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In this paper, an artificial neural network (ANN) is used to approximate response of deep excavation
numerical model on input parameters. The approximated model is then used in minimization procedure
of the inverse problem, i.e. minimization of the differences between the response of the model (now, neural
network) and the field measurements. ANN based objective function is continuous and differentiable thus
gradient based optimization algorithm can be efficiently used in this problem. It is showed that initial
approximation of the numerical model by means of ANN increase efficiency of the identification process
without loss of accuracy.
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1. INTRODUCTION

Results provided by numerical models of deep excavations (and other geotechnical structures) often
differ from field measurements and case histories. This is due to many uncertainties regarding the
true soil properties at the stage of structure design. On the other hand the field measurements
performed at the construction stages state a potential source of knowledge about the soil material
response. These data could be used to improve the numerical models via inverse analysis tech-
niques. This should, in turn, result in better prediction of the behavior of the structure at further
construction stages.
When applying inverse analysis techniques to study the behavior of an actual supported exca-

vation, concerns exist about the proper representation of the real system, as well as the efficiency
of the inverse analysis technique and its ability to find a unique set of parameters for a particular
problem.
Artificial neural networks (ANN) can be used in a number of ways in this context. The most

common approach applied to the geotechnical problems (and especially deep excavations) is the so
called self-learning finite element framework introduced by Ghaboussi [2]. In this method a neural
network learns its own constitutive law form field measurements. Process of training ANN is then
a process of creating an equivalent material model which tries to fit available field data. Weights
of the network are then considered as material parameters. Another approach is to train an ANN
in such a way, that it reflects an inverse relationship between numerical model response and its
parameters (e.g. [6]). Application of the field measurements at the input of such a trained network
should result in correct parameters of the numerical model at its output. The third way is to
approximate, by means of ANN, a direct relationship between the numerical model answer and
its parameters. After that, the trained ANN is used in the minimization procedure of the inverse
problem, i.e. minimization of the error between the response of the model (now, artificial neural
network) and the field measurements [8].
The last method is used in this paper for identification of the soil parameters for deep excavation

systems. Feed-forward artificial neural network with continuous and differentiable transfer functions
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is used. Thus the neural network based objective function of the inverse problem is also continuous
and differentiable. Once we train a neural network, the process of finding material parameters is
very efficient, because of the use of the truncated Newton minimization algorithm [7].
A similar identification problem, but without exploiting artificial neural networks, can be found

in [9]. In this paper the minimized objective is not differentiable and the numerical model of the
excavation have to be evaluated directly when solving inverse problem. Thus the finite difference
method must be used to calculate gradients or a non-gradient minimization method have to be
applied (like genetic algorithm). Our approach is superior to the methods proposed in [9] because
of higher efficiency (we need smaller number of model evaluations and we are able to identify higher
number of parameters) and satisfactory accuracy.
In the following we define the identification procedure and the feed-forward neural network

(along with its derivatives) used in this work. Then we present numerical model of deep excavation
system and finally we present the results of identification with discussion and conclusions.

2. IDENTIFICATION PROCEDURE

Parameter identification of the numerical model M(p) consist in finding a set of parameters p
in such a way, that the answer of the model at the chosen points of the solution domain, i.e.:
uM = M(p) fits best the field measurements uR. This can be formulated as the minimization of
the following objective function:

Ω(p) =
1

2

N∑

i=1

(uM,i − uR,i)
2, (1)

where N is the number of the monitored points. In case of using ANN the answer of modelM(p)
is replaced by the answer of appropriately trained ANN model N , i.e. uM ≈ uN = N (p). The
objective function to be minimized can be then written as:

Ω⋆(p) =
1

2

N∑

i=1

(uN ,i − uR,i)
2. (2)

Model N can be realized by a single network with N outputs or by N networks with a single
output. The second possibility is used in this paper.
The identification procedure taking advantage of ANN approximation of the numerical model

consist in three stages:

1. Generation of training data for neural network – this is done by a number of runs of modelM
with different sets of parameters p.

2. Training the ANN model N (p).

3. Minimization of the function Ω∗(p).

The second and the third stage do not need additional evaluations of numerical modelM (approx-
imated model N , ie. trained ANN, is used instead).

3. ARTIFICIAL NEURAL NETWORK WITH DERIVATIVES

3.1. Formulation

Two layer artificial neural network (Fig. 1) with nonlinear activation functions in hidden nodes,
identity inputs and single identity output can be represented by the following closed formula:

N (p1, . . . , pn) =
m∑

j=1

vjgj

(
n∑

i=1

wjipi + bj

)
, (3)
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where n is a number of network inputs,m is a number of hidden neurons, vj, wij , bj are parameters of
the network (weights and biases adjusted during training) and gj is an activation function at hidden
node j. Such a network is proved to be able to approximate any continuous multivariate function
and, simultaneously, its partial derivatives, if only gj is continuous, bounded and differentiable [3].
These criteria are fulfilled by sigmoid function used in this work:

g(x) =
1

1 + e−x
. (4)

Fig. 1. Two layer artificial neural network.

It is straightforward to show (e.g. [5, 11, 12]) that k-th partial derivative of the function realized
by the network N can be computed by means of the following formula:

∂k1

∂pk11

∂k2

∂pk22
. . .

∂kn

∂pknn
N =

m∑

j=1

(
vjg

(k)
j Pj

)
, (5)

where g
(k)
j is k-th derivative of gj and:

k =

n∑

i=1

ki, Pj =

n∏

l=1

wkl
jl . (6)

Once the ANN is trained, it should approximate a relationship contained in training data and also
the derivatives of this relationship. Equation (6) shows that we have access to these derivatives,
thus minimization of Ω∗(p) with gradient methods is possible.

3.2. Training

For ANN training we need a database of input – output pairs which should represent sufficiently
a problem domain. For databases with small number of samples (in this paper we deal with such
a situation, because training samples are obtained by numerically expensive evaluations of deep
excavation model) special techniques are used to increase the quality of training results. The main
goal is to avoid over-fitting while keeping good approximation of the model. One of these techniques
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is an addition of Tikhonov regularization term to the ANN cost function used in training. Cost
function exploited in this paper is given by the formula:

E∗(p,w) =

s∑

i=1

(N (pi,w)−M(pi))
2 + λ

n∑

j=1

s∑

i=1

(
∂2N (pi,w)

∂p2j

)2

, (7)

where s is a number of training samples and w is vector of all parameters (vj , bj , wji) of the
network N . The second term of E∗ is a sum of second derivatives of ANN approximation, which
can be calculated with (5). Shape of E∗ means, that curvature of the ANN mapping is minimized.
This smoothing behavior is controlled by scaling coefficient λ (which should be kept small).
In order to exploit Newton methods in ANN training gradient of the mappingN and its (second)

derivatives with respect to weights and biases is needed. Let’s represent the formula for network
derivatives (5) in the following way:

∂N (vj , bj , wji) =

m∑

j=1

(
vjg

(k)
j Pj

)
. (8)

Then, gradient of ∂N with respect to output weights vj, biases bj and input weights wij is given
by formulas:

∂(∂N )

∂vj
= g

(k)
j Pj , (9)

∂(∂N )

∂bj
= vjg

(k+1)
j Pj , (10)

∂(∂N )

∂wji
= xivjg

(k+1)
j Pj + vjkiw

ki−1
ji g

(k)
j Qj , (11)

where

Qj =

n∏

l=1,l 6=i

wkl
jl . (12)

If differentiation order k = 0 then we have ∂N ≡ N and the above equations represent the usual
gradient of the network output with respect to network parameters. Thus the presented formulas
are considered as a generalization of the standard two layer feed-forward neural network definition.

The above formulas were used to calculate gradient of the introduced cost function, i.e.
∂E∗(p,w)

∂w
,

needed by truncated Newton optimization procedure [7] implemented in ffnet [13] software used
for training.

4. NUMERICAL MODEL OF DEEP EXCAVATION

Deep excavations support systems and its modeling by means of finite element method are wildely
discussed in the literature (see. e.g. [4, 9, 10]). It have to be noted that the geometry of the
excavation, its overall behavior, the material descriptions used in modeling can be quite complex.
However, in this paper, geometry of the excavation model was kept relatively simple as the main
goal is presentation of the usage of ANN in the identification task. Deep excavation system was
modeled in Plaxis [1] geotechnical software using elastic – perfectly plastic material model with
Mohr-Coulomb failure criterion for soils and linear elastic materials for diaphragm wall and struts
(Fig. 2). Plain strain finite element formulation was used with standard boundary conditions.
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In plain strain all quantities are calculated for 1 meter of the excavation length, thus stiffness
of struts was divided by their spacing which was assumed 2.5 m. Two stages of construction are
considered: partial excavation up to 15 m, where training data for ANN is gathered, and full
excavation depth 20 m, where identified parameters are verified. The most important soil parameters
used in simulations, i.e. unit weight of saturated and unsaturated soil (γsat, γunsat), Poisson’s ratio
(ν), Young’s modulus (E1 or E2), friction angle (φ1 or φ2), cohesion (c), dilatatancy angle (ψ) are
shown in Table 1. These parameters are considered to be typical values for soft unconsolidated clay
and medium dense sand. From this parameter set four quantities were chosen for identification,
i.e.: Young moduli and friction angles for both, clay and sand soil layers. Cohesion of soft clay was
skipped because of its relatively small value and also relatively small impact on the diaphragm wall
behavior. Thus the numerical modelM of excavation has been attributed with the parameter list
p = [E1, φ1, E2, φ2]. Other parameters were kept constant during performed simulations.

Fig. 2. Deep excavation model.

Table 1. Parameters of soils.

γunsat γsat ν E c φ ψ

[kN/m3] [kN/m3] [–] [kPa] [kPa] [◦] [◦]

clay (1) 15.9 19.6 0.33 10500 6.0 26.4 0.0

sand (2) 17.5 20.0 0.3 50000 0.0 33.0 3.0

5. DATABASE PREPARATION AND TRAINING ANN

In order to prepare data for training ANNs, 36 different parameter sets p were generated and
numerical model was evaluated 36 times. At this point partial excavation up to the depth 15 m
is assumed as shown on Fig. 3. Parameter sets were generated carefully to be evenly distributed
in the chosen parameter space (see Table 2). Generally, it was assumed that Young moduli and
friction angles vary in the range ±20% starting from the values presented in Table 1. For each model
evaluation the lateral displacements at all nodes of the finite elements constituting diaphragm wall
were picked up, then the wall’s shape was smoothed by means of the 3rd order splines. Values of
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Fig. 3. Partial excavation model (left) and the lateral displacements of diaphragm wall for different sets
of soil parameters (right). Dashed lines indicate monitored levels.

Table 2. Parameters of soils.

No. E1 [kPa] φ1 [
◦] E2 [kPa] φ2 [

◦] No. E1 [kPa] φ1 [
◦] E2 [kPa] φ2 [

◦]

1 11200 24.6 46667 30.8 19 12600 31.7 40000 26.4

2 9800 28.2 46667 30.8 20 12600 21.1 60000 26.4

3 9800 24.6 53333 30.8 21 8400 31.7 60000 26.4

4 11200 28.2 53333 30.8 22 12600 31.7 60000 26.4

5 9800 24.6 46667 35.2 23 8400 21.1 40000 39.6

6 11200 28.2 46667 35.2 24 12600 31.7 40000 39.6

7 11200 24.6 53333 35.2 25 12600 31.7 60000 39.6

8 9800 28.2 53333 35.2 26 8400 21.1 60000 30.8

9 11900 22.9 43333 28.6 27 8400 21.1 46667 26.4

10 9100 29.9 43333 28.6 28 8400 31.7 46667 39.6

11 9100 22.9 56667 28.6 29 8400 24.6 60000 39.6

12 11900 29.9 56667 28.6 30 12600 21.1 46667 39.6

13 9100 22.9 43333 37.4 31 11200 21.1 60000 39.6

14 11900 29.9 43333 37.4 32 12600 26.4 50000 33.0

15 11900 22.9 56667 37.4 33 10500 31.7 50000 33.0

16 9100 29.9 56667 37.4 34 10500 26.4 40000 33.0

17 12600 21.1 40000 26.4 35 10500 26.4 50000 26.4

18 8400 31.7 40000 26.4 36 10500 26.4 50000 33.0

such processed displacements at 8 monitored depth levels (from 0 to 15 m) stated the answer of
the model uM used for training artificial neural network.

8 networks of the architecture 4-4-1 were then trained – one ANN for each monitored displace-
ment. All 36 samples were used for training and Tikhonov regularization with coefficient λ = 0.005
(as described in Subsec. 3.2) was applied. Very good training results were obtained: the root mean
square error for all networks did not exceed value of 5e-3, and the correlation was about 0.998.
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Fig. 4. Neural network architecture used for model approximation. 8 networks were trained
– one ANN for each monitored displacement.

6. IDENTIFICATION RESULTS

6.1. Partial excavation

Field measurements for excavation problem were generated numerically in this paper. For this
purpose a parameter set:

pR = [8925, 22.4, 42500, 28.1] (13)

was chosen and the finite element numerical model was used to get field data uR. Equipped with the
trained neural networks we performed minimization of the objective function Ω∗(p). A truncated
Newton optimization method was used [7] (the same as for ANN training). The convergence is
very fast, i.e. 30–50 function calls and gradient computations were needed. The obtained minimum
considered as the identified parameters:

pI = [9031, 22.3, 43311, 27.8] (14)

is very close to the expected values. This can be observed in Fig. 5, where Ω∗(p) is visualized at
chosen sections of the 4-dimensional parameter space.

Fig. 5. Ω∗(p) in function of Young moduli with constant friction angles (left) and the opposite situation
(right). Internal rectangle indicates the area of ANN training domain. Close position of the minimum p

R
and

the identified parameters p
I
is observed.
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6.2. Full excavation

Identification results, i.e. parameters pI , were verified additionally by performing a simulation of
full depth excavation (20 m) and comparing the results with a solution obtained for parameters pR,
i.e. with field measurements. Again, verification shows that the response of the numerical model
is very similar for both sets of parameters (Fig. 6). This is true although the identification was
performed (and ANNs were trained) at earlier construction stage, for different behavior of the
structure and qualitatively different shapes of the curves in Fig. 3 and in Fig. 6.

Fig. 6. Full excavation model (left) and the lateral displacements of diaphragm wall calculated with
identified parameters compared to numerically generated field measurements (right).

7. CONCLUDING REMARKS

The following conclusions can be stated:

1. Only 36 runs of numerical model were needed to create sufficient database for ANN training
and to achieve satisfactory neural approximation of the numerical model parametrized with four
variables. Preparation of training data is the main numerical cost of the identification procedure.
Numerical costs of training the networks and then minimizing objective Ω∗(p) can be estimated
as a cost of single run of the excavation model.

2. For comparison, in [9], where no ANN was used, 20–35 runs of model were needed by gradient
optimization method (with finite difference for gradient calculation) in order to identify two
parameters of deep excavation model (and 208 runs of model runs if genetic algorithm was used).
This shows the superiority of the presented method, where four parameters were identified with
the similar numerical costs. We also note, that ANN based identification method does not cause
loss of accuracy since differences between the identified parameters pI and the expected ones
pR do not exceed 2%.

3. Moreover, considered parameter identification problem seems to have unique solution in the
considered 4-dimensional parameter space (single minimum of Ω∗(p) in Fig. 5). Thus the usage of
ANN approximation and gradient optimization methods for solving considered inverse problem
is additionally justified in this case.

4. We showed also, that identified parameters can be used to predict behavior of the structure
at further excavation stages. However, the presented method should be tested with real field
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measurements before taking advantage of it in real construction world. This is a subject of
current work of the author.
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