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In this paper a numerical design algorithm is described which enables the minimization of the stress
intensity factor in a machine component by introducing the defense notch system into the component
(weakening of the component) or/and by introducing stiffeners into the component (stiffening of the
component) and selection of the shape of its boundary. The paper starts with the extensive review of
literature devoted to the optimal design of machine parts with fracture constraints. The design procedure
used is the combination of mathematical methods of computer graphics, the Boundary Element Method
or the Finite Element Method used for the analysis of the stress field, the sensitivity analysis for the
response gradient computations assisted by the Sequential Linear Programming. Also the concept of stop
holes drilled at the crack tip, to crack arrest, is discussed. That means replacement of singular stress filed
problem (cracks) by quasi-singular one (notches) and optimal design of stop holes becomes notch shape
optimization problem.
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1. INTRODUCTION

Geometrical discontinuities (shoulders, grooves, holes, keyways, cut-outs, fillets and so on), known
collectively as notches, and material imperfections (flaws, cracks) are present in almost all engi-
neering structures even though the structure may be “inspected” during fabrications [37]. It is well
known that the geometrical discontinuities result in modifications of the simple stress distribution
so that localised high stresses occur. This localisation of high stress is known as stress concentration,
measured by the stress concentration factor (SCF). A typical example of the stress concentration
problem is, for instance, a plate containing an elliptical hole with semi-axes a and b. It is very well
known that the stress at the tip of the major axis a is proportional to the a/b ratio. If the width b
of the elliptical hole tends to zero the stress tends to infinity and the stress concentration problem
looses its meaning and becomes the fracture mechanics problem (a hole becomes a crack). Now the
role of the stress concentration factor is replaced by the stress intensity factor (SIF). There are three
modes of loading at the crack tip, known as Mode I (opening mode), Mode II (in-plane shear) and
Mode III (out-of-plane shear), see Anderson [2]. Each mode of loading produces the 1 /+/T singu-
larity where r is the distance from any point to the crack tip. The stress intensity factor defines
the amplitude of the crack tip singularity, that is, stresses near the crack tip increase in proportion
to the stress intensity factor (symbol K is used usually). If K is known, it is possible to compute
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all asymptotic components of stress or displacement. The stress intensity factor K plays also very
important role in fatigue crack propagation. The crack growth per cycle (Paris’s law, Anderson [2])
is proportional to the range of the stress intensity factor AK = Kmax — Kmin , Where Knax and Knyin
correspond to the loading amplitudes of omax and omin , respectively. Because the stress intensity
factor is important parameter of fracture mechanics in predicting fracture strength and fatigue life
of crack components, for this reason, Section 2 contains the review of papers devoted to optimisation
of machine parts covering both problems.

There are two ways (among others) of the minimising stress concentration in the machine part:
the first one is to change the thickness of the component (sizing optimisation) and the second one
is to change the shape of the notch (notch shape optimisation). Tvergaard [53] and Francavilla,
Ramakrishnan and Zienkiewicz [20] were the first who published papers in this field. From this time
on most of the research on structural shape optimization in the literature aims at minimizing the
maximum stress in an elastic element which is subject to external loads and relevant constraints in
order to prevent structure from crack initiation or plastic deformation which usually take place in
the presence of a notch. The inclusion of fracture constraints in the automated design process was
a logical extension of widely used structural optimization methods.

Cracks, which are inherent in structural materials or developed during manufacturing and fabri-
cation or during the service period of the structures, affect strength, fatigue life and integrity of the
structures. Because the crack can grow and lead to catastrophic failure of structural components,
there is a need for crack arrest (crack stop) to enhance strength and service life. There are many
possibilities to stop or delay crack growth (static and dynamic) process: by modification of the
component boundary, by using adhesive patches or stiffeners and so on. Some possibilities are the
same as for stress concentration reduction, for instance, the use of so called defense hole (notch)
system. A very effective repair technique is developed by drilling stop holes at the front of the crack
tip. As a result of these techniques the stress intensity factor K is significantly reduced.

It is well known that shape or topological optimisation can significantly improve the strength and
stiffness of machine component. The account for singular fields associated with cracks and sharp
notches generates a new class of problems in this area.

The aim of this paper is to discuss the numerical algorithm of stress intensity factor minimiza-
tion by modification of the shape and topology of the machine component. The objective function
for the case of existing cracks is the maximal value of K, j = 1,...,m, or simply K for a single
crack. For shape definition of modified boundaries in a machine component the Bézier (standard or
modified) curves or superellipses are adopted. A singular quarter-point boundary elements for stress
intensity factor analysis and for response gradients finite difference scheme are used. The applied
optimization procedure is the sequential linear programming (SLP) with “move limits”. Also the
shape optimization of stop holes is developed in this paper. In this case we have the stress con-
centration minimization problem rather than the stress intensity factor minimization problem. The
stress analysis in this case is preformed by applying the fictitious stress method, known also as the
fictitious load method, and for stress gradient specification the direct differentiation method is used.

The paper is organized as follows: in Section 2 the literature devoted to the structural opti-
mization in fracture conditions is reviewed. In Section 3 the optimization problem is formulated.
Components of optimization algorithm are presented in the Section 4. Section 5 contains numerical
examples of stress intensity factor minimization. Section 6 discusses the stop holes concept treated
as stress concentration problem demonstrating the effectiveness of this approach. The concluding
remarks are presented in Section 7.

2. LITERATURE REVIEW
The first papers incorporating crack growth constraints in automated minimum weight design us-

ing linear fracture mechanics to predict residual strength and crack growth behavior of damaged
metal aircraft stiffened panels were published by Toor [50] and Kruse [27]. In the paper by Kruse
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a nonlinear programming technique was used for determining efficient panel designs with varying
stiffener geometry satisfying multiple constraints including fatigue and static strength.

Davis [14, 15] presented optimal design of integrally stiffened two-panel boxes subject to fatigue-
crack growth and fracture as well as side constraints, displacements, yielding, local and general
buckling. The design variables were skin thickness and the thickness, depth and spacing of integral
stiffeners. The fracture constraints included limits on developed stress intensity factors under large
static loads as well as limit on crack growth during cyclic loading.

The paper of Dobbs and Nelson [16] presented efficient optimality criteria method for the auto-
mated minimum weight design of structural components for which analytic solutions for the devel-
oped stress intensity factors are not available. The FEM is used for stress analysis and the strain
energy release rate method is used to calculate developed opening mode stress intensity factors.

Giirdal and Haftka [23] used an automated procedure for designing minimum weight composite
panels subjected to a local damage constraint (local damage tolerance — resistance to crack or
damage propagation in a single component) under tensile loading. A finite element program based on
linear elastic fracture mechanics for calculating stress intensity factors was incorporated in the design
cycle. Panel fracture toughness was obtained by using the strain-based criterion. A general-purpose
mathematical optimisation algorithm was used for the weight minimization with constraints on
Mode I SIF (among others). Analytical sensitivity derivatives of the stress intensity factor employing
the adjoint variable technique were used to enhance the computational efficiency of the procedure.
Design results for both unstiffened and stiffened plates were presented.

Vrbka and Knésl [55] presented the problem of safety optimization of the high pressure compound
vessel. The most loaded part of the vessel is the interior layer matrix. The safety of the matrix was
taken as objective function. Because of the brittle character of the used hard metal, the combined
Mohr’s and maximal principal stress limiting theory was applied to express the safety of the vessel.
The objective function was constructed for two different loading methods, up to the limiting brittle
fracture state (objective function depends on compressive strength, transverse rupture strength and
principal stresses). For optimization the variable metric method was used.

Cheng [13] studied the problem of shape optimisation from the viewpoint of structural design
philosophy based on durability and damage tolerance. Initial cracks were assumed to exist or to
develop at an early stage of the fatigue life. The objective is to minimize the crack propagation
rate, or the stress intensity factor range (in fact the stress intensity factor). Quadratic boundary
elements were applied to discretize the continuum to be optimized. To obtain the stress intensity
factor range, quarter-point singular elements were placed at the tip of the crack. The sensitivity
of the stress intensity factor with respect to the structural shape is derived. The circular rotating
plate with the central hole containing four cracks (initial square shape of the hole with crack at
corners) was presented as example. The reduction of 9% in the stress intensity factor for the smaller
crack and 3.2% reduction for the longer crack was reported in this paper. The optimum shapes were
nearly circular.

Esping and Holm [17] used OASIS code for structural optimisation with respect to maximum
stress intensity factor and maximum effective stress of thick hydraulic cylinder. The cylinder con-
sisted of a cylindrical part and an end plate. The two parts were welded together. The joint was
assumed as the weak point with a radial crack. Only the interior of the end part was allowed to
change. The significant reduction of the stress intensity factor and the stress were obtained.

Pitukhin [38-40] presented the mechanical fracture method for the optimal design of machine
components. Failures of machine parts arise as a result of imperfection or violation of design rules
(design failures), the manufacturing process (manufacturing failures), or conditions of exploitation.
Cracks were assumed to initiate on defects in the maximum stress action zones. A defect is assumed
to generate as a result of manufacturing operations of the machine parts. It is necessary to determine
geometrical sizes and limit defect values of machine components during the design stage. A single
criterion design is used. Mean annual cost expenses constitute the objective function, depending
on the survival function. The methods of statistical fracture mechanics enable the assessment of
reliability level dependent on the length of crack-like defect.
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The paper of Samuelson et al. [45] is concerned with the optimisation of fatigue-critical part
of a hydraulic cylinder. The optimisation problem was formulated as minimization of the stress
intensity factor with constraints on the maximal occurring von Mises stress. The design variables
in the optimisation process were chosen as the shape of the inner part of the end section. The FE
model was simplified to axial symmetry. The stress intensity factor was evaluated by a displacement
method using the singular quarter-point finite element. The optimisation reduced the stress intensity
factor in the end weld root, by 40%. The fatigue tests verified this reduction.

Keum and Kwak [25] used the boundary integral equation formulation for design sensitivity
analysis with varying boundary conditions using the material derivative concept and the direct dif-
ferentiation method. The variation of boundary conditions is described using the normal component
of the velocity field. An arbitrary rigid body motion is considered to remove singularities that occur
from differentiation of the fundamental solution, thus avoiding the difficulties associated with their
numerical integration. The formulation is then applied to calculate stress intensity factors as a new
method of computational fracture mechanics.

Fancello, Taroco and Feijoo [18] treated the growth of an initial crack as a change in shape and
demonstrated how shape design sensitivity (SDSA) leads to a well known expression of Rice path-
independent integral and how this integral can be computed through domain integration, which
gives more accurate results when using FEM. :

Knésl [26] adopted the fracture mechanics approach to the optimum design of cracked structures
subjected to cyclic loading. The residual fatigue life is considered as objective function. The basic
objective of the optimization is to increase the fatigue life of a structure by changing the fatigue crack
trajectory by means of modification of the structure geometry. The method of numerical analysis
of the suggested approach is based on crack path tracing via the finite element method with all
necessary steps of the procedure discussed in detail. If the crack initiation is localized at the notch
root, the orientation of the fatigue crack plays a dominant role in the residual life determination.
For the determination of the fatigue crack orientation, the energy method has been used. As an
example of the presented procedure, the optimization of geometrical sizes of a spherical joint is
presented with the crack assumed to initiate at the joining weld.

The paper of Lund [29] is devoted to the problem of designing mechanical components of brittle
materials (brittle material has very low strain tolerance and practically exhibits no yielding and
the material data are widely scattered) such as ceramics using the Weibull probabilistic treatment
(two parameter Weibull distribution) of brittle strength combined with finite element based design
optimization and mathematical programming. The analysis of probability of failure using Weibull
statistics is introduced with the risk of rupture depending (among others) on an equivalent stress
(four different criteria are used: the normal stress averaging criterion, also termed “Mode I failure
criterion”; the maximum strain release rate criterion obtained from two-dimensional Griffith cracks;
the third criterion is obtained from non-coplanar crack growth of Griffith cracks; and the last
criterion assumes that there is no interaction between the principal stresses in the fracture criterion,
i.e. the integration over the unit sphere is omitted), and the characteristic mean fracture stress.

Banichuk et al. in a series of papers [3-5] considered the problem of optimal design of quasi-
brittle elastic bodies in cases of static and cyclic loading. Optimisation problems considered consist
of finding the boundary of a body such that the optimized functional (volume of the body) at-
tains an extremal value, while satisfying prescribed bounds on stress intensity factors and minimum
number of cycles (structural durability). These problems are characterized by incomplete informa-
tion concerning crack size, location and orientation. In this context the paper [5] presented some
possible formulations of optimal structural design problems based on probabilistic approaches. The
paper [4] displayed relations of sensitivities of fatigue crack growth rate with respect to variation of
geometrical parameters defining the shape of the body.

Burczyriski et al. [8-11] and Beluch [6] in a series of papers coupled the boundary element method
and evolutionary algorithms for optimisation of plane cracked structures. Two main optimisation
criteria were considered; minimization of the J-integral (related to stress intensity factor K ) and
minimization of maximum crack opening. The dual boundary element method was used in analysis
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of cracked structures. Expressions on sensitivity coefficients (adjoint variable approach) were given
by path-independent integrals. The shape variation of the crack controlled a special kind of shape
transformation: translation, rotation and scale change, and the external traction-free boundary was
modelled by B-spline curves.

Vitali, Haftka and Sankar [54] attempted to solve the weight optimisation problem of a stiffened
composite panel, subjected to crack propagation using two optimisation strategies to satisfy the
crack propagation requirements. A combination of the high fidelity method of analysis and a low
fidelity method were utilized to describe the crack propagation constraint. The first strategy em-
ploys correction response surface to relate the high fidelity models. The second method converts
a constraint on the stress intensity factor into an equivalent strain constraint and solves the problem
through an iterative process.

Gani and Rajan [21] investigated the relationship between structural geometry and number
of life cycles to failure to improve the fatigue life of structural components. The linear elastic
fracture mechanics approach was integrated with shape optimal design methodology. The primary
objective of the design problem is to enhance the life of the structure. Gradient-based nonlinear
programming techniques were used with the computed sensitivity information to predict the required
shape changes. Relevant issues such as problem formulation, FE modeling, mesh generation, and
regeneration were discussed.

Saurin [46] dealed with the shape design sensitivity analysis for quasi-brittle plane bodies and
implementation of this analysis in numerical method. Special attention was devoted to basic relations
of sensitivity analysis which are derived by means of domain representation of the path-independent
J-integral and introduction of adjoint system.

The optimization problems discussed in Serra [47] consisted in finding the optimal shape of
beams in such a way that the volume reaches a minimum, while satisfying prescribed bounds on the
stress intensity factor or on the fatigue life of the structure. Some of the quantities that describe
the model are taken as random while others are deterministic. The analysis has been confined to
mode I opening of surface crack.

Chaperon et al. [12] presented recent developments in the optimal design of structural compo-
nents with fracture constraints. An initial “near optimum” shape obtained from the shape of static
optimisation for the non-cracked geometry is used as a starting design in conjunction with the
alternating FEM. It was found that an initial “near optimal” shape for the uncracked geometry
was in fact an excellent approximation to the optimal solution for the cracked problem. It was also
found that, in each case, for a given crack length the stress intensity factors, for cracks emanating
at any point near the optimized boundary, were essentially constant along most of the circumfer-
ence. A similar behaviour was found when considering shape optimisation with durability, i.e., crack
growth constraints. In this case it was hypothesised that the optimum shape would be such that all
locations around the cut-out would be equally fatigue critical.

3. PROBLEM FORMULATION

Consider a deformed elastic (quasi-brittle) machine component occupying a 2-D region €, with
surface traction T on the boundary I, , and zero displacements on the boundary T',, . The machine
part contains a single crack (crack can emanate from the notch). The boundary of the notch and
the crack are assumed to be traction free.

Examining literature devoted to the analysis of the stress intensity factors it is known that the
following ways can be used to decrease the SCF’s:

1. by varying the shape of boundary of the structural component,
2. by prestressing the area near the crack tip (for instance by the phase transformation process),

3. by introducing stiffeners into the component,
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4. by introducing the defense notch systems,

5. by introducing the protective patches covering the crack area,

6. by using piezoelectric membranes prestressing the cracked area,

7. by introducing of stop holes,

8. other (combined) methods.

In this paper the attention is paid to the stress intensity factor reduction:

1. by changing the shape of the body contour

2. by introducing into the body stiffeners to stop the crack (stiffening of machine part),
3. by introducing the defense hole system (weakening of structural component).

Also the application of stop holes at the crack tip to crack arresting is discussed.

Figure 1 presents schematically the introduced design variables aimed at minimizing the stress
intensity factor.

Generally, an optimal design problem of structural elements can be stated mathematically as that
of minimising the specific objective (cost) function f(D) subject to certain behavioural constraints
9;(D), 5 = 1,...,n., and bounds (side constraints) on the design variables, where D € R" is
a vector of design variables, and n. is the number of constraints.

Defense notch
system

Stiffener
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Fig. 1. Machine or structural element with notches, cracks, stiffeners, patches and defense notch systems

3.1. Objective function

The components of the stress tensor nearest to the crack tip have the following asymptotic expression
in polar coordinates,
KI KI
Opr = ) Oy = e ’ T =
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where K7 is the mode I stress intensity factor. Non-dimensional functions f(¢) depending on the
polar angle . They can be find in textbook of Anderson [2]. Two remaining shear modes (Mode II
and Mode III) can also occur in a cracked body. However the Mode I is the most important as 90%
of engineering fracture mechanics problems are of the Mode I type. The combined type modes may
account at the beginning of the fracture process but turn next to Mode I immediately after crack
growth, Serra [47]. Hence, in this paper our objective is to minimize the opening Mode K] .

3.2. Design variables

In this paper a modified shape of the notch from which crack can emanate, and/or shape of a defense
notch, and/or a modified boundary of a structure are defined by Bézier (standard, modified) inter-
polants, and by an superelliptic shape. The position of some control (Bézier) points and parameters
of superellipse are treated as design variables. This description essentially reduces the number of
design variables. Topological design variables, that is characteristic dimensions of a defense hole
(notch), its location, stiffener location and its geometrical dimensions, are also used.

3.3. Constraints

There are several constraints, which must be satisfied for the design problem of the stress intensity
factor minimization must satisfy, such as the notch stress concentration factor, the stress concen-
tration factors in the stiffener, and some volume or area constraints, like, for instance, the notch
area or the length of its boundary, the compliance of the machine element, and so on. The value of

Box 2. Stress intensity factor K minimization

rrlgin K;(D) with constraints: T'; C I‘; : V(D) < Vieas s
’ Dlower < D < Dupper 3 C(D) < Cfeas,
th(D) < thfeas, KI(D) < KIC7

tsg(D) < sgfeas’

I'; - the contour of the free boundary, notch, or/and defense notch, where:

Tnoteh — modified boundary of the notch

F4ef - modified boundary of the defense notch

Ifree — modified free boundary

I'paten — modified shape of the patch

I's - modified shape of the axis of the stiffener (including stiffness changes),
I"J*- — variation domain of I'; , where:

I‘:ree ’ ;otch ’ F;atch ’
Kz - theoretical SCF,

tg — SCF in the stiffener,

V- volume (area) constraints,

< e cia :
%ef » I's — boundary variation domains,

C - compliance of the structural element,

Kj. - fracture toughness value,

DiesBDyeDg 007 Dn]T C R™ — vector of design variables,
Diower ; Dupper — lower and upper limiting values of D.
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K, specified by a general form can be written as

K1 = p1fao/Ta

where a is the half length of the crack, and B; and B are corrections to the loading and crack
geometry, respectively, Farahmand [19]. This value cannot exceed the critical value Kj.. Box 1
presents the stress intensity factor minimization problem.

4. COMPONENTS OF THE OPTIMIZATION ALGORITHM

A general methodology for shape optimization, which is of multidisciplinary nature links: geometric
modeling (shape definition) of the boundary in machine component, stress analysis by the finite
element method (FEM) or boundary element method (BEM), sensitivity analysis (stress, stress
intensity factor and displacement gradients), which is related to the analysis method, and an ap-
proximation based design optimization procedure, see Fig. 2.

Quarter point BEM
Bezier curves:
2 standard, modified
BEM or FEM =P Superellipse
Topological design
variables

Quarter point FEM  4——

[ Analysis }“ [ Geometrical modeling J

SIF minimization

[ Sensitivity analysis ] ( Optimization procedure

I

Direct sensitivity analysis Sequential linear or sequential
Finite difference method quadratic programming

Fig. 2. Components of optimization algorithm

4.1. Shape definition

In general, it is desirable to define the shape of the boundary by means of a reasonably small
number of design variables to reduce the dimension of the problem. For computer aided geometric
design (CAGD) several tools have been developed for the description of curves for 2D problems.
Very efficient in this connection are Bézier, B-spline and Beta-spline curves.
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Fig. 3. Example of shape definition of the boundary and/or the notch (hole) by Bézier curves
(m - modified boundary); D; - the position of the separation point, D> and D3 — shape parameters

Fig. 4. Shape definition using superellipse; a,b — major and minor semi-axis, D1 = n1, D2 = ny are design
variables (n; = n2 = k in the graph above)

In this paper the variable boundary of the notch in a machine component is described by using
Bézier (standard or modified) curves, see ref. in Wilczyniski [57, 58, 60]. Figure 3 shows the modified
variant of Bézier curves. A Bézier curve is defined by the so-called characteristic triangle (CT)
PyP; Ps . The shape parameters ¢; and ¢z, which continuously control the shape (by controlling the
position of multiple points Py, P, and P;, Ps), and the position of end points can be treated as
design variables. The important feature of Bézier curve is, that it passes through end points, and
is tangent to the corresponding edges of the CT. It should be mentioned, that the Bézier curve
segment is described by a polynomial of the parameter ¢, where ¢ € [0, 1]. The subsequent values of
parameter ¢;_; and t; define the endpoints of the boundary element (see Fig. 3) or corner points of
the finite element. The position of some control (Bézier) points (active points) are treated as design
variables.

The other class of boundary shapes is generated by introducing the superellipse dependent on the
parameters a, b, ny, ny . Assuming n; = ny = k, the shape variation depending on k is illustrated
in Fig. 4.

4.2. Stress intensity factor and sensitivity analysis

Stress intensity factors are the fundamental parameters of fracture mechanics in predicting frac-
ture strength and fatigue life of crack components and for this reason much effort has been put
into their derivation and variety of methods have been developed for their evaluation. Numerous
methods of stress intensity factor determination have been developed and published: analytical, su-
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perposition, using the stress concentration factor, Green functions, weight functions and numerical,
see, Aliabadi and Rooke [1], Anderson [2], Molski [32]. However, the analytical solutions of stress
intensity factors, available in literature, are limited to simple geometric and loading conditions. For
this reason the determination of stress intensity factors usually require application of numerical
methods, such as the finite element (FEM) and boundary element (BEM) methods. There are two
groups of estimation methods of the stress intensity factors in a numerical technology, those based
on field extrapolation near the crack tip and those which make use of the energy release rate for
a propagating crack. This latter group includes the J-contour integral, the virtual crack extension
(VCE) technique which is also known as the stiffness derivative approach and energy domain inte-
gral formulation ( Aliabadi and Rooke [1], Guinea et al. [22], Yang et al. [62]). Using the FEM or
the BEM and coupled FEM/BEM technology, other methods have been developed, as singularity-
subtraction technique, Aliabadi and Rooke [1], Portela et al. [43], dual boundary element method,
Portela and Aliabadi [42] and alternating method, Thomas et al. [49]. The advantage of the VCE
method is that relatively coarse meshes can give accurate estimation for the SIF. In contrast, meth-
ods based on near-tip fields fitting procedures (displacement extrapolation and stress extrapolation,
with the emphasis laid on the former) require finer meshes to produce good numerical representation
of crack-tip field. To avoid finer mesh very well known concept of quarter-point element (FEM or
BEM) can easily be incorporated into the computer program. Portela and Aliabadi [41] have exam-
ined three finite element techniques such as singular quarter-point elements (QPE), virtual crack
extension and J-integrals with boundary element singularity-subtraction technique. The singularity
subtraction technique has presented the best results for the SIF regarding both the accuracy as
well as convergence, but the VCE approach has given only a slightly worse results. Lately, Guinea
et al. [22] and Yang et al. [62] have shown, that adequately coarse FEM mesh division can give very
accurate evaluation of the SIF.

Because the BEM gives more accurate results in comparison to the FEM, a singular quarter-
point concept and displacement extrapolation assisted by the BEM is included into the overall
optimisation algorithm used in this paper. The VCE/FEM variant is applied to check the BEM
results and is expected to model a component with stiffeners in optimal design for minimization of
the stress intensity factor.

The presented algorithm is rather very small scale problem; Bézier or superellipse description of
the modified shapes, as was mentioned earlier, essentially reduces the number of design variables and
stress computations are not time consuming. For this reason, the stress gradients are computed in the
general case by the finite difference method in the first attempt of construction of the optimisation
algorithm within the general program. Although the global Finite Difference Method (FDM) is more
costly, it is much easier to be adopted to the overall optimisation algorithm. To solve the stop holes
concept, considered in this paper, to crack-like defects arrest, the fictitious stress method (FSM) is
used. It was proved in the papers of Wilczyriski [57, 58] that this indirect variant of the BEM can
be effectively used to analyse the stress concentration problems and shape optimisation of machine
components with stress constraints. Stress gradients obtained by the direct differentiation method
related to the fictitious stress method are provided in the close form, Wilczynski [59]. The FSM
method, originally developed by Crouch and Starfield is presented in the paper [57], published in
this Journal.

4.3. Optimization procedure

It is well known, that the cost of computations is extremely high when the FEM or BEM is used
as component of optimization algorithm. For this reason the implicit original optimization problem
is replaced by explicit, approximately equivalent, but much easier to solve. This concept has found
wide application in the optimization technology. The most popular approximation is the direct linear
(first-order) one based on the Taylor expansion of objective and constraints, leading to the Sequential
Linear Programming (SLP). The numerical efficiency of the SLP method depends meaningfully on
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a proper choice of the move limit. For the definition of move limits see the paper of Lamberti and
Pappalettere [28], for instance.
In this paper, the SLP procedure based on variable move limits is used as optimization procedure.

5. NUMERICAL EXAMPLES

Several numerical examples are presented to demonstrate the efficiency and robustness of the pre-
sented algorithm.

The specified examples can be solved using the above algorithm: (i) SIF minimization for a single
crack in a plate under uniaxial tension by a system of circular defense holes, (ii) simultaneous SIF
minimization of the single crack and shape optimization of the defense hole system protecting the
crack tip, (iii) SIF minimization using hole systems in the presence of stiffeners. These examples
have been partially presented by the authors during the WCSMO-4 Congress [61].

5.1. SIF minimization for a single crack in a plate under uniaxial tension by a system
of defense holes

The idea of using defense hole system has been widely used in the machine design, Meguid [31].
Wilczynski [58], among others, has shown that simultaneous shape optimisation of the central and
defense holes provide very significant reduction of the peak of stresses (reaching 68%).

Osiv et al. [33] examined dependence of the interaction between a crack and defense notch system
located in the line of the stress flow (major stress trajectory) or perpendicular to this line. In the
first case the SIF value with respect to the position of the crack is significantly reduced. Obviously,
in the second case the SIF values decrease. The same problem is reported in the monograph of
Rykaluk [44] and in the textbook by Savruk [35].

The idea of this example results from the paper of Aliabadi and Rooke [1]. A rectangular sheet
of width 2W, length 4W and the crack length of 2a, symmetrically located between two holes of
radius R (defense notch system) is subject to a remote uniaxial stress (¢ = 100 stress units). The
centers of the holes are on the perpendicular bisector of the crack, at a distance h from the crack.
Because of symmetry only the quarter of the sheet needs to be modeled, see Fig. 5a. For the central
crack (a/W = 0.4) Ki is 391.3 SIF units and for the central crack and the regular defense hole
system with the starting design variable vector [D]T = [R, h]" = [3,8] K is 276.6 SIF units. The
optimal value of the SIF is K; = 172.9 (the constraints on the upper limit of R = 4 and on the
lower limit values of h = 6 were active) have been obtained, what gives the 56% reduction in SIF
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Fig. 5. a) Central crack in a rectangular sheet with defense hole system, b) defense hole definition (optimal
shape)
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in comparison to the component without defense hole system. These results can be treated as the
program test, because this solution was expected, see Aliabadi and Rooke [1].

Further reduction in the SIF is possible by modification of the shape of the defense hole (simul-
taneous SIF of the single crack and maximum equivalent stress minimization of the defense hole
system protecting a crack). Our objective is to minimize K7 and also the maximum equivalent stress
Oeff. This is a min-max problem: min(max (K7, oeg)). The contour of the hole, which is composed of
the straight line and the Bézier curve, should lie between the circle and the square contours, Fig. 5b.
A special concept of Bézier interpolants inside the so-called characteristic triangle is adopted. The
design variables are: the position of the separation point and two non-dimensional shape parame-
ters, which control the position of some Bézier control points. We have obtained further reduction
in the SIF, by 15.6%, with respect to the optimal regular defense hole system. Introducing the
optimal defense hole system allows for the significant reduction in the value of the SIF in a machine
component.

Because of the influence of the external strip boundary on the SCF factor in the defense notch
we have to put the condition constraining the value of this factor. For instance, for the feasible value
of the SCF equal 3.0 stress units (there is interaction between the defense notch and the crack) we
have obtained the following optimal solution; [D]T ='{3.583; 6.O]T, and the corresponding optimal
SIF is 223.3 units. For the SCF equal 3.5 units (we have changed the condition limiting value of the
radius from 4.0 to 5.0) the optimal design variables are [D]T = [4.492,6.0]T and the optimal value
of the SIF is 125.8 units. The constraints of the limiting value of the SCF and on the hole distance
from the crack line were active.

5.2. SIF minimization of a single crack in plate under uniaxial tension by a system of
circular defense holes

The problem of using defense holes in the crack problems has been mentioned in the papers of
Trevelyan et al. [51], see also [48, 49]. As an example, a rectangular plate with a crack emanating
from a small central hole (unsymmetrical case) is presented. It is shown in this paper that the crack
tip can be protected to some degree by presence of the other holes which divert the stress flow away
from the crack tip.

The idea of this example comes from the mentioned earlier paper of Trevelyan et al. The SIF
is minimized using the defense holes located near the crack tip, Fig. 6. The range of changes of
the design variables is: 1.0 < D; = R < 2.0,3.0 < Dy, = h < 5.0, and 3.0 < D3 = w < 5.0.
The remaining of data are the same like as in the example 5.1. For starting design variable vector
[D]T = [1.5,4.0,4.0]” the SIF is K = 340.8. The optimal solution is [D]” = [2.0,3,03,0]7, and the
corresponding value of the SIF, K7 = 145.7. This means that this way also significantly reduces the
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Fig. 6. Central crack in a strip with defense holes located near tip of crack
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value of the SIF. Including the condition on the feasible SCF factor Kz = 4.2 we have the following
results: optimal design variables [D]7 = [1.86, 3,03, 0], and the SIF K; = 185.9.

5.3. SIF minimization using defense hole systems for stopping growth of a single
crack in the uniaxial tensioned plate in the presence of stiffeners

In the fail-safe design philosophy, the structure is designed so that the partial failure of a structural
component due to crack propagation is localized and safety contained or arrested. An example of
a fail-safe designed structure with crack arrest feature is obtained by the use of stiffeners (stringers),
attached, for instance, to the plate, Farahmand [19], Tsamasphyros et al. [52]. The use of stiffeners
which act as crack arrestors is recommended for the thin-walled structures.

The case considered here is referred to a single central crack in a stiffened finite strip subjected to
a tensile edge load (the singular quarter-point FEM is used). Simplifying a bit problem we assume
that the stiffener location is given (an edge stiffener) and only its stiffness is assumed as design
variable, Fig. 7. The stiffness D3 is proportional to the ratio of Es/Ey, where E, is the Young
modulus of the stiffener, and Ej, is the Young modulus of the plate. Setting only side constraints,
here 1.0 < D3 < 5.0 (test problem), and starting with the [D]T = [3.0,8.02.5]7 the following
optimal design vector [D]” has been obtained, [D]T = [4.0,6.0,5.0]7 with the value of the SIF
equal K1 = 137.5. For the D3 limiting value equal 9.0 the optimal SIF is 110.0. If we include the
constraint on the compliance of the structural element (we assumed the feasible value of maximum
displacement is 0.028 units) the optimal solution is [D]T = [3.71,6.0,5.0]” and the optimal value of
SIF is 165.1.

The optimization problem of stress intensity minimization in structural components in presence
of stiffeners needs further studies.
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Fig. 7. Central crack in a rectangular stiffened sheet with defense hole system

6. STOP HOLES CONCEPT

In fatigue damage repair the method of hole drilling (stop hole system) at the crack tip to reduce
the stress intensity factor has often been used, see Shin et al. [48], Meguid [31]. After drilling, the
stop holes may be cold expanded, Vulni¢ [56]. Meguid discussed this problem from the point of view
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Fig. 8. Position of stop holes

of the SIF with the following conclusions: typically stop hole diameters are the order of 10-15%
of the crack length. There are three possible positions for the stop hole, see Fig. 8, (the second is
recommended). The introduction of these stop holes results in a reduction in K ranging from 8%
corresponding to the first position to 18% corresponding to the third position.

But, in fact, for non-sharp crack tips the interpretation of SIF is not clear, see Pedersen [36]. The
stop hole system constitutes rather the stress concentration problem. It is very well known, that the
circular profile of the hole is not optimal. In the optimal notch contour the stresses are uniformly
distributed. Thus, we can select the optimal shape of the stop hole treating this problem as min-
imization of the maximum stress concentration (tangential stress) around the modified boundary.
Hence the notch shape optimization problem is

mi¥ INAX. @i subject to the constraints I'yp C I'™*
AB

where I'4 g is the boundary of the stop hole to be optimized, and I'* is the specified variation domain
of I AB -

6.1. Numerical example

The idea of this example is generated by the paper of Karpow et al. [24] and Panasyuk [34], see also
Pilkey [37]. Figure 9 shows two holes in tensioned infinite plate connected by a slit. Because the
holes connected by a slit lie inside so called equivalent ellipse, Pilkey [37], the cusps resulting from
the enveloping ellipse are, in effect, stress-free (“dead” photoelastically) so it is enough to optimize
the contour AB (Fig. 10). For the shape of stop holes definition (contour BC is the offset of AB)
Bézier curve and two parametric superellipses are adopted.

The following tools are used to solve the min-max, stop holes shape optimization problem:
a modified boundary of the stop holes is defined by Bézier curve, or two parameter superellipse. For
the stress analysis the indirect variant of the BEM, called the fictitious stress method, Wilczynski [57,
58]. Stress gradients by direct differentiation method related to the indirect BEM equations are given
in a closed form [59]. It is generally known that the indirect method provides incorrect results when

. . . *
variation domain T
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&
ﬁ »

crack tip
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Fig. 9. The slit (crack) with stop hole system Fig. 10. Shape definition of the stop hole
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boundaries with sharp corners are considered. For this reason this method has not been adopted
to the SIF minimization problems. In the recent papers by Wilczynski [57, 58] it was shown that
the mentioned BEM variant gives the acceptable “exact” result for regions with smooth boundaries
and can be recommended for stress minimization. As the optimization procedure, similarly as in
previous chapters, the Sequential Linear Programming with move limits is used, after conversion of
min-max problem to the simple min problem (“bound formulation”).

Figure 11 displays dependence of the stress concentration factors in the stop holes depending
on ratio half-length [ of the crack to the characteristic dimension R of the circular hole (reference
shape) and for optimal shapes defined by Bézier curves, with varying semi-axes ratio of superellipses.
This figure presents the analytical and empirical results obtained by Panasyuk [34] (dashed lines).
Figure 12 shows stress distribution corresponding to the optimal shapes presented in Fig. 13. Table 1
contains optimal values of superellipse parameters (design variables) for different superellipse axis
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Fig. 11. SCF versus parameter €
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Fig. 12. Optimal stress distribution around contour AB of the stop holes; reference shape — circular hole

y y 38, Y
1 1 2
3 4
05 - 0,5 1,5 1
2,5
0 x 0 - =
¥ 75 8 7 7.5 8 2
0,5 -
1,5 1
X ’
a) b) 0
2 | 75 18
1 4
c) 0,5 1
0 X
d) g BilineS: 7 S

Fig. 13. Optimal shape of the stop holes defined by: a) Bézier curve, b) 1/1 superellipse,
c) 1/2 superellipse, d) 1/3 superellipse

Table 1. Optimal values of superellipse parameters

Parameters of superellipses: | 1/1 1/2 1/3
ny 543 2.64 1.93
na 1.78 189 1.93
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ratio. It is observed from Figs. 12 and 13, that for parameter ¢ = 7, the stress reduction is about
72%. The similar problem has been solved by Pedersen [36] with one parameter superellipse defining
the stop hole contour and the FEM used for analysis.

7. CONCLUDING REMARKS

In this paper the numerical design algorithm is described which enables the minimization of the
stress intensity factor in the machine or structural components by introducing the defense notch
system into the component (weakening of the component) or/ and by introducing stiffeners into
the component (stiffening of the component) and selection of the shape of its boundary or/and the
defense notch boundary.

The design procedure is the combination of mathematical methods of computer graphics (Bézier’s
curve or two parameter superellipse), the Boundary Element Method or the Finite Element Method
used for the analysis of the stress field and the stress intensity factors, the sensitivity analysis of
response quantities by the Finite Difference Method, assisted by the Sequential Linear Programming.

The numerical examples show the possibilities of the significant reduction of the stress intensity
factor. Experiments by Samuelson [45] have shown, that the reduction of the SIF results in significant
increase of fatigue life of machine or structural parts.

The same combination of the SIF minimization components can be used to find the optimal shape
of stop holes arresting the crack and satisfying the constraint on the maximum tangential stress
around the modified boundary. Instead of the singular quarter-point BEM the indirect variant of
BEM is used with closed form of stress gradients (direct differentiation method). Also the significance
stress reduction is reported. The experimental results of Bethge et al. [7], and Matheck et al. [30]
confirm the importance of notch shape optimization on fatigue life of machine components.
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