincide with directions of principal
moments and curvatures. In the case of two-phase layout problems of plane elasticity one can prove
rigorously that this is just the case: the ribbed (or laminated) microstructure should coincide with
principal directions of stress and strain tensors. In the case of two-phase thin plates (when h; > 0)
the optimal microstructure behaves differently; there are domains (to be specified rigorously in the
next section) where the inclination of ribs deviate from the principal directions of moments. On the
other hand, these latter directions always coincide with principal directions of strains, see Gibiansky
and Cherkaev [13] and Lewinski and Telega [19]. This deviation can occur also in the rotationally
symmetric solutions, which does not contradict this symmetry. One should remind that the sign
of the angle of deviation is undefined and two directions of ribs are simultaneously possible, as
schematically outlined in Fig. 1. One can imagine that the ribs are alternately directed along the
radial direction of a circular plate, which retrieves symmetry of the optimal solution. In the case of
hy = 0 the interpretation of Fig. 1 loses its sense, since such microstructure becomes unstable, but
instead the optimal microstructure must have isotropic properties.

/NN 7N\
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Fig. 1. An oblique microstructure predicted by Gibiansky and Cherkaev [13]; a,b) — possible inclinations of
ribs, ¢) — treelike microstructure composed of alternate oblique ribs
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Thus the analytical and numerical solutions found in [25, 26] have been found under additional
constraints imposed on the optimal microstructure of Gibiansky and Cherkaev. One of the conclu-
sions of papers [25, 26] is that the 2nd rank microstructure does not appear. It is possible that this
is the consequence of the mentioned microstructural constraints. The optimal solutions found in
the present paper do involve the 2nd rank ribbed microstructure as well as the first rank oblique
microstructure with ribs deviating from the principal directions of moments.

The papers of Gibiansky Cherkaev [13], Lurie Cherkaev [23], Allaire and Kohn [1, 2] were based
upon the earlier works of Koztowski and Mréz [18], Cheng [6] and Cheng and Olhoff |7, 8], Olhoff
et al. [24], Rozvany et al. [27]. These papers played an important role and for sure helped Gibiansky
and Cherkaev and Allaire and Kohn to find a correct and final relaxed formulation. In the present
paper we shall not compare our results with those published in [6-8, 18, 24, 27] because of the
following reasons. In [18] different merit functions have been analyzed. In [6-8, 24| different ranges
of variation of h(z) were considered, e.g. the case where hy < h(z) < hs. Nowhere the oblique
microstructure was considered; its existence lies beyond a sound imagination and can be viewed as
a paradox linked with the Kirchhoff assumption of constraint rotations.

The optimum design of plates has also been considered by the following methods: the bubble
method of Eschenauer et al. [12], the evolutionary methods developed by Liang et al. [21], the SIMP
approach in the version of Belblidia et al. [3]. The mentioned methods give suboptimal solutions,
since they do not represent any approximation to the correct relaxed formulation of Gibiansky and
Cherkaev [13]. Thus any comparisons with the results of the papers mentioned would be irrelevant.
The role of the mentioned approaches lies in making the optimal (in fact, suboptimal) solutions
closer to those expected by designers, at least to the really manufactured forms, see Bendsge [4] and
Bendsge and Sigmund [5].

The paper is organized as follows. In Section 2 the relaxed formulation in its displacement-based
form is recalled after [19, Sec. 26|, cf. Lipton [22] and Telega and Lewiriski [29]. This formulation
leads to a saddle point formulation (P).

In Section 4 we give an outline of the numerical algorithm of solving this problem. The nonlinear
equilibrium problems are solved by the FEM targeted at hyperelasticity, see Kleiber [15]. In Section 5
we present an analysis of optimal solutions of selected problems . There are considered: the clamped
circular plates under a uniform transverse loading, the same plates, but simply supported, and
annular plates supported along the outer edge. The method of finding these solutions was announced
by Kolanek and Lewinski [17].

The case of shape design or h; = 0 requires a special caution. The relaxed formulation still
holds but the hyperelastic potential loses its smoothness, see [19, Sec. 26.7] and [20]. In Section 5
we consider a sequence of optimal solutions concerning this degenerated case. These solutions can
be confronted with those published in [25, 26], where a reciprocal problem (minimize the volume
under a given compliance) was dealt with. The formulae for the effective stiffnesses of ribbed plates
of second rank given in [25, 26] were derived intuitively. In Remark 1 a proof is given that these
formulae coincide with the Duvaut-Metellus homogenization formulae for thin plates, as derived in
Section 24.2 of [19]. ‘

2. THE RELAXED FORMULATION OF THE OPTIMUM DESIGN PROBLEM (F).
CASE OF h; >0

Relaxation by homogenization means admitting an arbitrary dense division of the domain Q into
the subdomains where h = hj or h = hy; in this section we require that hy > h; > 0. Consequently,
the optimal plate assumes anisotropic properties, generated by geometry of the domains, where
h = hy or h = hy but at the level of the underlying microstructure composed of repetitive cells Y.
Within these cells the area fraction of the phase, where h = hy is equal to my and this fraction
represents one of the design variables of the problem. It turns out that the effective plate endowed
with the microstructure of Gibiansky—Cherkaev has hyperelastic properties, the relevant constitutive
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equation being given by [19, Eq. 26.6.7|,

oW (K, ma)

oy oK :

(14)

where W represents the hyperelastic potential. In order to define the potential W (K, m2) we intro-
duce the following notation. The invariants of the tensor & are defined by

e} = %trn, II(Kk) = % [(trn)2—4detn]1/2. (15)
They can be put in the form
Sl Sl i) - - TS Y (16)
= —(K 3 = — —_ ¥
\/§ I I V2 I 1
where K, Ky are principal values of the tensor k. Let us introduce the auxiliary quantities
Ak =k — kK, Ap = p2 — p, m; =1-mg, (17)
[kl = miks + maky, [tlm = mip2 + mop1, (18)
(k)m = miky + maka, ()m = map1 + maop2,
(3 Ak - maolAk
= iy =— 19
e 27 2+ (Klm i
o 3 kiko + Nz(k)m
g k . EE ——F it
= < )m o M2 + [k]m
c1 = (Wm C2 = 2 (20)
~  mymo(Ap)? < miAp(pz + [klm)
A Ag =

g T

It turns out that the plate domain is divided into three domains determining so called regimes of
the solution. They are controlled by the value of the following scalar invariant of the strain tensor

[K]m + [1]m

K — KIT
K+ K1

G = | Ce = 3 (21)

The regimes are defined as follows:
(i) regime 3: G < (2,

(ii) regime 2: {3 < ¢e < €1,

(iii) regime 1: ¢ > (.

Gibiansky and Cherkaev proved that the following microstructures are realized in the regimes 1-3:
(i) regime 3: 2nd rank ribbed plate with ribs colinear with principal directions of «,

(i) regime 2: 1st rank ribbed plate with ribs colinear with principal directions of &,

(iii) regime 1: 1st rank ribbed plate with ribs non-colinear with principal directions of k.
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The complete characterization of these microstructures are given in Section 26 of [19]. Let us
define the auxiliary functions

Fo(z) = G + Caz?, (22)
“ - . & il
Fo) = Fi@) -4 (s-8) =F@) -4 (s-G) . (23)
The last equality holds due to identities

a1 — A1(¢1)? = a2 — Ax(C2)?, Al =410, @G-A=5-A4, (24)

which can be proved by inspection. We see that the parabola F(z) is tangent to the parabola Fi(z)
at z = (; and tangent to the parabola Fy(z) at z = (2. Moreover, F(z) lies below the parabolas
Fi(z), F5(z). Now we are ready to define the potential W,

[I(k)PF(¢) if I(k) #0, (25)

sy {<M>m[n(n)]2 i I(x) =0,

where the function F is defined by stitching the parabolas Fi(z), F(z), Fy(z) as follows
Fy(z) ifze [0, 22],
F(z) = ﬁ(z) ifze [Ez, 51], (26)
F1 (27) if z 2 Zl .

Differentiation in Eq. (14) can be performed explicitly. It gives the constitutive relation in the
following alternative form

M® = DM (i, ma) sy (w) (27)
with
D(k,m2) = 2k(k,m2) I + 2u(k, m2) I5. (28)

The functions k(k, m2), u(k, ma) are defined as follows, cf. [17]. If I(k) = 0 we have
k(k,m2) =0,  p(k,m2) = (u)m. (29)

Otherwise, i.e. for I(k) # 0, one finds

(@ if o€ [0, &)

k(r,m2) = { @, — Aula (Za e Cn) if s € [Cvz, v1] ) (30)
L@ o2 1y
(52 if (x € [0, 22],

ulwme) = 48 — Aa (1-Cafte) i€ G2, ), (31)
L& if G 2 (1.

By virtue of the identities (24) the expressions depending on a assume the same values for a = 1
and a = 2.
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The equilibrium problem of an effective hyperelastic plate has the form of the maximization
problem

Clma) = max, /Q (2qv — 2W (k(v), m3)) da (32)

Here C(mg2) represents the plate compliance. The area fraction of the plate material determined
by the thickness h = hy equals mgy(z). Thus the plate thickness is represented by the integral of
the expression hymi(z) + homa(z), where m;(z) = 1 — ma(z). The isoperimetric condition (12) is
replaced with the condition expressed in terms of mo(z),

/ (himi(z) + homa(z)) dz = Vo (33a)
Q
or
/ ern sy it g (33b)
Q
where
Vo — hi|9|
P Bl
"7 (- )

and |Q| represents the area of Q.
The relaxed problem corresponding to the problem (P,) has the form, see [19, Sec. 26],

min {C(m2) | ma € L*(£,[0,1]) and the condition (33b) holds} (P)

The problem (P) consists in finding the saddle point of the functional

J(v) =2 /n (qv — W(K(v),m2)) dz (34)

with respect to the fields v(z) and mgo(z). This saddle point exists, see Lipton [22], Lewinski and
Telega [19, Sec. 26.6] and Telega and Lewinski [29]. The solution to the problem (P) is the pair
(w,m2) that determines three regimes: 1,2 and 3. These regimes are realized in certain domains and
just finding their shapes is one of the aims of the project. In particular, we are interested in finding
the boundaries between these domains, where

(e =C1 (the boundary between the domains corresponding to the regimes 1 and 2),

(x = (5 (the boundary between the domains corresponding to the regimes 2 and 3).

Let us remind that ms = 0 means h = h; and the case of mg = 1 refers to the case of h = hs.

In the regime 2 the microstructure is that of a first rank ribbed plate and mg(z) represents the
area fraction of the 2nd phase or h = hy. In this regime the ribs lie along the trajectories of the
principal moments.

In the regime 3 the microstructure is that of 2nd rank ribbed plate material with ribs direction
coinciding with trajectories of the principal moments. The vector e; in Fig. 2 can be directed
along the first or second principal moment, hence two possible microstructures realize the optimum
solution and correspond to that expression for the potential W which refers to the case of regime 3.
The area fraction 6 is determined by the formula

01=%<1+m1ﬂ:%—%) (35)
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Fig. 2. Ribbed microstructure of 2nd rank. The first homogenization of both the phases is performed along

versor e; with area fractions 6;, 62. The second homogenization concerns the previous material and the

stronger phase 2 along the versor e; with area fractions wi, ws. Thus the weaker phase is a core and the
stronger phase is an envelope

where

C mzAk
2 _

—— (36)
bk 4 (k)
and I(M) and II(M) are defined as in Eq. (15). The sign + in Eq. (35) refers to the case of e;
being directed along the first principal direction of M. The sign — refers to the case of the second
principal direction of M.

In the domain of regime 1 the ribbed microstructure is of 1st rank of direction e; deviated
by angle ¢ from the first principal direction of M, see Fig. 1. The quantity cos2¢ is determined
uniquely,

cos 2¢ = —ILI((I;\/I/I_)) 1 (37)
where
_ (whm Ak
Q= W, AL (38)

Appearance of such microstructure does not contradict principles of symmetry since the sign of the
angle ¢ is undefined, cf. Fig. 1. The sole knowledge of the distribution of k and ms in the domain
suffices to fix the type and characteristics of feasible microstructures in all the regimes.

3. THE RELAXED FORMULATION OF THE SHAPE DESIGN PROBLEM

The case of hy = 0 refers to the shape design. Then h assumes only the value hy. In the formu-
lation (Pp) the domain § is divided into two regions: a solid region 5 and the holes ©;. The
relaxed formulation (P) admits additional regions with a perforated microstructure. The formal
substitution: k; =0, u; = 0 into Eq. (25) gives, see [19, 20],

I(k)]2Fy(¢e) if I(k) # 0,
mope[II(k)]* if I(k) = 0.
Let us define the counterparts of (V i Zz :
jrwdal v gy d el (40)

o] 27 pp+miky’
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and the counterpart of F, see Eq. (26)

2 (Z§+w2) ifz € ,Cvé’]

lo.¢8).
k -
Ri@) = { g2 20+ 2)° ifme[gg, 9, (41)

Mmoo Cvlo+m2) ifx>

One can prove that the case of Zgo < LS Z J corresponds to the case of {3y = 1, which means
det M = 0 or M;M/; = 0. Thus in the sliding regime 2 one of the principal moments vanishes.

Since the case of hy = 0 introduces some degenerations the question arises whether the mi-
crostructures described in Section 2 characteristic for the regimes 1-3 realize the relaxed poten-
tial (39). Consider the regimes in Eq. (41).

Regime 3. (, < (9

In the case of h; # 0 the proof of attainability of the potential on the 2nd rank non-rotated
microstructure is based on Lemma 24.1 of [19]. In the case of h; = 0 the formulae for the non-
vanishing flexibilities dOhh of the 2nd rank microstructure of Fig. 2, given by Egs. (24.2.8) in [19],
reduce to the form

Ko + Lo) mima(Ks + Lo)
2000 = K, + T2 24" = L +
g 492(01 S ml) < 492(91 sy ml)
(26, —1 )(K2 + Lg) e
2d0hh:__m1 Livs K i 2 2 hh.:_.
> 402(91 9 ml) ’ 2d33 ;
where
-1
my =6wi, Op=1-0, {L}m=<—+@) ;
Ly
cf. Eq.(10). Let us consider the function
H(6155,) = 2 [ (6:)5% + 240" (01)ay + 435" (01)y’] (43)
The counterpart of the Lemma 24.1 of [19] for the case of h; = 0 reads
Lemma 1. Assume that z # 0, y # 0 and |y/z| < 1. Then
H(67;
2 Many) = B ing) (44)
where
1
0 = 2 (1+m1 +m2y) (45)
and
L
H@2,y) = KO0 +Ipy?, KO = 7202 (46)
2

Proof. Differentiation of the function H(6, ;z,y) with respect to 6; and equating this expression
to zero gives two roots. The first one is given by Eq. (45) and the second one equals

1
0{*:—2-(1+m1+m2§> .

This first root realizes the minimum of the function H. The substitution 6; = 6] gives the mentioned
result (46). Thus in the regime 3 the 2nd rank microstructure is realized, see Fig. 2, with ribs lying
along the trajectories of principal moments. : a
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Regime 2. ( < ¢, < (7

Let us compute the stiffnesses Dgaﬂ of the first rank ribbed plate with area fractions m;, mgy,
according to Eqgs. (24.2.7) in [19]. By putting w, = m4 and k; = p; = 0 we find

2kg po mo

D011 s D012 = D022 2 47
h h h ko + o ( )
which gives
2
Dylia? 4 2Dy + DYty = 222 (o (48)
ko + pa

By putting z = I(k), y = II(x), we confirm the result (39)-(41) in the case of I(k) # 0 and a given
range of (.

Regime 1. (, > EP
According to Eq. (39) the potential W assumes the form
1
W (r,ma) = Sma (2kalI(K)]? + 2p12(11 ()] (49)

while its reciprocal form reads, see Section 26.7 in [19],

1
W*(M, mg) = ey (K2[I(M))? + Ly[II(M)]?) . (50)
One can write
ER3, kR 3 _ 3
maky = m ) mau2 = ﬁ(_l—}-—u) ) hpm = ’m2(h2) . (51)

Thus in this regime W corresponds to a solid plate of varying thickness h,, = Jmahsy .

Note that this interpretation contradicts the initial assumption of h assuming only two values
(here 0 and h3). The oblique first rank microstructure cannot be invoked here, in the case considered
it ceases to be stable.

Remark 1

Let us compute the effective flexibilities dg’g}\“ referred to the basis e, ® e3 ® ) ® e, . By inverting
the relations (21.1.24) of [19]) one finds

1 1
Aih = 3 (81 + 8 voatr), ity = ] (anh - ),
52
Ohh L/ onn JOhh Ohh JOhh 1 onn el
dyzgo = 2 (du +dyo" — 2dy; ) ) 1212 = 5‘133 -
Let us note that Ky + Ly = E47 , with J = %La . Substitution of Eq. (42) gives
1.1 v
1Y R e ¢ hh b Sl
53
dOhh_l_w2+02w2_1_ hh_1+V 1 ( )
e 6, R 18R TDBT O PO 1wl |

The formulae above coincide with the formulae derived in [25, 26], where the following notation
is used: di = wy, dy = 0. Let us add that the formula for d?, ceases to be correct if 6, = 1.

Then we have d¥) = 1/EJ. Thus the operations: lim and lim do not commute. Note
02—1 Ky1—00,L1—00

that d}73, does not depend on 6y, wy and vanishes for v = 0. Moreover, the flexibilities doM, , d3i%,
do not depend on the Poisson ratio.
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4. NUMERICAL PROCEDURE

Let us define the Lagrangian function for the problem (P),
L= / [2qv — 2W (k(v), m2) + Amy + A1 (—mg + o) + Ag(=1 + ma + o3)] dz, (54)
Q

where A, A1, A2 are multipliers for the conditions (33b), ma > 0, my < 1, respectively. The numbers
a1, ay are slack variables. The stationary condition d£ = 0 with respect to v, ma, A, A1, Ap gives,
in particular,

ow
-2 — A — A1 =0.
B, + A+ A 1 (55)

Let us define the function

_zow
T X 0my

A numerical solution to (P) is found iteratively. The following formula for updating the design
function my was proposed by Olhoff et al. 24, Eq. (5.9)] and Bendsge [4],

max {(1 - £)(ma)(;), 0} if (i),
(mz)(z'+1) = (m2)(i) Q((m2)(i)’ /\)n if (i), o

where 7, £ are real number parameters of the iterative procedure and (m2) @iy, (Mm2)(i4+1) are the
values of my for iteration i and ¢ + 1, respectively. The conditions (i)-(iii) are as follows:

(i):  (m2) Q((m2)gi), A)" < max {(1 - €)(ma) ), 0}, (58)
(i) max {(1~&)(ma)g), 0} < (m2)) Q((M2)@y, A)" < min {(1 +&)(ma), 1}, (59)
(i)):  min {(1+&)(ma)), 1} < (m2)) Q((m2)wy, A)", (60)

The value of the multiplier A is such that (mg)(;41) satisfy the isoperimetric condition (33b). Hence
to update my it is necessary to solve, with respect to A, the following nonlinear equation,

/Q(m2)i+1()‘) d2 = 4. (61)

The presented formula is applied for the algorithm whose main steps are:

1. Set the initial (m2) o) satisfying the isoperimetric condition (33b); assume the algorithm param-
eters 7,.£.

2. Solve the equilibrium problem (32) for valid (m2) .

3. Check the stop condition, for instance

C ((m2)i-1) = C ((m2);)
C ((m2)i-1)

where ¢ is an initially assumed algorithm precision parameter. If the condition is satisfied, then
stop, otherwise continue.

ok (62)
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4. Using the solution from Step 2 compute

OW (k(w)i, (m2):)
a’m,2

(appearing in definition (56)).
5. Solve Eq. (61) and according to Eq. (57) update mz to (ms2)(i+1) - Return to Step 2.
The equilibrium problem in Step 2 can be solved using a nonlinear FEM. We have applied this

approach successfully for solving examples presented in the consecutive section. To formulate the
nonlinear FEM problem the constitutive relation (27) is transformed to the incremental form

dM®P = DM (kg my)dky, (63)

where

DMk, my)

ﬁaﬂ)‘“(n,mg) = Daﬂ’\“(n,mg) -+
8/&',,\#

Kom (64)

is so called tangent stiffness moduli tensor [14, 15]. The quantity

OD* (K, my) &
T B Tl Ty

aﬁ,)\” . 5

is nonzero only for regions, where I(k) # 0 and (, € [Zz, Z 1). In such case it can be expressed as
follows,

& DB e ( 1 1 1 A9
g = @A G | e 0 P o I2P M DM )
Bring n Ca | € 2 2 (II(n))z 2 ynt2 09
I(k) 1 (cappruos o, s
+ \/§Aa(a| T (5 B g9 + I2P Ty ). (65)

Referring to the expression (56) it can be seen that the considered updating procedure requires
computation of the derivative of potential W with respect to my . This derivative reads

i {(I(w))?%% 1(6) 40, -
Au(ll(k))?  if I(k) =0.
where
e * 3¢ 6 [06)
a?,ff; = ;”Z; + 532 G- 3;; (-0) e[t dl, (67)
ok + o2 if G > G
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5. CIRCULAR AND ANNULAR TWO-PHASE PLATES

We introduce the polar coordinate system (r,1). We consider annular plates for which R; <r < R,
and circular plates when 0 < r < R, subjected to rotationally symmetric transverse loading ¢ = ¢(r).
The finite element method is applied. The discretization is performed along the radius; the shape
functions are the commonly accepted third order polynomials.

Given are: the radius R or the radii R;, R., the loading ¢, Young’s modulus F, Poisson’s
ratio v, thicknesses h; , hy and the volume Vj . Let V' = hy|€2| be the volume of the plate of constant
thickness hy and given middle plane. Let us define the volume ratio v = V5/V. By Eq. (33b) this
ratio is expressed by the formula

=11 -B)+5, (69)
2

where 8 = l%’[ represents the area ratio. The non-dimensional moments are introduced by the

following formulae: M, = M, /qR?, My = My /qR?. They will be presented in Figs. 3-8; for the sake
of simplicity in the notation the tilde over M will be omitted.

5.1. Clamped circular plates of a given volume ratio v and h; >0

We consider a clamped circular two-phase plate of radius R, subjected to a uniform loading of
intensity q. The plate is endowed with the microstructure described in Section 2. The main unknown
is the field mg = mg(r), 0 < r < R representing the area fraction of the thickness h = hy . The case
of ms =1 means that the plate has the constant thickness h = hg . The case of mg = 0 refers to the
case of a plate with constant thickness h = h; . The intermediate values of msy, where 0 < mp < 1,
refer to the composite plates of microstructures defined by the invariant {, , cf. Eq. (21). Three types
of microstructures corresponding to three regimes of (. , see Section 2, can occur. At the centre of
the plate one has M; = My, hence (,=0, which refers to the regime 3. Thus around the centre of
the plate we expect appearance of the 3rd regime. This regime should have an interface with the
2nd regime (called also the sliding regime).

Let us consider the cases of v = 0.3 (Fig. 3a,b,c), v = 0.5 (Fig. 3d,e,f), v = 0.7 (Fig. 4a,b,c),
v = 0.9 (Fig. 4d,e,f) for which the distributions of mg , the radial moment M, and the circumferential
moment My are shown as functions of r/R for the subsequent values of the ratio hj/hy . This ratio
varies in the interval [0,7).

We note that around the centre of the plates the 3rd regime prevails. It is shaded in light-grey.
For greater r this regime transforms into the sliding regime (shaded in grey), which means that
a second rank ribbed plate becomes a first rank ribbed plate. In this (2nd) regime the ribs are
directed along the radii. For the extreme case of h;/hg = 0 in these regions the plate is incapable
of resisting the circumferential bending. In fact, we note that for h;/hy = 0 we have My = 0 in
the 2nd regime, see Figs. 3c, 3f,4c. The sliding regime usually transforms into the regime 1 of an
oblique microstructure, shaded in dark-grey in the figures. Let us remind that this interpretation
of the microstructure concerns the case of h; > 0 but the passage to the limit (h; — 0) looks
smooth. Considering greater values of r we note that this regime changes smoothly into the sliding
regime (grey shading) and for smaller ratios of h;/hy this regime transforms into the 3rd regime
(light-grey), see e.g. Fig. 4d.

Depending on the values of v and h;j/hy the quantity mo assumes the maximal value 1 around
the centre of the plate or, also along the supported edge. If h;/ho=0 the quantity mgy attains the
zero value only at one point (defining a circumference) which can be interpreted as a hinge. In other
cases, when h; /hs does not vanish, mg can be zero along some intervals (see Fig. 4a,d) which means
that there h = h; .

Let us note that the shapes of M, are quite stable with respect to the hj/hy ratio. In contrast,
the shapes of plots of My change essentially, when h;/hy vary, see e.g. Fig. 4c. These changes are
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Fig. 3. Plots of ma(r), M.(r), My(r) in the optimally designed clamped circular plates characterized by
different ratios hi/hs > 0. Case of y = 0.3 (a, b, ¢) and v = 0.5 (d, e, f). The loading is uniform
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Fig. 4. Continuation of Fig. 3 for vy = 0.7 (a, b, ¢) and v = 0.9 (4, e, f)
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linked with that the 2nd rank ribbed plate is quite stiff, but if this microstructure becomes of 1st
rank it loses its stiffness rapidly.

5.2. Simply supported plates of a given ratio v and h; >0

Now the cases of simply supported plates are dealt with, see Figs. 5 and 6. This boundary condition
implies that not only M, = 0 along r = R, but also mg = 0 along this edge. Thus along the
boundary the plate is the thinnest and if h;/h2 = 0 we have h = 0 along the boundary, see e.g.
Fig. 5a. Depending upon the values of y and h;/hs the greatest thickness h = hs is achieved or not
around the plate centre.

In the case of clamped plates all regimes appear. It turns out that in the case of the simply
supported edge the regime 1 is absent for all the data considered. Thus the centre of the plate is
constructed from a second rank microstructure (that in some cases degenerates to the solid plate
with h = hy) and then, for greater r this microstructure becomes ribbed of first rank with ribs going
along the radial direction up to the supported edge. If h; = 0 these annular domains cannot sustain
any circumferential bending, see e.g. Fig. 5c.

5.3. Annular plates supported along the outer edge and free along the inner edge

The case of R; = 0.3R, R, = R, v = 0.7 is considered, see Figs. Ta,b,c, concerning plates clamped
along the outer edge. All regimes emerge. For the case of h; = 0 one can find a point where my = 0
which can be interpreted as a hinge. This hinge is also a line of a jump from the 1st to the 2nd
regime. Just there the microstructure suddenly changes. For greater values of hy/hg the regime 3
disappears. Along the inner (free) edge mo = 1, which means that the free edge must be maximally
stiffened to make the compliance extremely small. The graphs of My are very sensitive with respect
to the ratio hy/hy, Fig. 7c. For the extreme case of h;/hs = 0 we disclose two intervals, where
My = 0 (the sliding regime 2, shaded in grey). Thus along the hinge we have my = 0, M, = 0,
My =0.

In the case of simply supported annular plates (with the free inner edge) the variable ms vanishes
along the outer support, while along the inner free boundary this variable reaches its maximal
value 1, which means that a circumferential rib occurs, cf. Fig. 7d. The regime 3 does not appear.
The sliding regime lies in the zone around the outer support except for the cases of extreme values
of hi/hy, cf. Fig. 7d. The moments M, and My are presented in Figs. 7e,f.

5.4. Shape design. Influence of the area ratio 3

Let us consider an important case of h;/hy = 0 in greater detail, for the case of circular clamped
plates (Fig. 8a,b,c) and circular simply supported plates (Fig. 8d,e,f) characterized by various area
ratios 8. Within the regime 2 the ribs are radial, hence the circumferential moments My vanish, see
Fig. 8c,f.

Consider the case of clamping. For small values of 3 the quantity ms does not reach the maximal
value 1. For greater 8 we note that mo = 1 along the edge and in the central part, see Fig. 8a. Note
yet that all three regimes occur.

In the case of simply supported edges only two regimes: 3 and 2 occur, cf. Figs. 8d,e,f. Around
the centre my = 1 and this region increases together with 8. Along the edge we have my = 0
and regime 2 takes place. These results do not coincide with those reported in [25, 26]. The main
difference lies in that we disclose the regions, where ms < 1 and the regime 3 occurs. This means
appearance of a 2nd rank ribbed microstructure, absent in all solutions found in [25, 26].
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Fig. 5. The counterparts of results of Fig. 3 for simply supported plates; v = 0.3 (a, b, c) and v = 0.5
(d, e f)
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Fig. 6. Continuation of Fig. 5 for v = 0.7 (a, b, ¢) and v = 0.9 (d, e, f)
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Fig. 7. Plots of ma(r), M;(r), Ms(r) in the annular plates; clamped (a, b, ¢) and simply supported (d, e, f)
along the outer boundary. The loading is uniform. Case of hi/hs > 0 and v = 0.7
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c) )

Fig. 8. Optimal shape designs (case of h1 = 0) of clamped (a, b, ¢) and simply supported (d, e, f) circular
plates characterized by different ratios 3. The loading is uniform; the Poisson ratio v = 0.2
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5.5. Compliance versus the given volume

An optimal plate of a given volume Vj is characterized by its (minimal) compliance C. Let us
introduce the non-dimensional compliance

~ h3E
(o (127rq2R6) C

and the non-dimensional volume V,/V which is here equal to 3. Following [25] we present the values
of B as functions of the quantity 1/C, see Fig. 9a (the case of a clamped plate) and Fig. 9b (the
case of a simply supported plate) for selected values of Poisson’s ratio.

The value B = 1 refers to the case of a solid plate of constant thickness. The character of our
graphs is similar to those reported by Ong et al. [25, Figs. 9,11]. For small 1/C the volume grows
linearly and then has a point of inflexion.
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Fig. 9. Shape designs (h; = 0) - relative volume V,/V = B versus the inverse of the non-dimensional
compliance (1/C) for the optimal clamped (a) and simply supported (b) plates

6. CONCLUDING REMARKS

The results presented concerned circular plates loaded rotationally symmetric. The program written
in MATLAB language makes it possible to consider arbitrary rotationally symmetric loadings.
The computational algorithm presented in Section 4 refers to thin plates of arbitrary shapes and
boundary conditions. Its virtue lies in that it applies to the degenerated case of shape design when
hy = 0. An alternative computational approach to problem (P) is based upon controlling the 2nd
rank orthogonal ribbed microstructure. This approach is discussed by Bendsge [4, 5] and has recently
been applied by Czarnecki and Lewinski [10]. However, the latter method cannot be used in the
case of hy = 0.

The results of the present paper confirm that the oblique ribbed microstructure (regime 1) does
appear in the optimal solutions, which has also been observed in [10] in the context of thin two-phase
rectangular plates. Note that in the minimum compliance problem for in-plane elasticity this type
of microstructure does not appear, see [1, 2, 4, 13, 19]. However, as has been noted by Gibiansky
and Cherkaev [13] such oblique microstructures appear in the maximum compliance problem for
in-plane elasticity, which reflects a cross-analogy between the minimum compliance problem for
Kirchhoff plates and the maximum compliance problem for the 2D elasticity setting, and vice versa,
see [19, Sec. 28.4].
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The problem of minimum compliance of two-phase plates of moderate thickness has been consid-
ered by Diaz et al. [11] in an ingenious manner, by making use of a so-called moment formulation.
The 3rd rank ribbed microstructures were taken into account. None the less the relaxation formula-
tion for the moderately thick plates is still an open question since the field equations involve length
scales thus making the underlying homogenization nonunique, see [19, Sec. 5].
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