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Deep neural networks (DNNs) have recently become one of the most often used soft
computational tools for numerical analysis. The huge success of DNNs in the field of image
processing is associated with the use of convolutional neural networks (CNNs). CNNs,
thanks to their characteristic structure, allow for the effective extraction of multi-layer
features. In this paper, the application of CNNs to one of the important soil-structure
interaction (SSI) problems, i.e., the analysis of vibrations transmission from the free-
field next to a building to the building foundation, is presented in the case of mine-
induced vibrations. To achieve this, the dataset from in-situ experimental measurements,
containing 1D ground acceleration records, was converted into 2D spectrogram images
using either Fourier transform or continuous wavelet transform. Next, these images were
used as input for a pre-trained CNN. The output is a ratio of maximal vibration values
recorded simultaneously on the building foundation and on the ground. Therefore, the last
layer of the CNN had to be changed from a classification to a regression one. The obtained
results indicate the suitability of CNN for the analyzed problem.
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1. Introduction

Deep neural networks (DNN) have recently become one of the most often used
soft computational tools for numerical analysis [1–8]. By using the computational
capabilities of graphics processing units (GPUs), these methods allow for quick
processing of large amounts of data, making them an effective instrument, e.g.,
in image and speech processing [3, 4, 9].

The great success of DNN in image processing is closely tied to the de-
ployment of convolutional neural networks (CNNs). Thanks to their distinctive
structure, they allow for the effective extraction of multi-layer features, proving
efficient and accurate at image classification and object detection [3, 4, 6]. In ad-
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dition, compared to classical (shallow) fully connected neural networks (SNNs)
with a similar number of neurons, CNNs generate fewer training parameters,
which significantly reduces the learning time [8, 10].

Another advantage of using CNNs is the possibility of applying the machine
learning technique called transfer learning [11, 12], which allows for adapting
a model trained on one task to solve another one. This is especially helpful in
the case of a small dataset – a common in experimental measurements [13].

Soil structure interaction (SSI) refers to the mutual influence between vi-
brations of the soil subgrade and those of the surface building structure. This
interaction can have significant effects on, e.g., ground vibration transmission
to a building and the actual response of the structure. Consequently, it is an
important problem in the dynamic analysis and design of buildings and in the
prediction of building vibrations. One of the main challenges in SSI investigation
lies in the complexity of the soil-structure system [14–17].

The investigation of SSI effects is the most important for structures subjected
to dynamic loads from ground motion (i.e., seismic-type influences), particularly
in the context of earthquakes, as the soil can either amplify or reduce the intensity
of the ground shaking [14, 16, 18, 19]. A similar problem arises with paraseismic
rockbursts, with mine-induced shocks being the strongest among them [20–24].

In order to analyze and predict the very complex effects of SSI, one can
use a variety of analytical and experimental tools and techniques. These include
numerical modeling [25–28], laboratory testing [29, 30], and field measurements
[21, 22, 31, 32], among others.

In this paper, the application of CNNs in an important soil-structure inter-
action (SSI) problem, i.e., the analysis of mine-induced vibrations’ transmission
from the free-field next to a building to its foundation, is presented.

One of the main reasons for choosing CNNs to analyze vibration transmis-
sion from the ground to the building was their ability to effectively train algo-
rithms with a small number of patterns through the use of transfer learning. Such
a learning technique is widely used for this type of architecture and is character-
ized by its efficiency and ease of implantation. In addition, focusing on a specific
network allows for detailed comparative analyses of the most commonly used and
recognized CNN network architectures such as VGG or AlexNet. Therefore, we
have decided not to analyze the usefulness of, e.g., the long short-term memory
recurrent neural network (LSTM RNN) at this stage of the analysis. The primary
reason for this decision is that, in the case of LSTM networks, transfer learning
is not widely employed. This is mainly because of the limited number of ready-
made networks and the specificity of the data on which they were trained (the
similarity of the input between the original and the new problem to be solved).

For the analysis, a small dataset from in-situ experimental measurements,
comprising fewer than 500 ground acceleration 1D records, was converted to
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2D spectrogram images using either Fourier transform or continuous wavelet
transform. These images were next used as input for a pre-trained CNN. The
output is a ratio ra as a fraction of the maximal values (amplitudes) of vibrations
recorded simultaneously on the building foundation (af max) and on the ground
(agmax). Therefore, the last layer of CNN had to be modified from a classification
to a regression one.

Additionally, the obtained results using CNN were compared with those of
SNNs presented in [33].

The major, novel contributions of this paper are as follows:
• proving usefulness of selected CNNs in SSI analysis and verifying them as

an alternative tool to SNNs,
• adapting the architecture of CNNs to the regression problem,
• analyzing the impact of the method of image input generation on the CNN

prediction results,
• providing creative suggestions for fine-tuning the architecture analysis to

improve the CNN prediction,
• verifying the suitability of CNNs in handling a small set of experimental

data.

2. Application of artificial neural networks
for regression problem

Artificial neural networks are one of the main tools of artificial intelligence
(AI) used in machine learning [8, 34–36]. As the ‘neural’ part of their name sug-
gests, they are brain-inspired systems which aim to mimic the learning processes
observed in the human brain.

Artificial neural networks can be divided into two main types: the historically
older ones (known as SNNs) and the very popular and recent DNNs. CNN is
a subtype of DNN [1, 2, 8]. Figure 1 shows the appropriate diagram.

Fig. 1. The schematic subsets of AI.
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SNNs, in contrast to deep learning ones, have one or a maximum of two hid-
den layers (see Fig. 2a), resulting in fewer parameters to optimize, what makes
them generally simpler and easier to train. Their small size means that they do
not need a lot of computing power. However, the simple network architecture
has its disadvantages. One of them is limited model capacity that leads to lim-
itations in extracting and analyzing complex patterns [8, 10, 13]. Despite these
limitations, SNNs can still be effective in certain applications, particularly in
scenarios where computational resources are limited [8].

a)

b)

Fig. 2. Demonstration of architectures: SNN (a) and DNN (b).

A characteristic feature of deep neural networks is that they have many hid-
den layers (see Fig. 2b) that enable the analysis of complex relationships within
data. A large part of deep learning algorithms is used for classification problem
[3, 8, 35], it is worth noting that some of them can be applied to regression tasks
to predict a value based on a given set of input data. One example is the mul-
tilayer perceptron (see Fig. 2b) where the input data is typically first processed
through many fully connected layers, which are responsible for extracting a set
of features from the data, and the final layer generates predictions for the output
[13, 37, 38].

The development of neural network architectures allowed to extend their
predictive capabilities, particularly in the field of regression. One of the new and
promising algorithms is called the CNN. This type of architecture was originally
designed for image recognition and processing. CNN architecture consists of
multiple convolutional layers with learnable filters responsible for identification
and extraction of specific features that may not be immediately visible to the
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human eye [3, 4, 6]. The basic architecture of a typical CNN is presented in
Fig. 3.

Fig. 3. Basic architecture of a typical CNN.

CNNs require a large amount of data to attain high prediction accuracy [3, 4].
This is due to their complex, deep architecture with millions of parameters whose
values are computed during the learning process. For problems of classification or
image recognition, there are ready-made databases with millions of images avail-
able to use [39, 40]. In addition, to increase the number of patterns, a technique
called data augmentation is often applied [41].

Unfortunately, in the case of regression problems, data availability is often
constrained, which makes it difficult to train deep networks and achieve satisfac-
tory accuracy. There is also no possibility of generating new patterns, especially
in the case of experimental results. In addition, training on a small training set
can lead to overfitting or underfitting problem [2, 35, 36].

One way to use the advantages of CNNs in regression analysis with a small
number of patterns is to apply techniques known as transfer learning and fine-
tuning [11, 12, 42].

Transfer learning allows to use a previously trained network for a new prob-
lem or different data. This technique takes advantage of the feature extraction
capabilities acquired during learning on a large pattern base and transfers this
knowledge to solve another issue, helping to improve the performance and accu-
racy of the model on the new task [11, 12].

Many different approaches of transfer learning techniques exist. We can use
the entire pre-trained model or only a part of it, and the rest built from scratch
[11, 13, 42].

Fine-tuning is another powerful tool for improving the performance of neural
networks on a specific task. This technique involves adjusting the hyperparam-
eters of a pre-trained neural network to generate more accurate prediction for
a new problem. Depending on the task, fine-tuning can be applied to the en-
tire architecture, its parts or the final layers, responsible for repurposing the
network [11, 13, 42].
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The main stages in transfer learning including fine-tuning are shown in Fig. 4.

Fig. 4. The main stages in transfer learning, including fine-tuning.

3. SSI measurement data for mine-induced vibrations

In this paper, we propose to use CNNs for the analysis of a difficult type
of SSI problem in the context of mine-induced vibrations. This specific problem of
SSI deals with significant differences in vibrations between building foundation
and the adjacent free-field ground vibrations occurring simultaneously [21, 22].
Thus, the goal is to predict the transmission of these ground vibrations to the
building basement.

The neural network input and output data are based on the results of full-
scale measurements performed in the Legnica–Glogow Copperfield (LGC) –
a copper ore mining area. A representative example of numerous similar resi-
dential buildings is taken into consideration. The building’s plan and vertical
section are schematically shown in Fig. 5. The figure also shows the positions

x direction

y direction

Time [s]

Time [s]

Fig. 5. The plan and vertical section of the building, positions of the ground and foundation
seismic stations, and records of measured free-field and foundation vibration.
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of the ground and foundation seismic stations (blue and orange dot, respec-
tively) as well as demonstration records of measured free-field and foundation
vibration (acceleration a). Accelerations in the time domain on the ground sur-
face near to the analyzed structure and on the building foundations are regis-
tered concurrently using a seismic monitoring system. Specifically, ‘an armed
partition’ accelerometers are employed, starting to work at the assumed signal
level. These sensors are placed in rigid nodes of transverse-longitudinal struc-
tural elements in the building. The ground accelerometers are positioned ap-
proximately 5 m from the building structure. This distance ensures minimal
or no impact from the existing building on the measured free-field vibrations.
Such a distance (5 m) between the free-field and the building sensors is smaller
than the distance usually recommended for natural seismic vibrations. How-
ever, due to the characteristic properties of mine-induced shocks, we can ex-
pect that the building vibrations with relatively low natural frequencies are not
substantially affecting ground vibration records with very high predominant fre-
quencies.

The experimental focus was on horizontal vibrations along the x and y di-
rections, parallel to the crosswise and lengthwise building axis (see Fig. 5). The
collected set of measurement data consists of 464 pairs of accelerations (in time
domain) of ground and foundation vibrations [22, 43]. Randomly selected 50%
of these patterns were intended for the learning set of the CNN. The valida-
tion and testing sets were created using equal portions – 25% for the validation
set and 25% for the testing set.

4. CNNs for SSI problem

4.1. Input data pre-processing

For the neural network input, a small dataset from in situ experimental mea-
surements, containing fewer than 500 (P = 464) ground acceleration 1D records,
was converted to 2D spectrogram images using short-time Fourier transform
(STFT) [44, 45] as well as continuous wavelet transform (CWT) [45, 46], see
Fig. 6. A total of P = 464 spectrograms were generated for the x and y compo-
nents of the recorded ground accelerations. As mentioned above, these spectro-
grams were randomly divided as the learning, validation and testing inputs for
the neural network.

The use of both transformations allowed to generate spectrograms represent-
ing the frequency content of a signal over time. The horizontal axis corresponds
to the duration of the shock and the vertical axis represents the frequency range
from 0 to 100 Hz. After generating the spectrograms, the images were scaled to
the size required by the appropriate neural network.
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Fig. 6. Conversion of a ground acceleration 1D record to 2D spectrogram images

using STFT and CWT.

All the analyzed networks have a three-channel input (RGB), which allowed
to test the influence of spectrogram colors selection on neural prediction results.
Figure 7 shows four colormaps that were used to generate inputs of designed
variants of neural networks. Whereas Figs. 8 and 9 present spectrograms of the

a) b) c) d)

Fig. 7. Colormaps used to generate spectrograms:
a) Gray (G), b) Autumn (A), c) Parula (P), d) Jet (J).

a) b) c) d)

Fig. 8. STFT spectrograms of the same chosen accelerogram for different colormaps:
a) Gray, b) Autumn, c) Parula, d) Jet.
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a) b) c) d)

Fig. 9. CWT spectrograms of the same chosen accelerogram for different colormaps: a) Gray,
b) Autumn, c) Parula, d) Jet.

same exemplary record of ground vibration in the case of various considered
color palettes and transformation types (STFT in Fig. 8 and CWT in Fig. 9,
respectively).

It is worth noting that generating inputs using STFT requires the selection of
appropriate transformation parameters [44, 45]. Figure 10 provides an exemplary
illustration of the possible differences in selected spectrogram generated when
employing different window size and overlap values.

a) b) c)

Fig. 10. STFT spectrograms of chosen accelerogram for different values of window size
and overlap: a) 128, 120; b) 256, 250; c) 512, 500.

4.2. Output parameters

To estimate vibration transmission from the free-field to the building founda-
tion, the ratio ra, expressed as a fraction of maximal values (amplitudes, peak ac-
celerations) of accelerations in time domain simultaneously measured (recorded)
on the building foundation (af max) and at the free-field (agmax), was calculated
for each pair of vibration, and used as the network output:

ra = af max/agmax. (1)

The comparison of peak values of vibrations recorded simultaneously on the
ground and at the foundation level is the simplest method for evaluating differ-
ences between such ground and foundation records. This frequently used evalu-
ation method of vibration transmission, however, does not take into account the
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important parameter of vibration – frequency. It is also worth noting that the
peak ground and peak foundation accelerations generally do not occur simul-
taneously due to the fact that the ground vibration is usually modified at the
contact between the soil and the foundation.

Figure 11 illustrates the idea of preparing CNN output parameters according
to the formula (1) (af max and agmax are marked with dots).

Time [s]

Fig. 11. Illustration of the idea of preparing CNN output parameters.

4.3. Architectures and parameters of chosen CNNs

Four architectures of CNNs were selected for the calculations, which, after
modifying the final values, were employed to solve the regression problem. CNNs
chosen for the analysis are marked in red in Fig. 12.

VGG19VGG16

Fig. 12. Types of pre-trained networks (based on [47]).

The selected networks vary in depth, the number of convolutional layers,
the number of learnable parameters, the size of the input image, accuracy as
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well as relative prediction time [3, 4, 48]. As a selection criterion, we choose the
ability to adapt the neural network architecture to solve new regression task by
removing the final layers responsible for classification and adding new ones, i.e.,
fully connected and regression layers. Some of the parameters of chosen and used
types of CNNs are listed in Table 1.

Table 1. Parameters of chosen CNNs [3, 4, 48].

CNN
Total

number
of layers

Number
of convolutional

layers

Number
of fully

connected layers

Number
of learnable
parameters

Input
size

AlexNet 25 5 3 61M 227× 227× 3
DarkNet19 64 19 0 21M 256× 256× 3
VGG16 41 13 3 138M 224× 224× 3
VGG19 47 16 3 144M 224× 224× 3

Figure 13 shows the AlexNet architecture (Figs. 13a, b, and c) generated in
the Matlab Deep Learning Toolbox [47] and the modification scheme of the last
layers to change the purpose of the network (Fig. 13d). Similar modifications
were applied to the other considered networks.
a) b) c) d)

FC7

FC8

FC7

FC8
New FC8

Regr. layer

Fig. 13. Scheme of the original AlexNet architecture (a, b, c) and final layers replacement (d)
in MATLAB Deep Learning Toolbox (based on [47]).

After modifying the network architecture, the new networks were named as
follows: A (based on AlexNet), V16 (based on VGG16), V19 (based on VGG19),
and D19 (based on DarkNet19). In addition, each neural network’s name in-



14 M. Zajac, K. Kuzniar

cludes the type of signal transformation and the colormap used. For example,
D19_STFT_P represents a network based on the DarkNet19 architecture, where
the input is a spectrogram obtained through STFT in color Parula.

Finding the neural network with the best prediction is difficult due to the
large number of hyperparameters defining the learning process. In this work,
selected networks were first tested in terms of prediction quality due to the
method of generating spectrograms from ground vibration accelerations (CWT
and STFT) and color representation in three channels – red, green, blue.

In the first step of the analysis, all the considered networks were trained
using the following parameters: 1000 learning epochs, a full batch size equal to
232 patterns, a learning parameter set to 0.0001, Adam optimizer and a new
fully connected (FC) layer with a regression output.

All computations were carried out in the MATLAB environment using the
Deep Learning Toolbox with GPU support [47].

For the estimation of neural network prediction accuracy, mean square er-
rors (MSE), relative errors (ep), coefficients of linear correlation (r) for train-
ing (L), validating (V ) and testing (T ) were computed. Additionally, a success
ratio SR(ep) [%] was determined for all neural network variants (in statistics:
the cumulative curve illustrating the percentage of patterns with relative errors
less than ep).

5. Results and discussion

A summary of the results for neural learning, validation and testing of differ-
ent input transformation types and colormaps of CNNs for the selected networks
is presented in Table 2.

Figures 14 to 17 show SR for A, V16, V19 and D19 network testing depending
on the transform type (STFT, CWT) of ground acceleration in the time domain
and colormaps.

One can see that the A network based on AlexNet, in terms of relative er-
rors up to 30%, performs better for the input with CWT transformation and
colormaps with a wide spectrum of colors (P – Parula, J – Jet). Whereas in
the case of the V16 network based on VGG16, V19 network based on VGG19,
and D19 network based on DarkNet19, better results in terms of small relative
errors were obtained for the networks with the STFT transformation of network
input information (i.e., ground vibration in time domain). At the same time, no
particular influence of colormaps on the quality of results was observed.

A comparison of the percentage of success for learning, validation and testing
in the case of networks with the parameters giving the best results listed in
Table 2, is shown in Fig. 18. In addition, Fig. 19 shows the graphs of the output-
target and the absolute error for testing for the V19_STFT_P network (STFT,



Convolutional neural networks in the SSI analysis. . . 15

Table 2. Comparison of MSE and r (for learning, validation and testing)
obtained for various input transformation types and colormaps of CNNs.

Network Transform. Colormap MSE(L) MSE(V ) MSE(T ) r(L) r(V ) r(T )

A

CWT

Autumn 0.0262 0.0304 0.0320 0.8242 0.5964 0.5752
Gray 0.0204 0.0323 0.0308 0.8469 0.5415 0.5828
Jet 0.0279 0.0389 0.0363 0.8139 0.4910 0.5237

Parula 0.0271 0.0315 0.0313 0.8575 0.5992 0.5991

STFT

Autumn 0.0312 0.0578 0.0374 0.8379 0.3898 0.5412
Gray 0.0397 0.0626 0.0437 0.8534 0.4196 0.5225
Jet 0.0302 0.0390 0.0360 0.8013 0.4301 0.4804

Parula 0.0224 0.0415 0.0383 0.8135 0.4893 0.4179

V16

CWT

Autumn 0.0386 0.0449 0.0356 0.8288 0.5736 0.6365
Gray 0.0210 0.0293 0.0289 0.8861 0.6481 0.6283
Jet 0.0184 0.0353 0.0302 0.8576 0.5441 0.6003

Parula 0.0273 0.0359 0.0319 0.8587 0.5731 0.6185

STFT

Autumn 0.0225 0.0351 0.0325 0.8536 0.4846 0.6446
Gray 0.0232 0.0433 0.0325 0.8399 0.3034 0.5787
Jet 0.0183 0.0396 0.0300 0.8968 0.4802 0.6328

Parula 0.0174 0.0361 0.0339 0.8958 0.4419 0.5712

V19

CWT

Autumn 0.0213 0.0329 0.0267 0.8403 0.5717 0.6430
Gray 0.0192 0.0313 0.0304 0.8911 0.6102 0.6222
Jet 0.0154 0.0344 0.0286 0.8876 0.5408 0.6158

Parula 0.0201 0.0345 0.0250 0.8857 0.5446 0.6845

STFT

Autumn 0.0167 0.0401 0.0284 0.8928 0.5157 0.6256
Gray 0.0275 0.0647 0.0372 0.8508 0.4485 0.5769
Jet 0.0142 0.0353 0.0292 0.9053 0.5071 0.6026

Parula 0.0142 0.0304 0.0235 0.9076 0.6013 0.7054

D19

CWT

Autumn 0.0083 0.0422 0.0424 0.9518 0.3650 0.3841
Gray 0.0086 0.0444 0.0386 0.9397 0.4660 0.4620
Jet 0.0095 0.0404 0.0414 0.9403 0.4874 0.4450

Parula 0.0065 0.0365 0.0326 0.9641 0.5083 0.5967

STFT

Autumn 0.0072 0.0485 0.0421 0.9517 0.2935 0.3729
Gray 0.0105 0.0468 0.0432 0.9403 0.3261 0.3486
Jet 0.0093 0.0434 0.0463 0.9449 0.3899 0.3856

Parula 0.0086 0.0534 0.0360 0.9416 0.3297 0.4830

colormap – Parula – P). As one can see, in the case of learning, the best results
were obtained for the D19 network, without the original fully connected layers.
For validation and testing, for the error range up to 50%, all analyzed networks
show similar predictive properties.
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Fig. 14. SR in predicting the transmission of ground vibrations to a building
for A network in testing depends on transform type and colormaps.

Fig. 15. SR in predicting the transmission of ground vibrations to a building
for V16 network in testing depends on transform type and colormaps.

Fig. 16. SR in predicting the transmission of ground vibrations to a building
for V19 network in testing depends on transform type and colormaps.
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Fig. 17. SR in predicting the transmission of ground vibrations to a building
for D19 network in testing depends on transform type and colormaps.

Fig. 18. SR in predicting the transmission of ground vibrations to a building
for the chosen four networks with the best performance.

a)

b)

Fig. 19. V19_STFT_P network testing result: a) output-target relation,
b) output-target absolute error distribution.

The results presented in Table 2 and Figs. 14–19 were used to select the
networks with the best properties, which in the next step were subjected to
another test aimed at improving them.

Because the original source networks were trained on a set of patterns dif-
ferent from the specific patterns of the analyzed problem, after adapting their
architecture to the regression problem, they had to be additionally fine-tuned to
the new data. This is done by unfreezing the appropriate number of layers, which
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means that it is possible to update the weights of neurons during training. The
ability to fine-tune a network learned on a large dataset allows its properties to
be used for a new problem with a small number of data, which is competitive
to standard, shallow networks.

In the next step of the analysis, four various levels of layer freezing were used.
The first case of layer freezing, denoted as F1, means that all the original layers
of the basic network have been frozen and only the newly created fully connected
layer is updated. The second case, denoted as F2, means thawing of all final layers
including the original FC layers. The third case, denoted as F3, additionally
unfreezes the last convolutional layer. On the other hand, networks denoted as
FN are networks without layer freezing (where all parameters are updated).
So, in the case of the D19 network, which originally does not have FC layers,
and, subsequently, counting from the end, convolutional layers are unfrozen.

It should be noted that defrosting more and more layers entails an increase in
numerical effort and thus the demand for computing power. The time of neural
network learning is also significantly increased.

The results presented in Table 3 indicate that thawing successive layers im-
proves predictive properties. This may be due to the difference in the content of
the original and new training data and the need to adjust the parameters to the
problem of regression instead of classification.

Table 3. Comparison of MSE and r (for learning, validation and testing)
for different number of frozen layers of chosen CNNs.

Network Frozen layers MSE(L) MSE(V ) MSE(T ) rL rV rT

A_CWT_P

F1 0.0271 0.0315 0.0313 0.8575 0.5992 0.5991
F2 0.0030 0.0278 0.0315 0.9934 0.6499 0.5755
F3 0.0012 0.0273 0.0294 0.9970 0.6455 0.6062
FN 0.0005 0.0297 0.0300 0.9987 0.6298 0.5990

V16_CWT_G

F1 0.0210 0.0293 0.0289 0.8861 0.6481 0.6283
F2 0.0012 0.0241 0.0237 0.9967 0.7195 0.7029
F3 0.0019 0.0239 0.0212 0.9968 0.7011 0.7306
FN 0.0010 0.0254 0.0181 0.9983 0.6972 0.7920

D19_CWT_P

F1 0.0065 0.0365 0.0326 0.9641 0.5083 0.5967
F2 0.0004 0.0338 0.0301 0.9979 0.5464 0.6136
F3 0.0001 0.0341 0.0333 0.9993 0.5422 0.5555
FN 0.0001 0.0367 0.0254 0.9992 0.6185 0.7234

Figure 20 presents the results of the percentage of testing success for three
selected networks depending on the depth of layer freezing. It can be seen that
in the case of large networks (V16, V19, D19), unfreezing all layers significantly
improves the predictive capabilities of the networks.
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Fig. 20. SR in predicting the transmission of ground vibrations to a building
for chosen networks in the case of various number of frozen layers.

In the next test, the influence of the number of FC layers on the quality of
the results was investigated. The purpose of the FC layers in a convolutional
network is to transform the data from a matrix to a vector and to introduce
non-linearity to the model.

The D19 network based on the DarkNet19 network, which initially did not
have such layers, was used for the above-mentioned analysis. In the most devel-
oped version of the D19 network, four FC layers were added with the following
number of neurons: 1000-500-500-250.

The obtained results are presented in Table 4 and Fig. 21. Adding successive
layers, and thus increasing the capacity of the model without increasing the
number of training data, results in a deterioration of the network’s learning
ability. A similar effect is seen for validation. In the case of testing, for errors up
to 50%, this effect is present but not so clearly visible.

Table 4. Comparison of MSE and r (for learning, validation and testing)
for various number of fully connected layers for D19_CWT_P networks.

No. of FC layers MSE(L) MSE(V ) MSE(T ) rL rV rT

1 0.0065 0.0365 0.0326 0.9641 0.5083 0.5967
2 0.0257 0.0533 0.0386 0.9756 0.5340 0.5953
3 0.0310 0.0519 0.0362 0.9805 0.5570 0.6180
4 0.0483 0.0596 0.0436 0.9774 0.5272 0.6212

Fig. 21. SR in predicting the transmission of ground vibrations to a building
for D19_CWT_P networks with different number of fully connected layers.
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Effective training of deep networks requires a large amount of training data.
During this process, the data is divided into so-called batches that constitute
the entrance to the network. The division into batches increases the number of
iterations during one epoch of learning, which may extend the analysis time,
but at the same time reduces the demand for computing power and improves
optimization using the stochastic gradient descent method. Thus, reducing the
amount of input data is advisable in the case of calculations on hardware with
relatively little computing power. Table 5 and Fig. 22 show the results of cal-
culations using the V19_CWT_G network in the case of dividing the learning
patterns into batches of various sizes, where the full batch contains 232 patterns.

Table 5. Comparison of MSE and r (for learning, validation and testing)
for various learning batch sizes for V19_CWT_G network.

Batch size MSE(L) MSE(V ) MSE(T ) rL rV rT

29 0.0963 0.1336 0.1422 0.7500 0.5120 0.5657
58 0.0599 0.0766 0.0678 0.8269 0.5324 0.5399

116 0.0222 0.0369 0.0361 0.8757 0.5854 0.5824
232 0.0192 0.0313 0.0304 0.8911 0.6102 0.6222

Fig. 22. SR in predicting the transmission of ground vibrations to a building
for V19_CWT_G networks with different learning batch sizes.

The obtained results indicate that the batch size has a significant impact on
the quality of the network in the case of analyzing the problem with a small
number of learning patterns. For the V19_CWT_G network, better results are
obtained with a set with more data (full batch and half full batch).

The use of CNNs for regression in the case of SSI analysis requires the trans-
formation of data in the form of ground vibration accelerations into images with
a size depending on the selected base network. One of the possible methods of
this type of conversion is the STFT, which allows changing the signal into a spec-
trogram in the time domain. When constructing it, several parameters are given,
the key of which is the size of the window, which determines the resolution of the
spectrum in relation to time. Table 6 and Figs. 23 and 24 summarize the results
of selected networks for input data generated using windows of widths of 128,
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Table 6. Comparison of MSE and r (for learning, validation and testing)
for various Fourier transform window size of chosen CNNs.

Network Widow size MSE(L) MSE(V ) MSE(T ) rL rV rT

A_STFT_G
128 0.0350 0.0523 0.0396 0.8129 0.5101 0.5255
256 0.0397 0.0626 0.0437 0.8534 0.4196 0.5225
512 0.0374 0.0542 0.0403 0.7629 0.4165 0.4843

A_STFT_P
128 0.0228 0.0302 0.0305 0.8335 0.5753 0.6178
256 0.0224 0.0415 0.0383 0.8135 0.4893 0.4179
512 0.0347 0.0556 0.0400 0.7589 0.4468 0.4839

V19_STFT_G
128 0.0228 0.0351 0.0286 0.8216 0.5805 0.6436
256 0.0275 0.0647 0.0372 0.8508 0.4485 0.5769
512 0.0238 0.0382 0.0291 0.8182 0.4324 0.6067

V19_STFT_P
128 0.0193 0.0242 0.0301 0.8701 0.6981 0.5980
256 0.0142 0.0304 0.0235 0.9076 0.6013 0.7054
512 0.0199 0.0339 0.0284 0.8570 0.5542 0.6142

Fig. 23. SR in predicting the transmission of ground vibrations to a building
for A_STFT_G networks with different STFT window sizes.

Fig. 24. SR in predicting the transmission of ground vibrations to a building
for testing for chosen networks in the case of various STFT window sizes.

256 and 512. For example, for the A_STFT_G network (Table 6, Fig. 23), the
window size does not significantly affect the quality of the results for learning,
validation and testing. A similar tendency can be observed in the case of the
network testing results presented in Fig. 24 and Table 6. The low sensitivity of
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the network to the size of the window parameter facilitates the preparation of
input data in the form of spectrograms.

Another problem deals with the number of CNN learning epochs. The choice
of this parameter affects the generalizing properties of the network and allows
protecting against underfitting or overfitting. In the case of training DNNs from
scratch on a large data set, this number can be large, which means long-time
training. For the analyzed case, with a small training set and the fine-tuning
technique, the use of about 500 epochs allowed achieving satisfactory results.
Table 7 and Fig. 25 show the prediction results for the V16_CWT_G_FN
network depending on the different number of learning epochs.

Table 7. Comparison of MSE and r (for learning, validation and testing)
for various number of training epochs – V16_CWT_G_FN network.

No. of epochs MSE(L) MSE(V ) MSE(T ) rL rV rT

250 0.0052 0.0303 0.0229 0.9924 0.6718 0.7772
500 0.0024 0.0266 0.0195 0.9978 0.6863 0.7847
750 0.0009 0.0258 0.0181 0.9978 0.6972 0.7882
1000 0.0010 0.0254 0.0181 0.9983 0.6972 0.7920
1250 0.0018 0.0262 0.0183 0.9984 0.6862 0.7964

Fig. 25. SR in predicting the transmission of ground vibrations to a building
for testing for various number of training epochs in the case of V16_CWT_G_FN network.

Early stopping is one of the techniques to prevent the network overtraining,
which allows one to stop the training process when the learning error decreases
with the increase in the number of epochs and the validation error after the
initial decrease starts to increase. Stopping the learning process early also saves
time and numerical analysis costs. For the V16_CWT_G_FN network and
1000 learning epochs, this is about 2.2932e+18 multiplication and addition op-
erations. However, in the case of training deep neural networks, an early stop
may not be optimal due to the occurrence of the ’double descent’ phenomenon, in
which, after an increase in the validation error caused by overfitting, it decreases
with further training and thus improves the generalizing properties. Hence, it
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is necessary to analyze the sensitivity of the network to the number of learning
epochs.

In the last step, the results of one of the discussed CNNs – V16_CWT_G_FN
network and two SNNs (denoted as SNN1 and SNN2) [33] with the best predic-
tive properties were compared.

This version of V16_CWT_G_FN network is built based on VGG16, where
the inputs are spectrograms obtained by wavelet transformation in the gray
spectrum, with no layers freezing and with 1000 learning epochs. Figure 26 shows
the output-target plots of this network for training, validation, and testing. The
red line marks the location of points for the coefficients of linear correlation equal
to 1. It is visible that the differences in expected (target) and calculated (output)
values are smaller for learning patterns than for validation and testing patterns.
Nevertheless, it is worth noting that this CNN was selected as the best based
on the results in Table 7, and this is the network for which the testing error
is the smallest with a given number of learning epochs. Therefore, despite the
differences in training and testing errors, the results in Table 7 do not indicate
overfitting because of the constant value of the validation and testing errors. No
upward trend was observed for the validation and testing curve.

Fig. 26. Target vs. output relation for learning, validation and testing
for V16_CWT_G_FN network.

Both the SNN1 and SNN2 were designed as multi-layer perceptrons with error
backpropagation and learning according to the Levenberg–Marquardt algorithm.
The input data vector contains tremor and ground vibration parameters such as
the maximum ground acceleration value, tremor energy, and epicentral distance
(three input parameters) in the case of SNN1. In the case of SNN2, the in-
put information is additionally extended by two local seismological coordinates,
a dominating frequency of free-field vibration, and the parameter describing the
direction of vibration. Thus, there are seven input parameters in SNN2. Sim-
ilar information to that in the input parameters of shallow networks is given
indirectly in the input parameters of the convolutional networks in the form of
pre-processed ground vibration 1D records. Both the SNN1 structure and the
SNN2 structure have one hidden layer consisting of 25 and 4 neurons, respec-
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tively. Similarly to the CNNs, a ratio ra was used as a network output in the
case of both above-mentioned SNNs.

The test results presented in Table 8 and Fig. 27 indicate similar prediction
capabilities of the CNN and SNN2 networks, especially in the range of relative
error up to 25%. The better training properties of the applied CNN result from
the greater capacity of the model and the number of training epochs. Definitely
worse results were obtained by the SNN1 network with very poor information in
the input vector.

Table 8. Comparison of MSE and r (for learning, validation and testing)
for chosen CNN and SNNs.

Network MSE(L) MSE(V ) MSE(T ) rL rV rT

V16_CWT_G_FN 0.0010 0.0254 0.0181 0.9983 0.6972 0.7920
SNN1 (3-25-1) 0.0194 0.0237 0.0220 0.6815 0.4284 0.4903
SNN2 (7-4-1) 0.0129 0.0120 0.0103 0.8016 0.7384 0.7928

Fig. 27. SR in predicting the transmission of ground vibrations to a building
for chosen CNN and SNNs.

6. Conclusion

The obtained results indicate the usefulness of CNNs in analyzing the pre-
diction of transmission of vibrations from the ground to the building.

Thanks to the use of transfer learning and fine-tuning mechanisms, the user
can easily apply the deep network architecture learned on millions of examples
to a new, individual problem, even with a small set of available experimental
data. In addition, networks of this type are easily transformed to solve regression
problems, as exemplified by the above calculations.

Another advantage of using CNN in the SSI analysis is the ease of preparing
input data, i.e., spectrograms of ground vibration accelerations, which already
contain all information about the nature and parameters of the phenomenon.
In the case of shallow networks, this input data can- not be so rich because of
limitations in neural network architecture, and the input parameters are obtained
in time-consuming preprocessing.
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Of course, the disadvantage of using CNNs in relation to SNNs is the long
calculation time and the need to have hardware with a powerful graphics card,
especially for complex architectures and large batches of input data.

However, the obtained results show that using pre-trained DNN architecture,
even in the case of a small data set, might be an alternative to SNNs.

The carried studies additionally confirm the complexity of the problem of
dynamic soil-building interaction prediction.
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