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The aim of this paper is to establish the bounds of applicability of the single-domain numerical approach
for computations of convection in composite porous/fluid domains. The large number of papers that have
utilized this numerical approach motivates this research. The popularity of this approach is due to the
simplicity of its numerical formulation. Since the utilization of the single-domain numerical approach does
not require the explicit imposing of any boundary conditions at the porous/fluid interface, the aim of the
this research is to investigate whether this method always produces accurate numerical solutions.

NOMENCLATURE

A - parameter defined by Eq. (24)

B - parameter defined by Eq. (20)

¢y - specific heat at constant pressure, J/(kgK)

cr — Forchheimer coefficient

D - parameter defined by Eq. (21)

Da - Darcy number, K/H?

F - scaled Forchheimer coefficient, (pfcr H*G)/(K/ 2u)

G - applied pressure gradient, —dp/dz, Pa/m

H - half parallel plate separation distance, m

ks - thermal conductivity of the fluid, W/(mK)

ket — effective thermal conductivity of the porous medium, W/(m K)
ks — thermal conductivity of the solid phase in the porous region, W/(mK)

K - permeability of the porous medium, m?

I - coordinate of the center of the porous layer, m

L - dimensionless coordinate of the center of the porous layer, [/H
Nu - Nusselt number, 2Hq"/ [kf(fw - Tm)]

p - intrinsic average pressure, Pa

P - parameter defined by Eq. (29)

¢" - wall heat flux, W/m?

@ - parameter defined by Eq. (27)

R - thermal conductivity ratio, keg/ky

s — half thickness of the clear fluid region, m

S - dimensionless half thickness of the clear fluid, s/H
T - dimensionless temperature, (T — Tw)/(Tyn — Tw)
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T; - dimensionless temperature at the clear fluid/porous medium interface

T - intrinsic average temperature, K

T,, — mean temperature, K

Tw - wall temperature, K

u - dimensionless velocity, (dus)/(GH?)

u; — parameter defined by Eq. (19)

U — dimensionless velocity between the momentum boundary layers, in the center of
the porous region

iy - filtration (seepage) velocity, m/s

— dimensionless velocity at the clear fluid/porous medium interface

- mean velocity, m/s

— dimensionless mean velocity

— streamwise coordinate, m

— transverse coordinate, m

— dimensionless transverse coordinate, §/H

— function of the coordinate y defined by Eq. (23)

— function of the coordinate y defined by Eq. (18)
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Greek letters

B — adjustable coefficient in the representation for the excess stress at the interface
7 - constant, (Neﬂ/lif)l/2
€  — porosity of the porous region

11

py  — fluid viscosity, kgm™" s

pest — effective viscosity in the Brinkman term for the porous region, kgm™!s
py — density of the fluid, kg 7 i

¢ - ratio of the dimensionless temperature to the Nusselt number, 7'/ Nu

-1

1. INTRODUCTION

The main purpose of this paper is to investigate the bounds of applicability of the single-domain
numerical approach. This numerical approach has become increasingly popular in recent years for
handling convection problems in composite domains that consist of both porous and clear fluid
regions. An example of such a problem is the investigation of natural convection during the so-
lidification of a binary alloy in an enclosure. During the solidification of a binary alloy, there are
generally three regions in the computational domain: one occupied by the solid phase, another by
the mushy (two-phase) zone, and a third by liquid alloy. A direct numerical solution of this problem
requires the numerical modeling of boundary conditions at two interfaces, between the solid region
and the mushy zone and between the liquid region and the mushy zone. Because these interfaces
move during the solidification process it is necessary to track their positions at all times.

The single-domain approach suggests a much simpler alternative to this complicated numerical
procedure. In the single-domain approach, governing equations are written in such form that they
reduce to the correct limits in all three zones of the computational domain. Utilizing differential
governing equations whose coefficients make a jump when crossing the interface accomplishes this.
The coefficient of the Darcy term, for example, is unity in the mushy zone whereas it is zero in
the liquid zone. Since these governing equations are valid in the entire computational domain,
no boundary conditions at the liquid/mushy and solid/mushy interfaces are required to obtain
their solution. Only the boundary conditions at the external boundaries of the domain are needed.
Examples of the successful application of the single-domain approach to solidification problems
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include Beckermann and Viskanta [1], Bennon and Incropera [3], Schneider and Beckermann [19],
Yoo and Viskanta [22], Voller and Prakash [21], along with many others.

Another example of a problem for which the solution of the single-domain numerical approach
has been utilized is the computation of convection heat transfer in a composite domain that is partly
occupied by a clear fluid and partly by fluid-saturated porous medium. This problem is relevant to
many industrial applications, such as microelectronic cooling. Examples of the successful application
of the single-domain approach to the investigation of convection in composite domains include, but
are not limited to, Vafai and Kim [20], Huang and Vafai [7], Kim and Choi [9], and Hadim [6].

The simplification of the numerical algorithm attained due to the utilization of the single-domain
approach is very impressive. Using this technique, there is no need to solve a numerical problem in
a number of computational sub-domains, each of which has a moving boundary. Instead, it is only
necessary to solve the problem in one domain with simple fixed boundaries and external boundary
conditions that are usually simple as well.

The main limitation of the single-domain approach is closely related to its main advantage, the
impossibility of explicit imposing of any boundary conditions at the interfaces inside the computa-
tional domain. The utilization of the single-domain approach for porous/fluid composite domains
results in numerical solutions that automatically satisfy the continuity of velocities, shear stresses,
temperatures, and heat fluxes across the porous/fluid interface [20]. As it was shown in Nield [14],
continuity of filtration velocity across the interface is a correct condition. Indeed, the interface of the
porous medium contains both pores and solid particles. In the pores, the fluid velocity in the porous
medium matches with the fluid velocity outside the medium. Over the solid part of the interface,
the velocity is zero both in the solid and in the adjacent clear fluid because of the no-slip condition.
However, the condition of continuity of shear stresses across the interface is not necessarily a correct
condition. Over the pore section of the interface, the velocity shear is continuous. Over the solid
section this is not necessarily the case. Velocity shear is identically zero in the solid, but in the
adjacent clear fluid it may take on a non-zero value.

A formal mathematical investigation of boundary conditions at the porous/fluid interface was
carried out by Ochoa-Tapia and Whitaker [16, 17]. In these papers, by means of a complex volume
averaging analysis of the momentum equations in the interface region, it was shown that though
matching the Brinkman-Darcy and Stokes equation retains continuity of velocity, it may produce
a jump in the shear stress. This explains the major limitation of the single domain approach for
composite porous/fluid systems. Numerical solutions obtained by the single-domain approach always
satisfy continuity of the shear stress condition, they cannot account for a possible jump in the shear
stress at the porous/fluid interface. This paper investigates whether the failure to account for the
possible jump in the shear stress at the interface may result in considerable deviation of the single-
domain numerical solutions from exact solutions for flow velocity, temperature, and Nusselt number.

2. STATEMENT OF THE PROBLEM

Figure 1 displays a schematic diagram of the problem (only half of the channel is displayed because
of symmetry). A parallel-plate channel is composed of two porous layers that are attached to the
walls and a clear fluid region in the center. The walls of the channel are subject to a uniform heat
flux. The set of governing equations for this problem is as follows,

dp d d’l]f e ~
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&t (e gy) Hu-tRa =0 esisn (2)
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Fig. 1. Schematic diagram of the problem

_aT d d2T :
s i dT _
pfcfufb_jzc—iﬁ(keffd_g)’ s<y< H, (4)

where cy is the specific heat of the fluid, cp is the Forchheimer coefficient, H is half the distance
between the plates of the channel, kg is the thermal conductivity of the fluid, keg is the thermal
conductivity of the porous medium, K is the permeability of the porous medium, p is the pressure,
s is the thickness of the clear fluid region, 7 is the temperature, iy is the filtration (seepage)
velocity, Z is the streamwise coordinate, § is the transverse coordinate, uy is the fluid viscosity,
Heft 1s the effective viscosity in the Brinkman term for the porous region, and py is the density of
the fluid. Equation (1) is the momentum equation for the clear fluid region while Eq. (2) is the
momentum equation for the porous region (the Brinkman—Forchheimer—extended Darcy equation).
Equations (3) and (4) are the energy equations for the clear fluid and porous regions, respectively.
Following [4, 8, 13, 15], longitudinal heat conduction is neglected in Eqgs. (3) and (4). This assumption
is acceptable for large Péclet numbers.

In Eq. (2), the fluid viscosity, puf, and the effective viscosity in the Brinkman term, pg, are
distinct. Most works that have used the Brinkman model assumed that Heff = py . However, recent
direct numerical simulations (such as Martys et al. [12]) as well as experimental investigations (Givler
and Altobelli [5]) have demonstrated that there are situations when it is important to distinguish
between these two coefficients. For example, in Givler and Altobelli [5], a water flow through a tube

filled with open-cell rigid foam of high porosity was investigated. It was obtained that, for this flow,

pest = (7.5153) py .

At the porous/fluid interface the boundary conditions suggested by Ochoa-Tapia and
Whitaker [16, 17] are utilized,

| i/ et 20 Sy BBl g at g
Ufle_e g = Uf|:_ ff = = TP e T Yy=s
2 ol d i ¢ dy y=s+0 d dy y=s—0 K1/2 d o ,
(5)
T’ =T . k‘effa—q:— =kf — i at y=s,
§=5-0 §=5+0 0y | oy |
y=s+0 y=s—0 (6)

where £ is the adjustable coefficient in the stress jump boundary condition.
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The boundary conditions in the center of the channel and at the peripheral wall are given by the
following,

et 08 — =0, t §=0, 7

R g (7)
aT 3

iy =0, keffa_g q, at §=H, (8)

respectively, where ¢” is the wall heat flux.

3. ANALYTICAL SOLUTION

The appropriate dimensionless velocity, temperature, and Nusselt number for this problem can be
defined as

_ Ugpyg
= GH?’ ©)
; o |
Pouaa (10)
Tm “TW
2H "
Nu— 280 )
kf(TW _Tm)

where G is the applied pressure gradient ( = —dp/dZ), Tyw is the wall temperature, and T}, is the
mean flow temperature, and U is the mean flow velocity. The mean flow temperature is defined by
the following expression,

H
y Hiﬁo/fafi"dg. (12)
The mean flow velocity is defined as
H
U = -}{-/a,dg. (13)
0

Kuznetsov [10] obtained a solution to this problem utilizing the boundary layer approach. The
main assumption utilized in that paper was that the momentum boundary layers in the porous
region (one of which is attached to the solid wall while the other is attached to the clear fluid/porous
medium interface) do not overlap in the center of the porous layer (Fig. 1). Utilizing this approach,
the velocity in the channel was obtained as follows.

The velocity distribution in the clear fluid region (0 < y < S) was obtained as

S2 2

u=u;+ ;y (14)

where vy is the dimensionless transverse coordinate ( = §/H) and u; is the dimensionless velocity at
the clear fluid/porous medium interface, which can be computed from the following transcendental
equation,

1/2
_’Y(U”L un U’OO) [%F(Ur,, + U]_)] £ 8 = /BDa_l/2ui (15)
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where Da is the Darcy number (defined by K/H?), F is the scaled Forchheimer coefficient
(prerH'G) /(K'Y Q,u%), and ue is the dimensionless velocity between the momentum boundary
layers at the center of the porous region. This velocity is given by

—1+ [1 4+ 4Da’F]V/2

= 1
S 2DaF o
The velocity distribution in the boundary layer 2 region (S < y < L) was obtained as
= (u -+ ) [ 2] a7)
i 14 2 ¥
where
z3 = B exp{-D(y - S)}, (18)
3
U] = 2Ugo + m " (19)
i [ uituy ]1/2
Uoo+U1L
il 172 (20)
=
1 [2F v
1 e [M] . (21)
¥ 3

Finally, the velocity distribution in the boundary layer 1 (L < y < 1) region was obtained as

—-112
U = (Uoo + 1) |:2 = 1] — U (22)
where
z1 = A exp{D(1 — y)} (23)
and
i 1/2
1+ [Uoo+u1]
5 1/2 ° (24)
1 2 [uoou+ul]

The dimensionless temperature in the clear fluid region (0 < y < S) was obtained as

e+ |(5+5) 60 - gst -] 25

The dimensionless temperature in the boundary layer 2 region was obtained as

_ o _1Nu N Uso, 2 67 1+ Bexp{-D(y—S5)}
T-T, RU{Q(y 5+ 22y~ 52 - T 1o 2 (26)
where
3 1/2
Q= us+2 - 2V67teo +w)'B @)

3 F12(1 + B)
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(28)
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The dimensionless temperature in the boundary layer 1 region was obtained as
2 1+ Aexp{D(1 —y)}
1+4A

4
F n
(29)

{a-vP+u+1-2ma-v)+
2‘/67(71'00 & u1)1/2
F1/2 (1 + A exp{D(1 - L)})

1
Tz NU—RTU
1 2\/67(“'00 * U1)1/2
F1/2 (1 + B exp{—-D(L - S)})
The dimensionless temperature at the clear fluid/porous medium interface, T;, was found by
(30)

where

P=Q+ux(L—-S9)
matching the temperature distributions given by Egs. (26) and (28) at y = L.
Finally, the Nusselt number was found from the compatibility condition (Bejan [2]),

¢ = T/Nu.

Nu = —1—U-—
Jo uddy
where
U=t (31)
and
(32)
The dependence ¢ = ¢(y), which is necessary to resolve Eq. (30), follows from Eqgs. (25), (26),

4. NUMERICAL SOLUTION USING THE SINGLE-DOMAIN APPROACH

and (28).

For the purposes of the single-domain numerical solution, momentum equations (1) and (2) can be
combined into one equation that is valid throughout the computational domain (0 <y < 1), in both
the porous and clear fluid regions. Utilizing dimensionless variables, this equation can be presented

(33)

(34)

1
— 09— —o3Fu? =0

as
1+i o i
dy 1dy Da
(35)

where for 0 <y < S
0‘2=0'3=0,

0’1-“—‘1,

Energy equations (3) and (4) can also be combined into one equation that is valid throughout
(36)

and for S <y <1
09 = 03 = 1.
the computational domain (0 < y < 1). In dimensionless variables this equation can be presented

a5 =,
as
S, 8. Y
ay \"ay ) T 2T
(37)

where for 0 <y < §

g1 =1
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and for S <y <1

04 = R (38)
Equations (33) and (36) must be solved subject to the following boundary conditions,

ou oT

== d —=0 t y=0,

9y 0 an 39 at y (39)
u=0 and T=0 By =1 (40)

A harmonic-mean formulation (Patankar [18]) is adopted for the interface diffusion coefficients
between two control volumes. This approach is capable of handling abrupt changes in these coeffi-
cients at the fluid/porous interface. Once the velocity and temperature profiles are computed, the
Nusselt number is computed utilizing compatibility condition (30).

5. RESULTS AND DISCUSSION

Figure 2 presents the velocity distributions computed utilizing numerical and analytical solutions
for different values of 8. According to Eq. (5), the parameter 3 characterizes the jump in the shear
stress at the porous/fluid interface, and 8 = 0 corresponds to the situation when the shear stress is
continuous through the interface. Figure 2 shows that numerical and analytical solutions coincide
only when B = 0. The single-domain numerical solution cannot account for a discontinuity of the
shear stress at the interface because the parameter 3 is not present in the numerical formulation
at all. Therefore, if this discontinuity is required by the physics of the problem, an alternative
numerical method should be used, which would allow for the specification of boundary conditions
at the interface, directly.

This conclusion is in agreement with the findings of [11], where the validity of the single-domain
numerical approach for the solution of the fluid flow problem in composite ducts has been inves-
tigated. Ref. [11], however, did not address the heat transfer situation, and the main purpose of
this investigation is to analyze the accuracy of the single-domain approach in resolution of both the
fluid flow and heat transfer in a composite channel.

Figure 3 depicts the temperature distributions in the channel computed for different values of the
parameters 3. This figure shows that, like for the filtration velocity distributions, the analytical and
numerical temperature distributions coincide only for the case of B = 0. This is because the velocity
distribution influences the temperature distribution through the convection term in the energy

1

Da=1073
F=10°
S=0.5
y=1

0.8

0.6 B=-0.5, analytical solution

B=0, analytical solution,

0.4 also numerical solution

0.2 B=0.5, analytical solution

0 0.02 0.04 0.06  0.08 0.1 0.12 0.14 0.16

u

Fig. 2. Effect of parameter 8 on the numerically and analytically obtained velocity distributions in the
channel
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equation, therefore if the numerical velocity distribution is incorrect, the temperature distribution
is also incorrect.

Figure 4 depicts the dependence of the Nusselt number in the channel on the Darcy number for
different values of parameters 3. As expected, the single-domain numerical solution is correct only
when 8 = 0. A small but visible difference between the numerical and analytical solutions for 8 =0
in Fig. 4 for large Darcy numbers exists because the analytical solution obtained in [10] is based
on the boundary layer approximation that is valid only as long as the momentum boundary layers
do not overlap in the center of the porous region. The thickness of the boundary layers increases
with an increase in the Darcy number; and for large Darcy numbers the analytical solution gives
incorrect results. This is why the analytical solution deviates from the numerical solution for 8 = 0
in Fig. 4 when the Darcy number approaches 1072.

Figure 5 displays the dependence of the Nusselt number on the dimensionless thickness of the
clear fluid region (S = 0 corresponds to the channel completely occupied by the porous medium
and S = 1 corresponds to the channel completely occupied by the clear fluid) for different values
of parameters . As expected, the single-domain numerical solution coincides with the analytical

Da=10"
B=-1, analytical solution F=103
24 R=1
p=0, analytical solution,| ¢ _ 05
also numerical solution | —
0.6 =)
>
0.4 : :
B=1, analytical solution
(dashed line)
0.2
0
0 0.2 0.4 0.6 0.8 1 K2
i
Fig. 3. Effect of parameter § on the numerically and analytically obtained temperature distributions in the
channel
%15
21|F= 103 B=0, analytical solution
T (dashed line)
30515-05
3(r=1 numerical solution
» 295
ZElg
2.85 B=-0.5, analytical solution
2.8
275
2.7 . =
B=0.5, analytical solution
265!

6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
log,o(Da)

Fig. 4. Effect of parameter 3 on the numerically and analytically obtained dependencies of the Nusselt
number on the Darcy number
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6
Da=103
5.5 —1n3
B=0.5, analytical solution ; 31 4
5 / .
B=0, analytical solution Y
s (dashed line)
2 . numerical solution
4
35 B=-0.5, analytical solution
3
2'50 0.2 0.4 0.6 0.8

S

Fig. 5. Effect of parameter 4 on the numerically and analytically obtained dependencies of the Nusselt
number on the thickness of the clear fluid region

solution when 8 = 0 except when S is very close to unity. This is because when S approaches unity
the thickness of the porous layer becomes so small that momentum boundary layers start to overlap
in the center of the porous region, and the analytical solution fails.

6. CONCLUSIONS

It is shown that when physics of the fluid flow in a composite channel requires accounting for
a jump in the shear stress at the porous/fluid interface, the numerical solutions obtained from the
single-domain approach may significantly deviate from the exact solutions. This applies not only
to the velocity distributions, but also to the temperature distributions and the Nusselt numbers.
In such a case, an alternative numerical method should be utilized, which would allow for a direct
specification of boundary conditions at the interface.
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