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The aim of this paper is to simulate numerically the two-dimensional steady state double diffusive flow
in a composite fluid-porous layer, submitted to a transverse magnetic field. Both the temperature and
solute gradients are imposed horizontally, and the two-buoyancy effects can either augment or counteract
each other. The Darcy equation, including Brinkman and Forchheimer terms to account for viscous and
inertia effects, respectively is used for the momentum equation, and the SIMPLER algorithm, based on
finite volume approach is used to solve the pressure—velocity coupling. An extensive series of numerical
simulations is conducted in the range: Ra = 10°, 1078 < Da <1, N =1, Le = 10 and 0 < Ha < 10%.
This study is limited to Pr = 7 for the binary solution of (NazCos). This choice is motivated by the
experimental work on phase change realized in laboratory. It is shown that the main effect of the porous
layer is to reduce the heat and mass transfer when the permeability is reduced. Isotherms and streamlines
are plotted for several values of Hartman (Ha), Darcy number (Da) and porous layer thickness (Xp). The
effect of the magnetic field is found to be rather significant on the flow pattern, heat and mass transfer.
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NOMENCLATURE

A — aspect ratio = H/L

B — magnetic field

Cy — specific heat at constant pressure, J/Kg- K
Cy — inertial coefficient

D — mass diffusivity, m?s!

Da - Darcy number = K/H?

g — acceleration due to gravity

H — cavity high, m

Ha - Hartman number = Be(oH/v)'/?
k — thermal conductivity, W/m - K
K — permeability, m?

L — cavity width, m

Le - Lewis number = Sc/Pr

N — buoyancy ratio = Grs/Gry

Nug - overall Nusselt number

2 — pressure, Pa,

Pr - Prandtl number = v/«

Ra; - Rayleigh number = Gr; - Pr
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Sc — Schmidt number = v/D

Shg - overall Sherwood number

U(V) - dimensionless velocity in X (Y') direction
Vv — velocity vector

Gr; - thermal Grashof number = g3, ATH3/1/?
Gr, - solutal Grashof number = g8, ACH?3/1?
(X,Y) — dimensionless Cartesian coordinate

Greek Symbols

— thermal diffusivity, m2s~!

— coefficient of thermal expansion of fluid
— coefficient of solutal expansion of fluid
— density, kg - m™3

— kinematic viscosity, m
— dimensionless time

— dimensionless temperature = (T' — (T} + T»)/2)/AT

— dimensionless concentration = (C — (C1 + C2)/2)/AC
— temperature difference = T — Ty

— concentration difference = C; — Cy

— porous media porosity

— stream function

2,1

at

RODDBO®Y D B®R
QR

Subscripts

— heated surface
— cooled surface
— fluid

— porous media

— average value

OV ~ N~

Superscripts

) — time iteration

1. INTRODUCTION

Electromagnetic field has been used in the metal industry to control microstructures solidification
and to reduce or eliminate natural convection in the melt. The magnetic fields give rise to extra
forced flows in the melt, enhancing in such a way the significance of the convective phenomena.
The double-diffusive natural convection in a fluid saturated porous medium occurs in a wide variety
of applications such as geothermal energy, fibrous insulating materials, cryogenic systems, etc. the
combined heat and mass transfer in porous media is limited, because of complexities involved in
double-diffusive natural convection. Most of previous studies in this topic use Darcy’s law for solving
flow within the porous medium [11]. Natural convection of heat and mass transfer in a square porous
cavity subjected to constant temperature and concentration has been investigated by Trevisan and
Bejan [11]. The authors use the Darcy’s model for modeling the flow in porous medium. The
numerical study has been carried out for a given range of Darcy-Rayleigh number, Lewis number
and buoyancy ratio. Our study focuses on combined thermal and solutal natural convection of
a binary fluid in a closure with thin porous layer on the left wall and submitted to a transverse
magnetic field. Such configuration has been previously considered in the case of thermal convection
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by Le Breton et al. [8]. These studies shown that the main effect of porous medium is to reduce
the upwind flow and then to decrease the convective heat transfer. Lage [5] studied the effect of the
convective inertia term on Bénard convection in porous medium. The author shows that inertia term
included in the general momentum equations has no effect on the overall heat transfer. Bian et al. [1]
consider the interaction of an external magnetic field with convection currents in porous medium.
The porous medium was modeled according to Darcy’ s model. It is found that the application
of a magnetic field, modifies the temperature and fields significantly. The aim of this paper is to
analyze the effect of magnetic field for the double diffusion natural convection flow in the presence of
a porous layer. The flow is modeled using the generalized model of Darcy-Brinkman—-Forchheimer.
The effect of permeability and porous layer thickness are also presented.

2. PROBLEM DEFINITION AND GOVERNING EQUATIONS

The problem considered is a two-dimensional natural convection flow in a vertical square cavity
filled with a binary fluid, see Fig. 1. Horizontal temperature and concentration differences are
considered between the vertical walls, and zero mass and heat flux are imposed at the horizontal
walls. A uniform magnetic field is applied transversally. Both velocity components are equal to zero
on boundaries. The left vertical wall is covered with thin porous layer. For simpler analysis, some
assumptions are made:

e The binary fluid is assumed to be Newtonian incompressible and to satisfy the Boussinesq
approximation.

The flow in the cavity is laminar and two-dimensional.

The porous medium is supposed to be isotropic homogeneous and in thermodynamic equilibrium
with the binary fluid.

The Soret and Dufour effects are neglected.

The Reynolds magnetic number of the fluid is neglected.

The density variations upon temperature and concentration are described by the state equation

p=po[l —Br(T —To) — Bc(C - Cy))

Y.V
U=V=0 - U=V=0
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Fig. 1. The physical model and coordinate system
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where

__1{%
i1 P[aT]c 1

sibdA e
Bc = [E)C]

Then, applying the theorem of conservation and introducing the dimensionless parameters as

given below [5],

_ (z,9)
(xyy="2L,
t
T = W(Ra PI')I/Z,
o= T — (T1 +T2)/2
T — Ty ;

(u,v)
U (ap/H)(Ra- Pr)l/2’
B (PCp)p
(pCp)s
P C—-(Ci+Cy)/2 P e2H?(p)
Cy —Cy ’ pra2(Ra- Pr)

The definition of all variables is given in Nomenclature.

We obtain the following dimensionless governing equations as given also by Lage [5]:

— Continuity equation:

ou ov

56

— X-momentum equation:

p 1/2
L e a—+e(f—’> vy - GE IV|U

oxn 0X

Ra VDa

e2 (Pr\'/? o [ Pr Y2

- Y-momentum equation:

S5t (V= ot

2 /pr\/? Pr\/? 9
2 BV e ()" e 4w,

€ 0T

e

— Energy equation:

19V oP (1%) /2v2v Cyef

ViV

Ra VDa

Ra

100 1
S TV — TG -N72
o7 VI = Tt i e
— and Species equation:
0P 1
bk SN TR, AV S 25,
“or Y ) Le-(Ra‘Pr)l/2V .

All the dimensionless parameters are given in the Nomenclature.
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The momentum equation is a balance among;:

1 A
(— %/— + (V- V)V) — macroscopic inertia force or macroflow development term,
e Ot
o pressure gradient
Y :
pr\ /2
€ (——) viv — macroscopic or bulk viscous shear stress diffusion,
Ra . .
also called Brinkman viscous term,
Cye? . S
= V|V — Forchheimer term, also called Ergun inertial term,
a

microscopic viscous shear stress: Darcy term,

2 1/2
il s s
Da \ Ra

pr\ /2
2  c—
Ha ( Ra) 14

e2(© + N®) — buoyancy term.

electromagnetic force,

The Brinkman term is added in order to obtain the classical Navier-Stokes equations when the
Darcy number becomes high to account for the boundary layer in the porous medium.

When the flow field is significant, the non-linear inertial effects become very significant.
Ward(1961) has proposed to add the Forchheimer term, which is a drag term in the momentum
equation.

The initial and boundary conditions for the dimensionless equations are as follows:

— Initial condition (at 7 = 0),

0=6,=0,
d=97=0, for UsY <1l and VS X <174 (6)
e

— Boundary conditions,

©=%6=0.5, U=V=0 for X=0 and 0<Y <1,
©@=0=-05 U=V=0 for X=1/A and 0<Y <1,
§§=§§:Q U=V =0 for Y=0 and 0< X <1/4, (7)
3 — Y 0, U=V=0 for Y=1 and 0<X<1/A

The problem in modeling considered configuration is the coupling of the momentum equation
in the fluid and porous regions and the conditions at the fluid/porous interface. Instead of solving
one set of equations for each region (fluid, porous), the governing equation could be combined
into a unique set valid at all points, with the porous layer is considered as a pseudo-fluid. In this
representation the transition from the fluid to the porous medium is achieved through a spatial
variation of the permeability and thermal conductivity, since it avoids explicitly considering the
conditions at the fluid—porous interface.

The variation in space of the thermal conductivity and permeability are written in dimensional
form as follows,

k(X,Y)=k;, K(X,Y)=o0, for Xp< X <1/A, (8)
k(X,Y)=kp, K(X,Y)=Kp, for 0< X < Xp, (9)
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where k(X,Y) is the thermal conductivity and K(X,Y) is the permeability.

With conditions of Egs. (8) and (9), in the porous layer the permeability exists (1/Da # 0).

In the fluid region the permeability disappears (Da = Kp/H? — 0o = 1/Da = 0) and we obtain
the classical Navier—Stokes equations without porous medium.

With the use of this technique, the conditions at the fluid/porous layer interface are automatically
satisfied; thus the numerical solution procedure is greatly simplified.

Note that it is not necessary to explicitly use the dimensional value (ex. permeability Kp) in
subsequent computations, because it appears through the dimensionless parameters (Da = Kp/H?).

3. NUMERICAL PROCEDURE

The coupled transient equations are solved to obtain a steady state solution. When a convergent
result is approached, the transient terms vanish and the steady-state equations are solved. This
formulation more over allows us to detect instabilities [8].

The differential equations are discretised in space with the control-volume finite difference method
described by Patankar [10]. The resulting finite difference scheme has the form

Apdpp = ANdn + Asds + Apdr + Awdw + b. (10)

Expressions for the coefficients in Eq. (10) may be found in [10]. The advection-diffusion part of
the coefficients Ay, As, Ag and Aw is modified for stability according to the power law scheme
of [10]. The source term b includes the values of at previous time step. The discretisation technique
is well known and a detailed description is not needed. The linear system derived from the conser-
vation equations are solved using line-by-line method. As the momentum equation is formulated in
terms of the primitive variables (U, V, P) the iterative procedure includes a pressure correction
calculation method to solve the pressure-velocity coupling (the Simpler technique [10]). The simu-
lation are generally performed using 81 x 81 sinusoidal grid. It is realized that this relatively course
grid is adequate to resolve all details of the flow structures in the cavity. The selected mesh size
should only be viewed as a compromise between accuracy and computational time. The calculations
were performed on PC 700 MHz. The convergence of the numerical solution was monitored locally.
The max-norm was used for the velocity components U, V', temperature and concentration. The
convergence criterion at each time step is

<1074 (11)

(Uv ‘/1 @, Q)H_l i (U7 V7 @7 q))l
(U,V,0,d)

in which ¢ and ¢ + 1 denote two consecutive iterations at the same time step.
The average heat and mass transfer at the walls are given in dimensionless terms by the Nusselt
and Sherwood numbers defined as follows,

1100 1109
Nu =/ [—] dy, Sh0=/ [—] dy, (12)
. 0 aX X=0 0 8X X=0

4. TEST VALIDATION

The numerical accuracy of the present study has been checked over a large number of purely thermal
convection in a fully porous cavity (Xp = 1), the results has been compared with the results of
earlier studies in Tables 1 and 2, for the Darcy and combined Darcy-Brinkman representation of
the porous medium flow. The validation is performed using 81 x 81 sinusoidal grid. It may be seen
from the results, that the agreement with [7, 9] is excellent in most cases. Indeed, our results present
a difference less than 2% in comparison with Nithiarasu [9] results. As an additional check on the
numerical accuracy, the present study has been compared for purely thermal natural convection
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Table 1. Darcy model (pure heat transfer, N = 0)

Nu
Ra* = Ra, - Da | Lauriat et al. [7] | Trevisan et al. [11] | Nithiarasu et al. [9] | Present work
10 1.07 1.08 1.06
50 2.02 1.958 1.936
100 3.09 3.27 3.02 2.98
500 8.38 8.32
1000 13.41 18.38 12.514 12.49
Table 2. Darcy-Brinkman model (pure heat transfer, Pr = 1)
Nu
Ra* = Ra; - Da | Da | Lauriat et al. [7] | Nithiarasu et al. [9] | Present work
10 10 1.07 1.08 1.06
100 10-¢ 3.06 3.00 2.98
1000 10-°¢ 13.2 12.25 12.11
10 30" 1.02 1.02 0.99
100 1072 ¥T7 1.71 1.68
1000 10" 4.26 4.26 4.24
Table 3. Darcy model (pure heat transfer, N = 0)
Nu
Ra* = Ra; - Da | Lauriat et al. [6] | Goyeau et al. [2] | Present work
100 2.08 2.08 2.06
200 3.03 3.04 2.99
500 4.92 4.94 4.89
1000 7.02 7.05 7.01
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(N = 0) and Le = 100, in a porous cavity (Xp = 1). In the absence of concentration-driven
convection (N = 0), there is still buoyancy due to temperature differences. Table 3 shows the
comparison, and the agreement is seen to be excellent [2|, difference is less than 1%.

5. RESULTS AND DISCUSSION

Due to large number of parameters and for brevity, only selected results are presented for the case
of a cavity with aspect ratio unity (A = 1) and the Prandt]l number of the binary solution (NagCos)
Pr=17. The ranges of parameters that have been examined in this study are the Hartman number
0 < Ha < 102, the Darcy number 10~8 < Da < 1, and thickness of the porous layer 0 < Xp < 1.
The conductivity ratio is A = 1 and the representative porosity is fixed at € = 0.7 for the porous
medium. The inertia parameter Cy is calculated using the Ergun [3] model,

1.75
2% (150€3)2

which means that in the present case C'y = 0.25.

5.1. Influence of Hartman number

Figure 2 illustrates typical streamlines, velocity vectors, isotherms and concentration lines for Ra =
10°, Da = 107, Pr = 7, Le = 10, N = 1, and Ha = 10, 60 and 100, respectively. The influence
of a magnetic field is apparent from this figure. Figure 2a shows the results obtained for Ha = 0
“absence of magnetic field”. The flow, Isotherms and isoconcentrations are similar to those obtained
by other investigators (see Kimura and Bejan [4]). The resulting flow regime is characterized by
a boundary layer of constant thickness. Also, the parallelism of the flow and the existence of linear
thermal and solutal stratification are clearly illustrated. Due to the thermal and solutal boundary
conditions considered here, the bottom wall has a higher temperature and concentration as the top
inclined wall. As a result, the direction of the flow is counterclockwise. When the magnetic field is
applied, the flow recalculation is progressively inhibited by the retarding effect of the electromagnetic
body force (Figs. 2b,c). The maxima of stream function values are ¥,y = 9.43 - 1073 for Ha = 0,
Unax = 1.63 - 1073 for Ha = 60 and ¥y, = 8.25 - 10~% for Ha = 100. From the study of Bian
et al. [1], it appears that the value of Hartman for which the natural convection is fully inhibited
decreases with decreasing the Prandtl number. For Pr < 1, high value of the conductivity of metals
dominates heat transfer.

More quantitative comparison are presented here in terms of V-velocity, temperature and solute
profiles. All the profiles are plotted along the middle horizontal line of the enclosure, i.e., along the
line of Y = 0.5. Figures 3 and 4 compare profiles obtained for Da = 102 and Da = 10~5 at different
Hartman number Ha = 0, 20, 40 and 60. The effect of Hartman number on the convection field is well
reflected by the progressive reduction of the velocity, temperature and solute concentration gradients
as the Hartman number is increased. It appears that for moderate value of Darcy number (Da =
1072), as the Hartman increases, the flow field, temperature and concentration are slightly influenced
in both porous and fluid regions. For low value of Darcy number (Da = 10~%), corresponding to
low permeability, as Hartman number increases the flow field, temperature and concentration are
inhibited only in the fluid region, because the porous medium acts as a solid wall.

Another view of the effect of Hartman on heat and mass transfer is found in Fig. 5, where Nusselt
and Sherwood numbers are plotted as a function of Ha. The analysis of this figure indicates that
for small values of Ha, the boundary layer regime prevails. As the Hartman number increases, the
electromagnetic body force increases which suppresses progressively the strength of the convective
motion, and thus boundary layer regime is followed by the double diffusive regime for which Nusselt
and Sherwood numbers tend to one.
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5.2. Influence of porous layer thickness

The set of simulation results displayed in Fig. 6 shows the variation of the average Nusselt and
Sherwood numbers in a vertical plan as a function of Xp, for Ra=10%, Da=10"5, Le=10, and N=1.
The figure shows that it is not necessary to introduce a very high thickness porous medium to obtain
a significant decrease of the heat and mass transfer. For a thickness value greater than 0.305, the
Nusselt and Sherwood numbers decrease very slowly for an increasing thickness. This observation
is in good agreement with the result reported by Le Breton and al. [8]. It can be deduced that the
role of the porous layer is actually to reduce the upwind flow and the convective heat and mass
transfer in the area where it is the strongest.

14

—e¢— Nu
T BIF L7
|
of |
P 1
gl -"\
& \
'y
oy
E .\.\
j \‘ “u,
| =
\. o e
\. : ~~l—~—l~~-‘*—-—w B, ~ H
! H.H.\.H. ey g
L |_‘-.—h‘q—h.-! g g ;
| 02 : % 4 10

Fig. 6. Effect of porous layer thickness on heat and mass transfer: Ra =105, Da=10"%, N=1, Pr=7,
Le=10, Ha=0

5.3. Influence of permeability

In this section we focus our attention on the role of permeability of the porous medium, which
appears through the Darcy number (Da) in the dimensionless equations presented above. The range
of Dais from small values corresponding to low permeability, to high values for which the Darcy
term in the momentum equations (2)—(3) is so small that the porous layer behaves as a fluid.
Figure 7 displays the average wall Nusselt and Sherwood numbers versus Darcy number. Three
zones can be distinguished. When Darcy number is lower than 1079 it has a relatively weak impact
on mass transfer. In this range of Darcy, the porous medium acts almost as a solid wall, and the
mass transfer is quasi-diffusive. In the second zone, where Darcy number is between 10~¢ and 1072,
the Sherwood increases strongly with Darcy. Finally, when Darcy number is greater than 10~3 the
Sherwood number remains nearly constant.

The variation of Nusselt number with Darcy number is approximately the same as observed for
as the Sherwood number. The main difference is that this variation is not monotonic and exhibits
a significant minimum. The increase of permeability results in a better penetration of the flow in
the porous layer and finally in the enhancement of the overall heat transfer.

6. CONCLUSION

Double-diffusive natural convection in composite fluid—porous layer in the presence of a magnetic
field has been studied,numerically. The results obtained are in good agreement with the heat transfer
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Fig. 7. Effect of permeability on heat and mass transfer: Ra = 105, N =1, Pr=7, Le = 10, Ha = 0,
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results given in literature. The main conclusions of this study are summarized here:

e The role of porous media is to reduce significantly the vertical velocities that occur in boundary
layer.

e The convection of heat and mass transfer is strongly inhibited with increasing magnetic field.
e The overall heat and mass transfers decrease for a decreasing permeability.

The present analysis is focused on the influence of a limited number of dimensionless parameters.
As an extension of this work, it is particularly relevant to take into account the effect of aspect ratio
(A), the Prandtl number (Pr), the conductivity ratio (A), and correlate heat and mass transfer.
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