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In recent years, Trefftz methods have received increasing attention, as being alternatives of the already
well-established element-based simulation methods (e.g., finite element and boundary element methods).
The wave-based technique is based on the indirect Trefftz approach for the solution of steady-state, time-
harmonic acoustic problems.
The dynamic field variables are expanded in terms of wave functions, which satisfy the governing

partial differential equation, but do not necessarily satisfy the imposed boundary conditions. Therefore,
the approximation error of the method is exclusively caused by the error on the boundary, since there
is no additional error present in the domain. The authors investigate the potentials of a novel boundary
error indicator-controlled adaptive local refinement strategy. Practical, industrial-oriented application of
the method is presented on the 3D free-field sound radiation model of a simplified combustion engine.
Results and efficiency of the approach are compared to a priori, frequency-dependent global refinement
strategies.
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1. INTRODUCTION

The finite element method (FEM) [1, 2] and the boundary element method (BEM) [3, 4] has
become common tools to evaluate vibroacoustic characteristics of virtual prototypes. However,
calculation time is still a critical issue in most simulation cases, which limits their applicability
to the low-frequency region. Standard FE and BE techniques perform satisfactorily in the low-
frequency range, where k2h is sufficiently small (k is the physical wave number, h is the element
size) and the error of standard FE and BE formulations is governed by the interpolation error [5, 6],
which is practically achieved using 6–10 elements per wavelength. Typically, FE numerical solutions
get polluted at higher frequencies, and the error becomes governed by the numerical dispersion.
While the pollution error is less pronounced in BE solutions [7, 8], global mesh refinement for both
methods leads to excessive calculation times, if the frequency range of interest is extended towards
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high frequencies. Moreover, in a typical industrial FE or BE simulation process, one single mesh
is used to cover the full frequency range of interest. As the mesh discretization is determined by
the highest frequency of interest, the model is typically over-discretized for the lower frequency
ranges.

The error of numerical solutions has always been an important research topic, as information on
these errors can provide a way to assess the reliability of the computation, and a basis for adaptive
control of the calculation. Estimates or information on the error is usually given in two different
manners. A priori error estimates are obtained before the solution is known, and they are useful for
the analysis of numerical methods, e.g., to determine the rate of convergence and its dependence
on problem parameters. They are usually not computable, because they are expressed in terms of
the unknown exact solution. Babuska [9] and Ihlenburg [6] derived a priori estimates for the finite
element solution of the Helmholtz equation, in which they took into account the pollution error
too. Ihlenburg [10] provided practical frequency limits, and mesh resolution requirements based on
the above a priori estimates, considering the excessive growth of the pollution error, when k2h is
not small.

A posteriori error estimates are calculated by post-processing the numerical solution, and they
are typically residual (implicit or explicit), or recovery type. Oden [11] provides a good survey of
existing techniques for error estimation in FEM; an overview on the topic specifically for Hemholtz
problems is also given [12]. Most notably, Stewart and Hughes [13–15] derived an explicit residual-
based error estimator for the exterior Helmholtz problem, along with an hp-adaptive strategy,
and a computable scaling constant to provide an exact error bound. Bouillard [16] gave standard
explicit residual estimates, while Babuska [17–19] studied implicit residual error estimates. Bouillard
and Ihlenburg provided a gradient recovery-based error estimator [20], and attempts to provide a
posteriori estimates taking into account the pollution error were reported by Babuska [21]. Goal-
oriented estimates represent a new class of a posteriori estimates [22, 23] and they provide the basis
for goal-oriented adaptive methods. For BEM, a priori estimates have recently been studied [7, 24].
The BEM methods suffer from the pollution effect far less then FEM [7, 8]. A posteriori error
estimators and adaptive strategies for BEM have been studied, e.g., in [25, 26] and a good overview
on the topic can be found in a survey from Kita [27].

The goal of adaptivity is generally computational efficiency, namely to achieve a given solution
accuracy at a reduced problem size or to provide a more accurate solution given at a fixed problem
size. An adaptive calculation consists of two parts: the a posteriori error estimator/indicator and
the adaptive strategy. The latter transforms the information on the error into specifications for an
improved calculation. The enhanced computational efficiency of adaptive methods is achieved by
local refinement, (rather than global refinement), which increases the number of DOFs in regions
where the solution errors are high. In case of FEM, the process of h-refinement involves specification
of new element sizes, holding the polynomial order of the finite element shape functions, p, fixed.
In the case of p-refinement, the element size h is held fixed while p is specified locally. Finally,
hp-refinement involves local specification of both.

In addition to recent advances in the field of element-based methods (e.g., for FEM [28–30], and
BEM [31–33]), research and application of alternative approaches, e.g., the so-called Trefftz [34]
methods have also gained increasing interest. Similarly to BEM, indirect and direct formulations [35]
of the Trefftz approach are distinguished. For time-harmonic acoustics, the indirect Trefftz approach
is preferred, enumerating several implementations. The shape functions in the indirect Trefftz ap-
proach satisfy the governing differential equation, but do not necessarily satisfy the boundary
conditions. Therefore, the approximation error of the method is exclusively caused by the error on
the boundary, since there is no additional error present in the domain. For a more detailed overview
on Trefftz methods for Helmholtz problems see, e.g., [36, 37].

This paper concentrates on the application of one particular Trefftz method, the wave-based
technique [38], which is an indirect, frameless (or meshless) Trefftz method. The wave-based tech-
nique has been successfully tested in both academic and industrial-sized validation cases in struc-
tural [39, 40], acoustic [41–43] and coupled vibroacoustic problems [44–48]. The aim of this paper
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is to present the application and analysis of a novel adaptive calculation strategy-based on a poste-
riori boundary error indicators to the industrial simulation of sound radiation from a combustion
engine. Efficiency of the adaptive scheme is compared to a priori, frequency-dependent, global re-
finement strategies. The validation is carried out on a simplified, yet industrial-sized 3D example
up to the mid-frequency range (the Helmholtz number being He = kL ≈ 42 for the present engine
model at the highest calculation frequency). The presented industrial-oriented example extends
others’ [42, 43] and the authors’ [49–53] recent work on WBT for 3D exterior acoustics applica-
tions.
The outline of the paper is the following: Sec. 2 presents the general problem definition for

exterior time-harmonic acoustics, and summarizes the wave-based modeling methodology and so-
lution scheme for such problems. Section 3 deals with the definition of the proposed a posteriori
error indicator and the adaptive control strategy of the wave function set. Section introduces
an industrial-like model of a passenger car engine and provides an overview of the applied engine
model, and the used engine simulation tool. Section 6 gives analysis and discussion of the numerical
models and their results in detail. Finally, Sec. 7 summarizes the findings of this paper with general
remarks on the presented strategy.

2. THE CONCEPT OF WAVE-BASED TECHNIQUE FOR EXTERIOR HELMHOLTZ
PROBLEMS

Let us consider the exterior acoustic problem depicted in Fig. 1. The boundary Γ is surrounded
by the fluid domain Ω. The fluid is characterized by the speed of sound c and the ambient fluid
density ρ0. The time-harmonic pressure response is given by p(r, t) = p(r)ejωt at position r, where
j represents the imaginary unit, t the time and ω the circular frequency. Under the assumption

Fig. 1. A general exterior Helmholtz problem definition.
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that the system is linear, the fluid is inviscid and the process is adiabatic, the steady-state pressure
field is governed by the homogenous Helmholtz equation, if no other sources are present, i.e.,

∇2p(r) + k2p(r) = 0, (1)

where ∇2 is the Laplace operator, k = ω/c is the physical wave number. The physical boundary
consists of three non-overlapping parts, Γ = Γp ∪ Γv ∪ ΓZ , where the corresponding boundary
conditions are imposed: pressure (Dirichlet) boundary condition p(r) on Γp, the normal velocity
(Neumann) boundary condition vn(r) on Γv and the normal impedance (Robin) boundary condition
Zn(r) on ΓZ . In addition to the above mentioned conditions, the solution p(r) of an unbounded
problem has to satisfy the Sommerfeld-radiation condition.

lim
|r|→∞

[
|r|
(
∂p(r)

∂|r| + jkp(r)

)]
= 0. (2)

The physical meaning of this condition is that there are no sources of energy at infinity and as
such, the exterior solution vanishes at infinity. The Helmholtz equation, together with the associated
boundary conditions, defines a unique pressure field p(r).

2.1. Partitioning into subdomains

For the method to converge, the underlying bounded acoustic domain has to be partitioned into
a number of large convex or non-convex, but geometrically restricted subdomains [54]. Within
each of those subdomains, the field variables are expressed as an expansion of wave functions that
intrinsically satisfy the governing Helmholtz equation. The degrees of freedom are the coefficients
of the wave functions in this expansion. In order to tackle problems in unbounded domains, the
problem domain is divided into a bounded region ΩB and an unbounded region ΩU by introducing
an artificial truncation boundary ΓT . The total number of subdomains, including the unbounded
domain ΩU is denoted by NΩ, the number of subdomains only within ΩB is denoted by NΩB .
Figure 1 depicts the subdivision of domain Ω to the bounded part ΩB and unbounded part ΩU , and
the subdivision of ΩB to bounded subdomains. Domains Ω

(α) and Ω(β) represent two subdomains,

which are adjacent, having a common coupling interface Γ
(α,β)
I 6= ∅. Domain Ω(α+N) depicts the

last bounded subdomain, whose index is α+N = NΩB .
The boundary of a bounded subdomain Ω(α) consists of the following non-overlapping parts:

∂Ω(α) = Γ
(α)
p ∪ Γ

(α)
v ∪ Γ

(α)
Z ∪ Γ

(α)
I , where Γ

(α)
p = Γp ∩ ∂Ω(α), Γ

(α)
v = Γv ∩ ∂Ω(α), Γ

(α)
Z =

ΓZ ∩ ∂Ω(α), and Γ
(α)
I denotes the artificial interfaces to the neighboring subdomains Γ

(α)
I =⋃

β=1..NΩ,α6=β,∂Ω(α)∩∂Ω(β) 6=∅ Γ
(α,β) and to the unbounded domain.

2.2. Wave function selection in the bounded part ΩB

Within a subdomain Ω(α) of the bounded part ΩB of an exterior problem, the steady-state dynamic
acoustic pressure field p(α)(r) is approximated using the pressure expansion:

p(α)(r) ≈ p̂(α)(r) =

n
(α)
w∑

w=1

p(α)w φ(α)
w (r) r ∈ Ω(α), (3)

where the following T-complete set is used, consisting of the so-called r -, s- and t-sets [38, 55]:

φ(α)
wr

(x, y, z) = cos
(
k(α)xwr

x
)
cos
(
k(α)ywr

y
)
e−jk

(α)
zwrz,

φ(α)
ws

(x, y, z) = cos
(
k(α)xws

x
)
e−jk

(α)
ywsy cos

(
k(α)zws

z
)
,

φ(α)
wt

(x, y, z) = e−jk
(α)
xwtx cos

(
k(α)ywt

y
)
cos
(
k(α)zwt

z
)
,

(4)
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where n
(α)
wr + n

(α)
ws + n

(α)
wt = n

(α)
w , and the parameters k

(α)
xw•

, k
(α)
yw•

, k
(α)
zw•
; • = r, s, t (the wave numbers

of the corresponding wave-sets) are defined in such a way that the resultant wave set satisfies the
homogeneous Helmholtz equation, for which the following setting is used [38]:

k
(α)
(x,y,z)wr

=

(
n
(α)
xr π

L
(α)
x

,
n
(α)
yr π

L
(α)
y

,±
√

k2 − (k
(α)
xwr )

2 − (k
(α)
ywr )

2

)
, (5)1

k
(α)
(x,y,z)ws

=

(
n
(α)
xs π

L
(α)
x

,±
√

k2 − (k
(α)
xws)

2 − (k
(α)
zws)

2,
n
(α)
zs π

L
(α)
z

)
, (5)2

k
(α)
(x,y,z)wt

=

(
±
√

k2 − (k
(α)
ywt)

2 − (k
(α)
zwt)

2,
n
(α)
yt π

L
(α)
y

,
n
(α)
zt π

L
(α)
z

)
, (5)3

where L
(α)
x . . . L

(α)
z are the dimensions of a rectangular box enclosing the corresponding domain

Ω(α) and k2 = (w/c)2 is the square of the real wave number. The values n
(α)
x•

= 0, 1, . . . N
(α)
x ,

n
(α)
y• = 0, 1, . . . N

(α)
y and n

(α)
z• = 0, 1, . . . N

(α)
x comprise uninterrupted sets of integers, whose maximal

values N
(α)
x ,N

(α)
y and N

(α)
z determine the number of degrees of freedom of the truncated, finite-sized

computational model.

2.3. Wave function selection in the unbounded part ΩU

The solution of an exterior Helmholtz problem has to satisfy the Helmholtz equation (1) and the
Sommerfeld-condition (2) in the unbounded domain ΩU . A valid basis set (referred to as radiation
functions) for the wave function expansion in ΩU is given in spherical coordinates [56]:

p(ΩU )(r, φ, θ) =

NRF∑

l=0

l∑

m=−l

plmhl(kr)Ylm(φ, θ), (6)

where r, φ, θ denote the radial, inclination and zenith co-ordinates, respectively, Ylm(φ, θ) denotes
the spherical harmonics, and hl(kr) stands for spherical Hankel functions. The radius of the trunca-
tion sphere ΓT plays an important role in determining the numerical size of an exterior wave-based
model. A larger truncation radius requires a higher number of wave functions in both ΩB and ΩU .
Generally, the bigger the truncation radius is, the more radiation functions are needed to describe
the exterior pressure field. Bigger truncation radius yields larger subdomains in ΩB too, in order to
fill the enlarged volume. As a consequence, a larger truncation radius requires a higher number of
wave functions in ΩB as well. This influence will be shown on the convergence plots of Subsec. 6.2.1.

2.4. Enforcement of the boundary and interface conditions and solution

In order to represent the boundary value problem in the indirect Trefftz scheme, the boundary
and interface conditions are transformed into a weighted residual formulation. The residual error
functions corresponding to the physical boundary conditions are defined as

R(α)
p (r) = p̂(α)(r)− p(r) r ∈ Γ(α)

p , (7)1

R(α)
v (r) =

j

ρoω

∂

∂n
p̂(α)(r)− vn(r) r ∈ Γ(α)

v , (7)2

R(α)
z (r) =

j

ρoω

∂

∂n
p̂(α)(r)− p̂(α)(r)

Zn(r)
r ∈ Γ(α)

z , (7)3
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where p̂(α)(r) denotes the pressure approximation in Ω(α), obtained by the expansion (3) and
p(r), vn(r) and Zn(r) denote the prescribed boundary conditions as defined in Sec. 2. Besides
the physical boundary conditions, continuity conditions must be applied to the coupling interfaces
Γ(α,β) to ensure continuity between acoustic subdomains Ω(α) and Ω(β). An impedance coupling
approach [55], proposed for WBT, expresses the continuity condition as a linear combination of
a direct pressure and velocity continuity condition:

Zc p̂
(α)(r) = Zc p̂

(β)(r),

v̂(α)n (r) = −v̂(β)n (r),

which, in a shorthand notation results in the following residual expression:

R
(β,α)
I (r) = v̂(α)n + v̂(β)n +

1

Zc

[
p̂(α)(r)− p̂(β)(r)

]
, (8)

where r ∈ ΩI(α,β)
, moreover v̂

(α)
n (r) = j

ρoω

∂

∂n
p̂(α)(r) and v̂

(β)
n (r) = j

ρoω

∂

∂n
p̂(β)(r) are taken using

the outward local normal vectors on ∂Ω(α) and ∂Ω(β) respectively. The impedance coupling factor
Zc is a weighting factor between the pressure and normal velocity field on ΓI(α,β). The expression
(8) represents the continuity error of the pressure and normal velocity fields transformed into the
continuity error of an equivalent acoustic velocity quantity. The transformation via the factor Zc

introduces an artificial damping (impedance condition) on ΓI(α,β), which stabilizes the solution in

both Ω(α) and Ω(β). For exterior problems, the continuity between ΩU and ΩB are enforced using
(8) as well.
For each subdomain, the residual errors are orthogonalised with respect to a weighting function

p̃(α) or its derivative:

∫

Γ
(α)
v

p̃(α)(r)Rv(r)dΓ +

∫

Γ
(α)
Z

p̃(α)(r)RZ(r)dΓ +

∫

Γ
(α)
p

jω

ρ0c

∂

∂n
p̃(α)(r)Rp(r)dΓ

+

NΩ∑

β=1,α6=β

∫

Γ
(α,β)
I

p̃(α)(r)R
(α,β)
I dΓ = 0. (9)

The WBT, as well as FEM, applies a Galerkin weighting to orthogonalize the residuals, which uses
the basis functions themselves as test (also known as weighting) functions. In case of WBT, the
test (or weighting) functions p̃(α) are expanded in terms of the same set of acoustic wave functions
as in the pressure expansion. This leads to a system of linear equations. The first three terms of (9)
(first row) comprise matrix blocks related to the physical boundary conditions, while the last term
of (9) (second row) comprises the coupling matrix block pairs related to the continuity conditions
(see, e.g., [38, 55] for the definition of the equation structure). The system matrix is a dense, non-
symmetric, complex-valued and frequency-dependent matrix. Although the Trefftz-based methods
generally yield ill-conditioned numerical models, and this precludes the use of iterative solvers, it
is still possible to obtain sufficiently accurate solutions for engineering purposes using direct LU
solvers [57].

3. ERROR INDICATOR FOR THE WAVE-BASED TECHNIQUE

In contrast to the element-based methods, the mathematical background of error estimation for
Trefftz methods has been hardly researched yet. The error of the Trefftz solution is exclusively
caused by the fact that the truncated wave function set does not satisfy the imposed boundary and
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continuity conditions in a pointwise sense. In case of Trefftz methods, maximum principles can be
valuable tools to asses domain errors for second-order elliptic partial differential equations. Roughly
speaking, the strong maximum principle states that a function in a domain takes its maximum on
the boundary of that domain and if a function achieves its maximum in the interior of the domain,
the function is uniformly a constant. As no classical maximal principle holds for the Helmholtz
equation [58], the solution should be bounded from the above in some norm by an appropriate
norm of the boundary data [59]. In a similar way, the error of the Trefftz solution can be bounded
by the error on the boundary, since the error field between the exact solution and the Trefftz solution
also satisfies the Helmholtz equation, and no other error is present. Such bounds exist analytically
for a limited class of problems, e.g., for elliptic second order PDEs, with certain boundary shapes
and boundary conditions [60]. Most notably, a Max-Payne-Kuttler-Sigillito [60–62] bound has been
applied [63] to the interior Helmholtz problem with Dirichlet boundary condition. This result
has been further sharpened in [64, 65], and a similar bound for the least-squares Trefftz method
including interface conditions has been also reported [66, 67]. It is still an open mathematical
problem for practical benefits to generalize these results to Neumann, Robin and mixed boundary
conditions, and unbounded Helmholtz problems.

In the wave-based technique, the accuracy of the approximation is merely determined by the
size of the truncated wave function set. This paper introduces an error indicator rather than an
estimator, in order to adaptively control the size of the wave function set for the pressure expansion.
The error indicator evaluates the approximation error on the physical boundary and the continuity
error between the subdomains, which requires the calculation of boundary integrals only. The error
indicator can be then used to drive an adaptive strategy, which keeps the boundary errors below
certain user-defined levels. Similar calculation schemes based on boundary error indicators were
reported [68–70] for the inverse source method and the wave superposition method, for harmonic
problems, where the classical maximum principle holds [71].

3.1. Relative L2 norm boundary-error indicators for the physical boundary
conditions and the continuity conditions

The applied error indicators evaluate the approximation error on the boundary, more exactly the
deviation of the numerical solution from the prescribed boundary values and the continuity errors
on the coupling interfaces in the relative L2 norm. In case of the presented application-oriented
model of the combustion engine, only normal velocity boundary condition is prescribed on the
physical boundary part. In this context, the error indicators are defined only for the normal velocity
boundary condition and the continuity conditions, for the sake of brevity. The definitions of the
error indicators can be extended in a similar way for pressure and impedance boundary conditions
as well.

Let us use the notation ‖•‖2,Γ•

=





∫

Γ•

| • |2 dΓ





1/2

for the standard L2-norm, AΓ•
=

∫

Γ•

dΓ for

the area of a given boundary surface and 〈•〉2,Γ•

=

{
1

AΓ•

‖•‖22,Γ•

}1/2

for an average L2 norm value

on a given boundary surface. Then let us introduce the definition

〈ṽn〉2,Γv
=

{
1

AΓv

‖vn‖22,Γv

}1/2

, (10)

for the average L2-norm prescribed normal velocity value on Γv.
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Furthermore, let us use the notations

〈
∆p̂(α,β)

〉2
2,Γ

(α,β)
I

=
〈
p̂(β) − p̂(α)

〉2
2,Γ

(α,β)
I

,

〈
∆v̂(α,β)n

〉2
2,Γ

(α,β)
I

=
〈
v̂(α)n + v̂(β)n

〉2
2,Γ

(α,β)
I

,

(11)

for the average L2 norm pressure and normal velocity coupling error on a coupling surface Γ
(α,β)
I .

Using the above definitions, we introduce the following local indicators:

ǫ(α)v =

〈
v̂
(α)
n − vn

〉
2,Γ

(α)
v

〈ṽn〉2,Γ
(12)

and

ǫ
(α,β)
I =

{〈
∆p̂(α,β)

〉2
2,Γ

(α,β)
I

+ γ2
〈
∆v̂

(α,β)
n

〉2
2,Γ

(α,β)
I

}1/2

{〈
p̂(α)

〉2
2,Γ

(α,β)
I

+ γ2
〈
v̂
(α)
n

〉2
2,Γ

(α,β)
I

}1/2
, (13)

where ǫ
(α)
v evaluates the relative L2-norm velocity approximation error on Γ

(α)
v with respect to the

L2-norm average velocity value.

The error indicator ǫ
(α,β)
I for the local continuity condition between Ω(α) and Ω(β) expresses

the coupling error as a combination of the L2-norm pressure and velocity continuity error. The
weighting of the norms of the pressure and normal velocity using the weighting term γ is similar to
the definition of the interface continuity errors in the works [66, 67]. The weighting term γ is chosen
to be equal to the coupling impedance Zc of (8). In the context of this paper, the coupling impedance
is equal to the characteristic impedance (Zc = ρc), which yields satisfactory accuracy [55].
In addition to the local indicators, let us define the global error indicator ǫv, which evaluates

the velocity approximation errors on the corresponding boundary part Γv. Similarly, the indicator
ǫI expresses the average relative L2-norm continuity error, while ǫIU evaluates the continuity error
on the truncation sphere ΓT

ǫv =
〈v̂n − vn〉2,Γv

〈ṽn〉2,Γv

, (14)

ǫI =

{
NΩ∑
α=1

NΩ∑
β=1

〈
∆p̂(α,β)

〉2
2,Γ

(α,β)
I

+ γ2
〈
∆v̂

(α,β)
n

〉2
2,Γ

(α,β)
I

}1/2

{
NΩ∑
α=1

NΩ∑
β=1

(〈
p̂(α)

〉2
2,Γ

(α,β)
I

+ γ2
〈
v̂
(α)
n

〉2
2,Γ

(α,β)
I

)}1/2
,

ǫIU =

{
NΩ∑
α=1

〈
∆p̂(α,ΩU )

〉2
2,Γ

(α,ΩU )

I
+ γ2

〈
∆v̂

(α,ΩU )
n

〉2
2,Γ

(α,ΩU )

I

}1/2

{
NΩ∑
α=1

(〈
p̂(α)

〉2
2,Γ

(α,ΩU )

I

+ γ2
〈
v̂
(α)
n

〉2
2,Γ

(α,ΩU )
I

)}1/2
.

(15)

The definitions of the global indicators are independent of the local indicators, and therefore they
can be calculated independently. It is easy to follow from the above definitions that if the values of
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the local indicators ǫ
(α)
v and ǫ(α,β) are below their corresponding user-specified thresholds ǫ∗v and ǫ

∗
I

for all α and β, then the values of the corresponding global indicators will be also below ǫ∗v and
ǫ∗I respectively.
The aim of the present work is not to provide overall result quality indicators, but to present

an adaptive local refinement approach to keep the boundary errors below certain user-defined
thresholds. The presented error indicators provide information on the errors individually for the
different boundary condition types. This allows flexible and individual control of each error type.

4. ADAPTIVE CALCULATION STRATEGY

A definite advantage of WBT over element-based methods is that the domain subdivision
(h-refinement) is usually kept fixed over the frequency range of interest, and the model refine-
ment process involves only the enlargement of the wave function set (p-refinement). Utilizing this
advantage, simple, but highly efficient refinement strategies can be adopted.
The implemented adaptive local refinement strategy uses both the global and the local error

indicators. First, the global indicators of the boundary and continuity conditions are evaluated.
If the global indicators exceed the user-defined thresholds, the local indicators will also be evaluated.
In subdomains where any of the local indicators exceed the corresponding user-defined threshold
the wave function set will be enlarged, and the numerical model will be recalculated until each
global indicator satisfies the specified thresholds. In the next sections the investigated global and
local refinement/wave function set control strategies are presented.

4.1. A priori frequency-dependent wave function truncation (global refinement)

In previous works on WBT, the highest spatial frequency component of the wave function set has
been related to the physical wavelength. In other words, the size of the wave function set was a priori
controlled by the calculation frequency and a user defined truncation parameter [38, 49, 55].
Based on the assumption that the highest spatial frequency component of the wave functions

can be related to the given acoustic wavelength λ, the following a priori truncation rules can be
adopted:

N (α)
x =

TWF

λ
L(α)
x , N (α)

y =
TWF

λ
L(α)
y , N (α)

z =
TWF

λ
L(α)
z , (16)

where TWF is an arbitrary global truncation parameter and N
(α)
x , N

(α)
y and N

(α)
z refer to the

integer parameters of the bounded wave function set (4) (rounded to the nearest integer value).
Practically, a truncation factor TWF = 2 means that wave functions whose wavelength λw of the
highest oscillatory cosine function of the wave function set in a given direction is smaller than or
about equal to the physical wavelength (λw ≤ λ). As a result, the highest oscillatory k-components
of the wave function set are approximately equal in each directions: with a given value of TWF ,

max(k
(α)
xw•

) ≈ max(k
(α)
yw•

) ≈ max(k
(α)
zw•

) for all α, apart from the rounding of N
(α)
x , N

(α)
y , N

(α)
z to the

nearest integers. The expression (16) implements a frequency dependent, homogeneous enlargement
(global refinement) of the wave function set in all domains.
A similar, frequency-dependent a priori truncation rule has been applied in [42] to the radia-

tion function set in the unbounded domain ΩU . The order of the radiation function set, which is
determined by the upper bound NRF in the summation (6), can be set according to

NRF = 2RTTRF k, (17)

where RT is the radius of the truncation sphere, k is the wavenumber and TRF is an arbitrary
truncation parameter.
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4.2. Wave function truncation for the adaptive calculation strategy (local refinement)

For the adaptive local refinement scheme, two different truncation rules for the wave function sets
are presented. First, a domainwise frequency-independent truncation rule is shown, in which the
initial number of wave functions is independent of the calculation frequency and the wave function
set is a posteriori, iteratively increased until the prescribed error indicator thresholds are achieved.
Second, a combined a priori/a posteriori wave function control is shown, in which the initial wave
function set size is dependent on the frequency, and is domainwise enlarged by local refinement,if
needed.

4.2.1. Frequency-independent a posteriori control (recalculate from scratch approach)

The domainwise frequency-independent truncation of the wave function set is implemented accord-
ing to the following expression:

N (α)
x = M (α)NΩBL

(α)
x

N
ΩB∑

α=1
L
(α)
x

, N (α)
y = M (α)NΩBL

(α)
y

N
ΩB∑

α=1
L
(α)
y

, N (α)
z = M (α)NΩBL

(α)
z

N
ΩB∑

α=1
L
(α)
z

,
(18)

where the value of M (α) controls the truncation of the wave function set, and the integers

N
(α)
x ,N

(α)
y ,N

(α)
z are independent of the calculation frequency, but proportional to the correspond-

ing dimensions of the domain Ω(α). Similarly to the result of (16), with a given value of M (α),

max(k
(α)
xw•

) ≈ max(k
(α)
yw•

) ≈ max(k
(α)
zw•

) for all α, apart from the rounding of N
(α)
x ,N

(α)
y ,N

(α)
z to the

nearest integers.
The initial number of wave functions in the first calculation is determined by a user-defined initial

value of M (α), and hence the initial number of wave functions is independent of the calculation
frequency. The value of M (α) is iteratively enlarged in the successive recalculation steps in the
indicated domains, until the prescribed boundary error tolerances are satisfied. Therefore, this
control strategy implements a full recalculate from scratch approach for the purpose of the iterative
local refinement, since at each frequency step, the adaptation restarts from the initial wave function
configuration.
For the adaptation of the expansion set in the unbounded domain ΩU , the highest order of the

radiation functions is controlled by the value of the upper bound NRF in (6).

4.2.2. Combined a priori/a posteriori control

As an alternative to the full restart from scratch approach, a control rule using a frequency-
dependent (a priori) initial number of wave functions is also applied. The frequency-dependent
initial wave function set is configured by means of the a priori truncation rules (16) and (17) and
refined according to (18). The combined a priori/a posteriori wave function control for a subdomain
Ω(α) in the bounded part ΩB is thus formalized as follows:

N (α)
x =

T 0
WF

λ
L(α)
x +M (α)NΩBL

(α)
x

N
ΩB∑

α=1
L
(α)
x

, N (α)
y =

T 0
WF

λ
L(α)
y +M (α)NΩBL

(α)
y

N
ΩB∑

α=1
L
(α)
y

,

N (α)
z =

T 0
WF

λ
L(α)
z +M (α)NΩBL

(α)
z

N
ΩB∑

α=1
L
(α)
z

,

(19)
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where T 0
WF is an initial, global a priori truncation parameter. For the unbounded part, the combined

control strategy was similarly formalized as

NRF = 2RTT
0
RF k +N, (20)

where T 0
RF is an initial, a priori truncation parameter and N is the value increased by the adaptive

strategy.

4.2.3. Acceleration of the iterative process

During the assembly of the system matrix, it is possible to reuse matrix blocks of subdomains
whose wave function set was not enlarged after the previous recalculation step. If the wave function
set in a subdomain Ω(α) is not enlarged in a given recalculation step, the corresponding matrix
block [55] will not change, and does not need to be recalculated. If subdomains Ω(α) and Ω(β) are
adjacent sharing a common coupling interface, and the wave function set is not enlarged in neither
of them, then the corresponding coupling matrix blocks [55] does not need to be recalculated either.
For the acceleration of the iterative recalculations the presented implementation uses disk caching.
However, it is not possible to reuse matrix blocks from a previous frequency step, since the system
matrix of WBT is frequency-dependent.

4.3. A wave function-dependent numerical integration scheme

Due to the poor numerical conditioning of the WBT models, the accuracy of the numerical in-
tegration needs to be of the order of the machine precision. It has been shown that the classical
Gauss-Legendre quadrature is applicable for the evaluation of the oscillatory integrals appearing
in the WBT formulations [72]. A fixed high number of integration points would however degrade
the computational performance of the method. In order to guarantee a high integration accuracy
and possibly fast numerical integral evaluation, the size of the integration quadrature should be
scaled by the order of the oscillatory wave functions and the integration area. Numerical trials
were carried out to derive a suitable control rule for the integration quadrature. The WBT model
variants of the engine (see Sec. 6) were calculated with various truncation radii in the range of
RT = 0.55m . . . 0.8m. Each model version was calculated by iteratively increasing M (α) from 1 up
to 14 for all Ω(α). At each value of M (α), NRF was also increased from 1 up to 70. At each iteration
step, the size of the integration quadrature of the individual integration surfaces was increased, un-
til the changes in the numeric values of the matrix coefficients were below an absolute and relative
tolerance scheme. The condition, commonly used in adaptive quadrature algorithms [73],

||a(n+1)
i,j − a

(n)
i,j || < max

(
τabs, a

(n+1)
i,j τrel

)
(21)

had to be satisfied for all i, j, where ai,j is a coefficient of the system matrix. The a
(n+1)
(i,j) stands

for the coefficient calculated by the increased quadrature size, while a
(n)
(i,j) denotes the coefficient

calculated by the previous quadrature size. The absolute tolerance was τabs = 10−15 and the relative
tolerance was τrel = 10−15. These values were found to provide the highest possible accuracy without
leading to uncontrollable growth of the quadrature sizes during the numerical trial. For each surface,
the quadrature size that satisfied the above tolerance scheme was correlated with the highest k-
component of the corresponding wave function set and the area of the given surface. The relation
was sought in the form of a simple linear expression:

N
(Γ

(α)
•

)
Gauss = A max

(
|k(α)xw•

|, |k(α)yw•

|, |k(α)zw•

|)
)
LΓ

(α)
•

max +B, (22)
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where N
(Γ

(α)
•

)
Gauss denotes the number of the 1D Gaussian points, and it results in N

(Γ
(α)
•

)
Gauss × N

(Γ
(α)
•

)
Gauss

Gaussian points on a general 3D integration surface. LΓ
(α)
•

max is the length of the longest edge of the

given surface Γ
(α)
• . This model relates the number of integration points to the highest oscillatory

component of the wave functions in the given domain and to the size of the integration area in a
simple manner.

For the integration on the spherical surface sectors of the truncation sphere ΓT , the following
linear model was applied:

N
(ΓTi

)

Gauss = F NRF +GθΓTi
+HθΓTi

NRF + I, (23)

where θΓTi
is the largest central angle corresponding to the spherical surface section ΓTi . The

parameters values of A = 1, B = 20, F = 0.035, G = 35, H = 0.2 and I = 10 were determined by
fitting a conservative upper bound to the registered data. Since the subdomains of the presented
model variants have relatively various shapes and dimensions, the given values of A, B, F , G, H
and I are expected to provide appropiate quadrature sizes for similar sized problems, e.g., passenger
car combustion engine models with similar dimensions and frequency range of interest. For practical
computational time/effort considerations, the maximal quadrature size was limited to 100 × 100
points per integration surface.

5. DEFINITION OF A COMBUSTION ENGINE STRUCTURAL MODEL

In order to verify the proposed adaptive calculation strategy in a simulation of a realistic engine
sound field, an application-oriented structural model of a four-cylinder inline gasoline engine was
created. Both for WBT and BEM, simplified surrogate acoustic boundaries were created, which
are typically not coincident with the surface of the structure for efficiency reasons and because of
potential holes in the structural mesh. The shape of the engine block was simplified in the present
work, and auxiliaries of the engine were omitted. The simplified structure allowed creating surrogate
acoustic boundaries, which are close to the surface, but efficient for WBT modelling, consisting of
planar surfaces only.

The geometric definition of the wave-based models in the present work was made by hand. The
combustion engine structural model was created by means of the commercial engine simulation
software AVL EXCITE. The external forces acting on the engine system are gas pressures at
4000 rpm, full load and at an output torque of 226 Nm. The condensed FE models of the engine
block, the crankshaft and the conrods are valid up to 3 kHz, and so are the concentrated masses of
the pistons. The contact forces between the involved bodies and suspensions are described by force
models that show realistic response in the investigated frequency range [74, 75]. The main bearings
(cylindrical rings in Fig. 2) are described by an enhanced hydrodynamic model [76]. The piston-liner
contact (bundle of thin lines from the top of the conrod to the liner contact nodes) is described
by an empirical force formulation. A multi-body-simulation (using the software AVL EXCITE)
was performed to obtain the structural dynamics of the engine. The velocities were recovered onto
the surface of the engine and transformed into frequency domain at the relevant engine orders.
The resulted velocity boundary condition set is defined from 204.188 Hz up to 2994.73 Hz with
a frequency step of 34.031 Hz (total of 83 frequency steps). The exact frequency values are displayed
rounded to the nearest integer in the text from here on, for the sake of shorthand notation. The
normal velocity boundary condition distribution is depicted in Fig. 3 at selected frequencies. The
structural velocity data has been applied as a normal velocity (Neumann) boundary condition
in the radiation model. Therefore, the prescribed structural normal velocity boundary condition
represents a one-way structural-fluid coupling.
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Fig. 2. Picture of the MBS model from AVL Excite.

Fig. 3. Magnitude of structural normal velocity distribution at selected frequencies
in dBre 10−9 m/s according to ISO 1683.

6. ENGINE SOUND RADIATION MODEL

6.1. Definition of the numerical model in WBT and its BE reference model

Consider the radiating engine boundary depicted in Fig. 3 with its main dimensions of
419×759×495.2 mm. Two model variants of the free-field engine radiation model were created,
depicted in Fig. 4. The first variant contains 9 subdomains in the bounded part ΩB (NΩ = 10),
while the second has 32 subdomains (NΩ = 33). The topology of subdomains of the second model
variant (NΩ = 33) ensures that no abrupt change of boundary conditions (or jump in the boundary
conditions) occurs on the planar boundaries of the subdomains, but such changes occur only at

Fig. 4. Topology overview of two model variants NΩ = 10 and NΩ = 33 of engine radiation model.
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interfaces between two subdomains. This condition is preferable for WBT, since the approximation
of such jumps within one subdomain requires an excessive amount of wave functions, which dete-
riorates the performance of the numerical model. The influence of the modelling topology and the
number of subdomain will be analysed in the next section.
For verification of the WBT results, a very fine BE mesh of the surrogate acoustic boundary

was created. The BE mesh has a maximal element length of 10 mm, and the mesh is valid up to
3378 Hz, considering a λ/10 element length rule. The BE mesh consists of 14 118 nodes and 14 116
elements. Since the engine radiation model has a closed boundary, the direct BE formulation could
be used. The effect of the so-called irregular frequencies (the eigenfrequencies corresponding to
the domain inside the closed model boundary) could be efficiently mitigated by randomly located
overdetermination points.
The structural velocity distribution (depicted in Fig. 3) was mapped to the nodes of the BE

mesh using an inverse distance weighted (IDW) mapping approach, in which the complex velocity
vector of the i -th node of the BE mesh is calculated as a linear combination of the velocity vectors
of the 8 closest nodes of the engine FE mesh:

v(ri)BE =

8∑

j=1

1

dj
v(rj)FE, (24)

where

dj = ||ri − rj || (25)

is the distance between the i -th BE node, and the j -th structural FE node, and b is a factor such
that

b

8∑

j=1

1

dj
= 1. (26)

In order to guarantee that both the WB model and the BE model obtain the same normal velocity
boundary condition, the nodal values of the normal velocity boundary condition of the BE model
(v(ri)BE) were interpolated to the Gauss-integration points of the coincident WBT model surfaces.
For the interpolation from the BE nodes to the integration points, the same IDW mapping has
been applied.
The approximation error of WBT with respect to the reference BE calculation is expressed as a

relative L2 norm pressure error at a distance of 1m from the engine (the numerical integration on
the R = 1 m spherical surface has been carried out by means of a 9600-points Gauss-quadrature).

ǫBEM−WBT ≈





∫

R=1m

|p̂(r)− pBEM(r)|2 dΓ
∫

R=1m

|pBEM(r)|2 dΓ





1/2

. (27)

If p̂(r) in ΩU satisfies the Sommerfeld condition, then

∫

R→∞

|p̂(r)|2 dΓ = const. [77]. Thus, (27)

is a well-suited measure of the approximation error in the exterior domain.
The reference BE model was created and calculated in the SYSNOISE Rev. 5.6 commercial BEM

package with 100 randomly generated overdetermination points. The WBT code was implemented
and run in MATLAB R2011b. Both the BEM and the WBT calculations were performed on the
same AMD 3.0 GHz CPU with 16 Gb RAM. The BE reference model was solved in approx. 11 min-
utes per frequency step and the post-processing of the 9600 response points took approx. 6 minutes
per frequency step. Therefore, the total calculation time of the BE modal was 913 minutes without
post-processing, and 1411 minutes with post-processing. The post processing of the WBT results
took at most 10 seconds per frequency for the 9600 response points.
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6.2. Results

6.2.1. Convergence behaviour of model variants

Figure 5 shows the convergence behaviour of the two model variants of the free-field engine radiation
case at a selected frequency of 2484 Hz. The values of the global indicators (ǫv, ǫI , ǫIU ) and the
approximation accuracy ǫBEM−WBT are plotted against the number of DOFs. The approximation
error is also plotted against the calculation time, in order to show the computational effort needed
to calculate the different model variants. Furthermore, the number of DOFs is depicted against the
calculation time, which is useful to explain the computational efficiency of the different modelling
topologies.

Fig. 5. Convergence properties of the engine radiation model variants (NΩ = 33, R = 0.55 m, NΩ = 10,
R = 0.55 m and NΩ = 33, R = 0.7 m) at 2484 Hz: Values of the boundary-error indicators: a) ǫv, b) ǫI , c) ǫIU
vs. the number of degrees of freedom, the relative L2-norm approximation error with respect to the BEM
reference (ǫBEM-WBT) vs. the number of degrees of freedom (d) and vs. calculation time (e), and calculation

time vs. the number of degrees of freedom (f).

The variant NΩ = 10 was calculated with a truncation radius of 0.55 m, while the variant NΩ =
33 was calculated with truncation radii 0.55 m and 0.7 m. The convergence plot was obtained by
a homogeneous enlargement of the wave function set using the wave function control expression (18).
The initial values of M (α) were set to M (α) = 1 for all α, and M (α) was increased by a value of 1
for all domains at each recalculation step. The initial order of the radiation functions NRF was set
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to NRF = 2 and was increased by a value of 6 at each recalculation step. The recalculations were
stopped, if any of the error indicators, or the approximation accuracy ǫBEM−WBT showed no more
improvement. The reason for the lack of improvement at the last recalculation steps is twofold. The
imposed velocity boundary condition on the surrogate acoustic boundary is an artificially mapped
non-smooth boundary data, which needs very high oscillatory orders to describe accurately. Since
the numerical integrals are evaluated by a finite integration quadrature size (see Subsec. 4.3), thus
numerical instabilities in the solution of the ill-conditioned linear system are inevitable at such
high oscillatory orders. Therefore, Fig. 5 depicts results of the 7–10 successive refinement iterations
depending on the model size.
As depicted in Fig. 5, the approximation accuracy ǫBEM−WBT approaches to a value of 0.05

at the final recalculation steps. At the selected frequency, it is clearly visible that the numerical
model with the larger radius of 0.7 m requires more DOFs and, as a result, longer calculation
times than the variants with the smaller truncation radii. From Fig. 5d it appears that the variant
NΩ = 10 is the most efficient, if the approximation error is seen only against the number of DOFs.
The efficiency of the variant NΩ = 10 (in terms of the number of DOFs) is not reflected however
in the corresponding calculation times in Fig. 5e. The jumps of boundary conditions within the
subdomains of the model variant NΩ = 10 require high-order wave functions, which deteriorate the
computational efficiency, since the higher-order wave functions require more accurate numerical
integration. Observing the number of DOFs in relation to the calculation time in Fig. 5f, it can
be seen that the variant NΩ = 33 is more efficient to calculate, since the same number of DOFs is
calculated at a lower computational time; the lower number of DOFs of the NΩ = 10 variant can
not compensate the efficiency advantage of the NΩ = 33 variant. As a consequence, the variant with
the higher number of subdomains (NΩ = 33) was chosen for further calculations. Efficiency and
consistency of the global error indicators with the solution error (ǫBEM−WBT) can also be assessed
from Fig. 5. The convergence behavior of the error indicators is consistent with the solution error.
The solution error shows the highest correlation with the coupling error indicators ǫI and ǫIU , while
ǫv overestimates the error. An engineering accuracy of 5% was achieved with ǫv = 0.12.

6.2.2. Aim of comparison and focus of investigation

For the analysis of the adaptive calculation strategy and the error indicators, a limited number of
calculation parameters and error indicator thresholds were set up and investigated. Results from
the adaptive strategy were calculated with both the frequency-independent wave function control
(full restart from scratch approach) and the combined a priori/a posteriori wave function control.
Results of the adaptive strategy were compared with results of the a priori, frequency dependent,
global refinement presented in Subsec. 4.1. The primary focus of the investigation was to obtain
results with an engineering accuracy of approx. 10%. The solution error was expressed in terms of
the relative L2-norm pressure error defined in (27).

6.2.3. Selection of threshold settings

For the adaptive calculation strategy, the thresholds of the error indicators were defined in such
a way that ǫ∗v ≥ ǫ∗I ≥ ǫ∗IU , where ǫ

∗
v, ǫ

∗
I and ǫ∗IU denote the prescribed threshold values for ǫv,

ǫI , ǫIU respectively. The presumption behind the selection of this threshold scheme is that it is
preferred that the accuracy of the numerical solution is governed by the error in the physical
boundary conditions, rather than by the error in the interface continuity conditions. This results in
a smoother, more continuous pressure field, with fewer artifacts at the coupling interfaces. In other
words, the resulted dynamic pressure field behaves more like a global solution, rather than a set of
roughly coupled domainwise solutions. Moreover, it is beneficial to set the indicator thresholds such,
that ǫ∗I > ǫ∗IU , since the more restricted continuity error in the unbounded domain only implies the
enlargement of the radiation function set, which does not considerably increase the total number
of DOFs, but generally leads to higher accuracy in the exterior domain.



Application and analysis of an adaptive wave-based technique based. . . 19

On the other hand, the resulting error indicator values are not independent of each other, e.g.,
a very restricted continuity error level will have an influence on the physical boundary errors as
well (and vice versa), and hence certain threshold value combinations does not lead to significantly
different results. Furthermore, the selection of the increase steps ofM (α) and NRF for a possibly op-
timal number of recalculations (i.e., minimal number of recalculations, yet avoiding over-refinement)
also have the consequence that small changes of the threshold settings do not lead to remarkable
changes in the indicator values and the approximation error. With all these in mind, the boundary
error thresholds were defined in the range of 0.1–0.5 to obtain a brief parametric analysis.

6.2.4. A priori, frequency-dependent global refinement results

Results of the a priori frequency-dependent global refinement were evaluated in the range of TWF =
1 . . . 4 with TRF = 1. The same parameter set of TWF with TRF = 2 did not improve the accuracy
remarkably, but increased the calculation times significantly. Moreover the expression (17) with
TRF = 2 yields a radiation function set order ofNRF = 85 with the truncation radius of RT = 0.55m
approx. at 2109 Hz. Above this order, the calculation of spherical Hankel functions is numerically
unstable (instabilities associated with the calculation of the spherical Hankel functions for large
orders are extensively reported in the FMM (fast multipole method) literature, see, e.g., [78, 79]).
Table 1 provides an overview of the numerical values and the right column of Fig. 6 depicts

the results in the calculation frequency range. The global a priori truncation factors of TWF = 1
and TWF = 2 provide unreliable results from practical viewpoint, with maximal ǫBEM−WBT error

Table 1. Results of the a priori, frequency-dependent global truncation rules. Contents of the table are the
following: the solution error ǫBEM−WBT, total calculation time, number of DOFs in ΩB and ΩU , the values of
the global indicators ǫv , ǫI and ǫIU . Numerical values are provided as minimum, maximum and average values
in the calculation frequency range, and as actual values at the example frequency steps of 510 Hz, 1497 Hz

and 2484 Hz.

Setting ǫWBT−BEM
Time
[min.]

NΩB

DOF NΩU

DOF ǫv ǫI ǫIU

TWF = 1, TRF = 1 0.131–1.207 357.88 1674–3002 25–3721 0.288–1.658 0.237–0.726 0.166–0.706

Average: 0.691 0.954 0.518 0.486

510 Hz 0.178 0.27 1674 121 0.365 0.264 0.218

1497 Hz 0.966 1.65 1810 961 1.043 0.605 0.593

2484 Hz 1.155 9.00 2262 2601 1.658 0.699 0.576

TWF = 2, TRF = 1 0.131–0.743 439.08 1674–8502 25–3721 0.288–0.964 0.185–0.461 0.106–0.486

Average: 0.274 0.534 0.256 0.202

510 Hz 0.175 0.25 1686 121 0.359 0.261 0.215

1497 Hz 0.366 1.94 3002 961 0.731 0.297 0.140

2484 Hz 0.288 11.16 6060 2601 0.641 0.241 0.124

TWF = 3, TRF = 1 0.070–0.257 768.25 1674–17214 25–3721 0.147–0.527 0.073–0.351 0.037–0.486

Average: 0.126 0.285 0.140 0.102

510 Hz 0.160 0.28 1810 121 0.319 0.214 0.160

1497 Hz 0.105 3.15 5234 961 0.249 0.121 0.071

2484 Hz 0.127 19.02 12438 2601 0.241 0.101 0.050

TWF = 4, TRF = 1 0.053–0.189 1691.88 1674–29212 25–3721 0.109–0.456 0.056–0.308 0.033–0.401

Average: 0.093 0.198 0.175 0.183

510 Hz 0.140 0.33 2036 121 0.269 0.195 0.145

1497 Hz 0.075 5.26 8502 961 0.163 0.080 0.047

2484 Hz 0.085 38.21 20818 2601 0.140 0.071 0.043



20 T. Mócsai, F. Diwoky, A. Hepberger, H.-H. Priebsch, F. Augusztinovicz

Fig. 6. Comparison of results obtained by the combined a priori/a posteriori adaptive strategy (adaptive local
refinement, first column) and the a priori frequency dependent wave-function strategies (global refinement,
second column). Depicted: Number of DOFs in ΩB (first row), number of DOFs in ΩU (second row), solution
error with respect to the BEM reference (third row), calculation time per frequency (fourth row). Calculation
times for the adaptive strategy represent the total time spent on the recalculations to satisfy the prescribed

indicator thresholds.

levels of 1.207 and 0.743 respectively. With TWF = 1 the error is very high at 1500 Hz, already
increasing excessively above 1000 Hz. The result of TWF = 2 still exhibits increasing error level
above 1500 Hz. These results immediately suggest that a constant truncation factor value does not
necessarily lead to controlled accuracy levels. The truncation factor of TWF = 3 provides an average
accuracy of 0.126 in 768 minutes in the calculated frequency range, which was chosen as a reference
for calculation cost/accuracy compromise with approx. 10% accuracy goal for comparison with the
adaptive strategy. TWF = 4 further improves the result of TWF = 3 with the average error being
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less than 10% (0.093) at a cost of significantly high calculation time of 1691 minutes. Both for
TWF = 3 and for TWF = 4, it is apparent that the error is decreasing with increasing frequency, in
other words the error is higher at low frequency. In fact, the value of the truncation factor TWF has
a low effect on the number of DOFs in ΩB (and as a result on the accuracy) in the low frequency
range. The change of the truncation parameter from TWF = 2 to TWF = 4 only increases the
number of DOFs in ΩB from from 1686 to 2036 at 510 Hz. However, at 2484 Hz the number of
DOFs increases excessively, from 8502 to 29 212 with TWF = 2 to TWF = 4.

6.2.5. Results of the frequency-independent, a posteriori control
(full restart from scratch approach)

To compare results of the adaptive recalculate from scratch strategy with results of the frequency-
dependent global refinement, first we analyze equal threshold settings in the form of ǫ∗v = ǫ∗I = ǫ∗IU .
The parameters of the wave function control rule (18) were set up such, that the initial values of
M (α) were set to M (α) = 1, with a minimal value of Nx = Ny = Nz = 2 for all α, and M (α)

was increased by a value of 1, if necessary. The initial order of the radiation functions was set to
NRF = 2 and was increased by a value of 6, if necessary.
Table 2 provides an overview of the numerical results of the calculations. The settings of

ǫ∗v = ǫ∗I = ǫ∗IU = 0.5 and ǫ∗v = ǫ∗I = ǫ∗IU = 0.4 provide very appealing calculation times, with
total calculation times of 355.98 minutes and 426 minutes, respectively. The error of these settings
lies however in the range of 0.07–0.5 and 0.07–0.4 respectively. It is apparent, that the maxi-
mal values of the solution error ǫBEM−WBT approach the value of the prescribed boundary error
thresholds. Both the average indicator values and the average solution error are however well be-
low (with a factor of 2) the corresponding indicator thresholds. Since, the increase steps of M (α)

and NRF were selected to maintain a possibly low number of recalculations while avoiding over-
refinement as much as possible, approaching the prescribed thresholds is not achievable in fine
steps, and as such, the error levels may drop well below the prescribed thresholds after a given
refinement step. The accuracy of results obtained by the settings of ǫ∗v = ǫ∗I = ǫ∗IU = 0.3 and
ǫ∗v = ǫ∗I = ǫ∗IU = 0.2 are indeed very close to each other. However, restriction of the velocity error
indicator ǫv to 0.2 increased the total calculation time significantly (to 1023 minutes) and resulted
in an average ǫBEM−WBT error level of 0.124. Table 2 also includes results of the threshold setting
ǫ∗v = ǫ∗I = ǫ∗IU = 0.1. Restriction of the normal velocity boundary error indicator ǫv below the
value of 0.1 was however not achievable in the full frequency range of interest, as the indicator
values stagnated in the range of 0.1–0.15, as also seen in the convergence analysis plots in Fig. 5
in Subsec. 6.2.1. Therefore, consistent calculation times can not be indicated for this parameter
case.
Table 3 presents results of calculations obtained by threshold settings ǫ∗v > ǫ∗I > ǫ∗IU . By

definition, the settings of ǫ∗v = 0.5, ǫ∗I = 0.4, ǫ∗IU = 0.3 and ǫ∗v = 0.4, ǫ∗I = 0.3, ǫ∗IU = 0.2 and
ǫ∗v = 0.3, ǫ∗I = 0.2, ǫ∗IU = 0.1 provide lower solution error than the settings of ǫ∗v = ǫ∗I = ǫ∗IU = 0.5
and ǫ∗v = ǫ∗I = ǫ∗IU = 0.4 and ǫ∗v = ǫ∗I = ǫ∗IU = 0.2, respectively. Furthermore, the setting of
ǫ∗v = 0.5, ǫ∗I = 0.4, ǫ∗IU = 0.3 resulted in similar average ǫBEM−WBT error level as the setting of
ǫ∗v = ǫ∗I = ǫ∗IU = 0.4 (0.178 vs. 0.191) in lower total calculation times (356 minutes vs. 416 minutes).
The setting of ǫ∗v = 0.4, ǫ∗I = 0.3, ǫ∗IU = 0.2 also resulted in similar average ǫBEM−WBT error level
as the setting of ǫ∗v = ǫ∗I = ǫ∗IU = 0.3 (0.148 vs. 0.15) in lower total calculation times (426 minutes
vs. 569 minutes). The same is true for the setting of ǫ∗v = 0.3, ǫ∗I = 0.2, ǫ∗IU = 0.1 compared to
the setting of ǫ∗v = ǫ∗I = ǫ∗IU = 0.2, the average ǫBEM−WBT level being 0.113 (vs. 0.124) with a
total calculation time of 779 minutes (versus 1023 minutes). It is apparent from the results of the
ǫ∗v = ǫ∗I = ǫ∗IU type settings in Table 2, that at a given value of ǫv, the corresponding values of ǫI
and ǫIU are generally lower than the values of ǫv. Thus, the restriction of the continuity error levels
(e.g., from ǫ∗I = ǫ∗IU = 0.3 to ǫ∗I = 0.2, ǫ∗IU = 0.1 needs less computational effort than reducing the
error bound for the velocity error indicator ǫv (e.g., from ǫ∗v = 0.3 to ǫ∗v = 0.2). This explains the
lower calculation times in the above cases. Moreover, the more restricted continuity error levels
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Table 2. Results of full restart from scratch approach, threshold settings ǫ∗v = ǫ∗I = ǫ∗IU . Contents of the
table are the following: the solution error ǫBEM−WBT, total calculation time, number of DOFs in ΩB and
ΩU , the values of the global indicators ǫv, ǫI and ǫIU . Numerical values are provided as minimum, maximum
and average values in the calculation frequency range, and as actual values at the example frequency steps of

510 Hz, 1497 Hz and 2484 Hz.

Setting ǫWBT−BEM
Time
[min.]

NΩB

DOF NΩU

DOF ǫv ǫI ǫIU

ǫ∗v = 0.5, ǫ∗I = 0.5,
ǫ∗IU = 0.5

0.073–0.503 310.24 2038–9294 9–729 0.191–0.487 0.117–0.378 0.062–0.496

Average: 0.246 0.365 0.214 0.211

510 Hz 0.113 0.70 2612 81 0.223 0.160 0.117

1497 Hz 0.168 2.12 4054 225 0.347 0.172 0.112

2484 Hz 0.222 7.26 7146 441 0.431 0.180 0.125

ǫ∗v = 0.4, ǫ∗I = 0.4,
ǫ∗IU = 0.4

0.071–0.400 416.81 2038–10740 9–1089 0.186–0.395 0.111–0.296 0.061–0.372

Average: 0.191 0.316 0.175 0.154

510 Hz 0.096 1.11 3056 81 0.212 0.143 0.110

1497 Hz 0.129 3.27 4536 225 0.313 0.152 0.103

2484 Hz 0.207 9.27 7610 441 0.368 0.166 0.121

ǫ∗v = 0.3, ǫ∗I = 0.3,
ǫ∗IU = 0.3

0.072–0.365 569.74 2618–11474 81–1089 0.181–0.297 0.110–0.219 0.056–0.293

Average: 0.151 0.251 0.145 0.116

510 Hz 0.091 0.88 3154 81 0.203 0.138 0.110

1497 Hz 0.116 3.72 5292 225 0.208 0.124 0.085

2484 Hz 0.190 11.29 8238 441 0.292 0.152 0.109

ǫ∗v = 0.2, ǫ∗I = 0.2,
ǫ∗IU = 0.2

0.065–0.278 1023.22 3158–13772 81–1089 0.150–0.200 0.077–0.189 0.037–0.192

Average: 0.124 0.182 0.121 0.090

510 Hz 0.085 1.58 3534 81 0.162 0.130 0.107

1497 Hz 0.111 3.97 5480 225 0.199 0.119 0.081

2484 Hz 0.174 22.47 9928 441 0.171 0.139 0.105

ǫ∗v = 0.1, ǫ∗I = 0.1,
ǫ∗IU = 0.1

0.043–0.127 N/A 6280–19726 81–2025 0.100–0.15 0.061–0.125 0.030–0.132

Average: 0.076 0.130 0.081 0.059

510 Hz 0.051 N/A 9168 225 0.104 0.076 0.048

1497 Hz 0.072 N/A 11312 441 0.110 0.071 0.031

2484 Hz 0.066 N/A 17358 729 0.137 0.069 0.046

ǫIU on the truncation sphere do not add a significant amount of DOFs, but improve the solution
accuracy in the exterior domain.

Comparing the frequency-independent a posteriori adaptive control (full restart from scratch
approach) to the a priori global refinement strategies in a general sense, there are two main char-
acteristic differences: the adaptive strategy generally yields higher number of DOFs in the low
frequency range than the a priori strategy (with any value of TWF ). This also means that the
adaptive strategy results in lower error levels below 500 Hz. On the other hand, in the higher
frequency range, above 2500 Hz, the adaptive strategy results in lower number of DOFs, than the
a priori strategies with the settings of TWF = 3 and TWF = 4. This means that the adaptive
strategy results in relevant savings in the number of DOFs compared to the frequency-dependent
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Table 3. Results of full restart from scratch approach, threshold settings ǫ∗v = ǫ∗I = ǫ∗IU . Contents of the
table are the following: the solution error ǫBEM−WBT, total calculation time, number of DOFs in ΩB and
ΩU , the values of the global indicators ǫv, ǫI and ǫIU . Numerical values are provided as minimum, maximum
and average values in the calculation frequency range, and as actual values at the example frequency steps of

510 Hz, 1497 Hz and 2484 Hz.

Setting ǫWBT−BEM
Time
[min.]

NΩB

DOF NΩU

DOF ǫv ǫI ǫIU

ǫ∗v = 0.5, ǫ∗I = 0.4,
ǫ∗IU = 0.3

0.072–0.369 355.98 2618–10690 81–1089 0.181–0.487 0.111–0.236 0.061–0.293

Average: 0.178 0.347 0.169 0.134

510 Hz 0.095 1.07 3142 81 0.213 0.142 0.110

1497 Hz 0.133 2.90 4644 225 0.329 0.151 0.102

2484 Hz 0.222 6.78 7242 441 0.432 0.179 0.126

ǫ∗v = 0.4, ǫ∗I = 0.3,
ǫ∗IU = 0.2

0.069–0.274 426.69 2924–11258 81–1089 0.180–0.396 0.111–0.203 0.061–0.195

Average: 0.148 0.306 0.149 0.112

510 Hz 0.090 0.84 3228 81 0.203 0.138 0.110

1497 Hz 0.124 2.17 4734 225 0.310 0.146 0.102

2484 Hz 0.207 8.78 7610 441 0.368 0.166 0.121

ǫ∗v = 0.3, ǫ∗I = 0.2,
ǫ∗IU = 0.1

0.066–0.183 779.55 3216–14202 81–1521 0.161–0.300 0.090–0.176 0.050–0.098

Average: 0.113 0.240 0.121 0.078

510 Hz 0.082 1.73 3872 225 0.177 0.115 0.084

1497 Hz 0.105 4.29 5548 441 0.199 0.114 0.064

2484 Hz 0.144 13.50 8998 729 0.279 0.128 0.059

global refinement. While this already relaxes the memory requirements to store the fully populated
system matrix, the time cost of the adaptive strategy is not only dependent on the number of
the DOFs, but also on the effort spent on the iterative recalculations to achieve the prescribed
indicator levels. Comparing the time cost vs. accuracy, the error level of the setting TWF = 3
(reference for comparison) is similar to the error level of the settings ǫ∗v = 0.2, ǫ∗I = 0.2, ǫ∗IU = 0.2
and ǫ∗v = 0.3, ǫ∗I = 0.2, ǫ∗IU = 0.1. The time costs of the setting ǫ∗v = 0.3, ǫ∗I = 0.2, ǫ∗IU = 0.1 and the
a priori setting of TWF = 3 is similar (779 minutes vs. 768 minutes). Furthermore, both settings
of the adaptive strategy are relevantly faster than the a priori setting of TWF = 4, which how-
ever yields lower error levels above 1500 Hz, than the adaptive results. The adaptive strategy with
threshold levels in the range of 0.4–0.5 are significantly faster than the global refinement with the
truncation factor of TWF = 2, while the adaptive calculation provides more controlled error levels.

It is apparent from all the above, that the adaptive strategy results in lower error levels in the
low-frequency range, at a cost of higher number of DOFs and thus higher calculation times. On
the other hand it results in relevant savings in DOFs in the higher frequency region. Still, the
total calculation time of the recalculate from scratch approach is higher, which is caused by the
time overhead spent on the unsuccessful recalculations/iterations to achieve the prescribed error
indicator thresholds.

6.2.6. Combined strategy

To reduce the time overhead of the full “recalculate from scratch” to some extent, it is beneficial to
use the combined adaptive local refinement presented in Subsec. 4.2.2, which utilizes an a priori,
frequency-dependent initial wave function configuration. The selection of an appropriate, low trun-
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cation factor is crucial to avoid a homogeneous over-refinement already in the initial step. For the
initial wave function configuration, the truncation values of T 0

WF = 2 and T 0
RF = 0.5 were chosen.

According to (19), the initial wave function set is further refined iteratively using local refinement
based on the error indicators. Further parameters of the combined control rule (19) were the fol-
lowing: the increase step of M (α) was 1 and the increase step for N was 6 (identically to the full
restart from scratch).

Table 4 presents the results of the combined strategy in the range of 0.1–0.3 boundary error
threshold levels. Since the initial parameters of the wave function sets are frequency dependent, and
the increase step parameters are the same as for “recalculate from scratch approach”, the combined
strategy results in somewhat different wave function set configurations (and number of DOFs). The
error and indicator levels are not significantly different. Compared to the full restart from scratch
approach, the calculation times are reduced by 5–32% percent depending on the threshold settings.
Consequently, the combined control with the threshold setting of ǫ∗v = 0.3, ǫ∗I = 0.2, ǫ∗IU = 0.1
became faster than the (reference) a priori setting of TWF = 3, while achieving similar accuracy.
The setting of ǫ∗v = 0.2, ǫ∗I = 0.2, ǫ∗IU = 0.2 became faster by approximately 22% than the same
setting using the full “recalculate from scratch approach”. Moreover, both settings of the combined
strategy are faster by approximately two times, than the a priori setting of TWF = 4.

Table 4. Results of the combined a priori/a posteriori control strategy. Contents of the table are the following:
the solution error ǫBEM−WBT, total calculation time, number of DOFs in ΩB and ΩU ., the values of the global
indicators ǫv, ǫI and ǫIU . Numerical values are provided as minimum, maximum and average values in the
calculation frequency range, and as actual values at the example frequency steps of 510 Hz, 1497 Hz and
2484 Hz.

Setting ǫWBT−BEM
Time
[min.]

NΩB

DOF NΩU

DOF ǫv ǫI ǫIU

ǫ∗v = 0.3, ǫ∗I = 0.3,
ǫ∗IU = 0.3

0.098–0.246 387.31 1774–10320 36–1296 0.207–0.299 0.120–0.231 0.057–0.280

Average: 0.155 0.262 0.168 0.113

510 Hz 0.167 0.43 1838 36 0.299 0.231 0.232

1497 Hz 0.152 1.58 3706 144 0.291 0.166 0.112

2484 Hz 0.202 11.82 8124 676 0.248 0.168 0.118

ǫ∗v = 0.3, ǫ∗I = 0.2,
ǫ∗IU = 0.1

0.046–0.184 743.77 2250–12216 196–2401 0.117–0.298 0.091–0.154 0.048–0.100

Average: 0.118 0.244 0.125 0.071

510 Hz 0.094 2.67 3220 576 0.188 0.127 0.087

1497 Hz 0.113 2.44 4590 484 0.293 0.137 0.082

2484 Hz 0.150 11.35 8922 1024 0.296 0.124 0.067

ǫ∗v = 0.2, ǫ∗I = 0.2,
ǫ∗IU = 0.2

0.067–0.252 806.44 2594–12692 49–1600 0.146–0.196 0.084–0.176 0.042–0.179

Average: 0.118 0.182 0.122 0.079

510 Hz 0.118 1.34 2766 144 0.160 0.157 0.108

1497 Hz 0.099 5.40 5849 370 0.188 0.105 0.063

2484 Hz 0.122 20.79 10756 676 0.168 0.105 0.054

ǫ∗v = 0.1, ǫ∗I = 0.1,
ǫ∗IU = 0.1

0.040–0.130 N/A 5740–20236 121–3600 0.100–0.16 0.061–0.118 0.027–0.167

Average: 0.076 0.128 0.080 0.053

510 Hz 0.051 N/A 8180 324 0.103 0.074 0.046

1497 Hz 0.060 N/A 12330 784 0.106 0.067 0.048

2484 Hz 0.083 N/A 14386 1024 0.142 0.102 0.068
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Figure 6 depicts the results obtained by the combined strategy with the settings of ǫ∗v = ǫ∗I =
ǫ∗IU = 0.4 and ǫ∗v = ǫ∗I = ǫ∗IU = 0.2 along with results of the a priori global refinement. The
characteristic differences between the adaptive solution and the a priori strategy mentioned in
Subsec. 6.2.5 are evident from this figure. The combined adaptive strategy with the setting of
ǫ∗v = ǫ∗I = ǫ∗IU = 0.2 results in higher number of DOFs in the low frequency region below 500 Hz
than the a priori global refinement, where the a priori refinement typically yields higher error
levels. Above 2000 Hz, the adaptive strategy spares the number of DOFs compared to the a priori
setting of TWF = 3. In the most time-critical frequency region, above 2500 Hz, where the a priori
global refinement results in excessive calculation times, the threshold setting of ǫ∗v = ǫ∗I = ǫ∗IU = 0.2
yields lower calculation times. The ǫBEM−WBT error level of both the settings of ǫ

∗
v = ǫ∗I = ǫ∗IU = 0.2

and ǫ∗v = ǫ∗I = ǫ∗IU = 0.4 show a more controlled behavior, than it is in the case of the a priori
refinement.

6.2.7. Pressure field results

Figure 7 shows pressure field results obtained by the combined adaptive calculation strategy with
the settings of ǫ∗v = 0.2, ǫ∗I = 0.2, ǫ∗IU = 0.2 along with the reference pressure results of BEM. For the

Fig. 7. Pressure [dBSPL] plots of the engine model along with the pointwise relative L1 pressure error and
amplitude error distribution depicted at 510 Hz, 1497 Hz and 2484 Hz.
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sake of the visual assessment of the approximation error, the pointwise relative L1-norm pressure
error distribution and the amplitude error are also plotted. The selected field-point plane cuts
through the main axis of the engine. The pointwise L1-norm pressure error is defined in the i -th field
point as |piBEM

−piWBT
|/|piBEM

|, while the amplitude error in dB is defined as |piBEM
[dB]−piWBT

[dB]|.
It is evident that a very good agreement with the reference result of BEM was obtained, and an
excellent absolute error level of approximately 1-2 dB was achieved in the whole frequency range.
The relative L1 error and the amplitude error show higher values in the low-pressure areas, where
the error calculation itself is also unstable due to small numeric reference values.

7. CONCLUSIONS

This paper presented an industrial-oriented application of a novel, adaptive wave-based technique
based on boundary error indicators for the sound radiation simulation of a combustion engine. The
introduced error indicators were defined in the relative L2 norm, and they evaluate the deviation of
the numerical solution from the prescribed boundary conditions and the coupling mismatch on the
coupling interfaces between adjacent subdomains. The proposed relative L2-norm error indicators
control an adaptive local refinement strategy, which refines and iteratively recalculates the numerical
solution of WBT. Two different approaches were adopted and presented for the adaptive control
strategy: a frequency-independent a posteriori wave function control, which implements an iterative
full “restart from scratch approach” at each frequency step and a combined a priori/a posteriori
approach, in which the initial wave function configuration is dependent on the calculation frequency.

Accuracy of the results has been compared with reference quality BE results. The reference
BE model in the present work is based on a relatively fine mesh, and is aimed to provide reference
quality results. Therefore, presented calculation times of the academic MATLAB implementation of
WBT are not meant to be compared to the calculation times of the BE reference model. Therefore,
a thorough efficiency evaluation and comparison to BEM was not a goal of the present paper.

The main focus of the investigation was to provide results with an engineering accuracy of
approx. 10% and to assess the potentials of the adaptive strategy at this accuracy level. Therefore,
a brief parametric analysis of the error thresholds was presented in the range of 0.1–0.5 error
indicator thresholds. The efficiency of the adaptive solution schemes was compared to the results
of a priori, frequency-independent global refinement strategies.

It was found that the adaptive strategy generally yields higher number of DOFs and, as a result,
longer calculation times in the low frequency range than the a priori global refinement. It also
provides lower error levels in the low frequency range. In the higher frequency region of the calcu-
lations, the frequency-dependent global refinement excessively increases the number of DOFs and
the calculation time, which results in decreasing error levels with increasing frequency, if the global
truncation parameter was high enough.

The adaptive calculations resulted in lower number of DOFs than the a priori calculations in
the higher frequency region of the calculations, and this already reduces the memory requirements
of the method. On the other hand, the assessment in terms of calculation time revealed that full
recalculate from scratch approach resulted in longer calculation times in the accuracy range of 10%
than the a priori global refinement with the same accuracy.

The combined a priori/a posteriori wave function control strategy resulted in reduced calcu-
lation times compared to the full “restart from scratch approach”. It was established that the
combined strategy results in similar or shorter calculation times and reduced memory consumption
in comparison to the global refinement, while providing more controlled error levels.

The presented adaptive calculation strategy based on the proposed boundary error indicators
provides an interesting and efficient alternative to implement a p-refinement scheme for the WBT.
Although the presented error control strategy provides no rigorous error estimation, it is a valuable
tool to control and monitor the accuracy of the calculation in the practical application of the
wave-based technique.
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