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A new finite element to analyze problems of anisotropic hyperelasticity is presented. The constitutive
equations are derived by means of the energy method, which leads to the stress measure conjugate to
the logarithmic strain. Equilibrium equation are integrated in the current configuration. Multiplicative —
instead of additive — decomposition of the time derivative of a strain tensor function is applied as a crucial
step that makes possible the formulation for anisotropic hyperelastic materials. Unlike previous known
anisotropic large deformation models, the one here presented assures the energy conservation while using
the anisotropic elastic constants and the logarithmic strain measure. It is underlined that for the first
time a model including all these features is presented. Some numerical examples are shown to illustrate
the results obtained with this model and to compare them with other known anisotropic models.
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1. INTRODUCTION

The advanced analytical and numerical problems that arise throughout the modelling of thermody-
namically accepted anisotropic elastic materials, is most surely the reason why the number of the
anisotropic so-called hyperelastic finite elements available in commercial FE codes is very scarce,
cf. ABAQUS, MARC, FEAP. Usually, they are limited to the Saint-Venant—Kirchhoff model based
on the Green strain and eventually to the Biot model based upon the use of the Biot strain. In-
stead, these commercial packages offer most frequently a rich library of thermodynamically accepted
isotropic elastic finite elements, in which the stress-strain relation can be fitted even to an arbitrarily
chosen monotonically increasing curve e.g. that obtained in the uniaxial stress or strain tests.

On the other hand, there is an increasing need for such anisotropic hyperelastic models. Many
of the recently manufactured materials are conceived as to develop very large strains in the elastic
range. Moreover, a significant number of them are anisotropic. Therefore the use of new finite
elements that can better fit the anisotropic behaviour of real materials is very desired.

Most of the theoretical papers devoted to nonlinear elasticity fall mainly into two categories:
(a) isotropic hyperelasticity and (b) isotropic and anisotropic hypoelasticity. It is worth emphasiz-
ing that hypoelastic materials, contrary to hyperelastic, ignore the potential character of energy.
Therefore, hypoelastic finite elements often describe nothing but a perpetual motion producing or
annihilating energy (work) in closed deformation loops — depending on the loop direction. Our
interest is focused here, as said on the constitutive models based on the logarithmic strain mea-
sure, cf. [1, 4-8, 10, 15]. To ascertain whether a given constitutive model describes the hyperelastic
(Green) or at least the Cauchy elastic material, additional theorems are studied in hypoelasticity,
cf. [15]. Regarding anisotropy, the problem is more complicated and, therefore, considerations are
often limited only to remarks stating that the stress conjugate to logarithmic strain is then not
coaxial to the stretch tensor, what implies a complex relation between the Cauchy stress and the
conjugate stress to logarithmic strain.
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In this paper the model for an anisotropic hyperelastic material is implemented into a finite
element code. In the next section the constitutive equations are derived from energy considerations.
Two approaches based, respectively, upon the Lagrangian and Eulerian tensors are simultaneously
developed. Two fourth order tensors characterize the thus arising relations. Next, the discretization
into finite elements is briefly presented, and, finally, some numerical examples show the behaviour
of the model and its comparison with the linear strain measure.

2. LOGARITHMIC HYPERELASTICITY
2.1. Introductory comments

In this section we shall derive the form the constitutive equations assume for an anisotropic hyper-
elastic material when logarithmic strain measure is used. It will result by considering the energy
balance equation, which must be fulfilled for any arbitrarily chosen velocity gradient, as we will see
later on. Keeping in mind the polar decomposition of the deformation gradient into the rotation R,
and the right or left stretch tensors, U and V, respectively,

F = VR =RU (1)

we will arrive at expressions for the different quantities entering the model written in the current
configuration based on either the left and right stretch tensors. In passing, the decomposition into
eigenvalues and eigenvectors of the stretch tensors provides us a suitable basis to write a general
expression of the strain measure of which the logarithmic strain is a particular case. On these bases
we will obtain auxiliary tensors to complete the constitutive equations.

2.2. Logarithmic strain measure

Making use of the sets of eigenvalues u;, v; and eigenvectors u;, v;, (with i=1,..., N and N = space
dimension) of the right and left stretch tensors, respectively, we define the Lagrangian € and Eulerian
€ strain tensors as those which can be decomposed as

e Z flu)u®uy and P Z f)vi®v, (2)

=13 =1.3

where f(-) denotes an arbitrarily chosen C' monotonically increasing function f(z) : R* 3 z —
f € R which satisfies

f@)e=1 =0, @)
df(z)|  _
e (4)

Conditions (3) and (4) assure compatibility with the Cauchy strain measure at small strains.
It can be shown that the decomposition given in Eq. (2) can be applied to the so-called generalized
Lagrangian and Eulerian strain measures [4, 12]

-~ 1 n A l ;e
€= 7—L(U 1) and. ;e n(V 1), (5)

with n # 0, while n = 0 yields the logarithmic strain tensors, which are defined as

fL€mU  and e¥mv. (6)
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2.3. Constitutive equations

We now consider the energy balance, from which we will obtain the condition that yields the
constitutive equation. For an isothermal and quasi-static deformation process within the elastic
range we write

—pp+o:d=0, (7)

where p is the mass density, ¢ the specific strain energy, o the Cauchy stress tensor and d the
symmetric part of the velocity gradient, which can be written e.g. as

1
2

d= %R(t’m-l +U'U)RT =

(Vv + VTv) (8)
where v denotes the velocity vector. In what follows we assume that the specific strain energy
can be written as a function of only the Lagrangian strain tensor, as required by the hyperelastic
model

P =9(E). (9)
Thus its time derivative as called for in Eq. (7) will read
: oY

Using Eq. (2) it can be shown that
t=A:(RTdR) (11)

where A is a fourth-order tensor. A decomposed in the eigenvector basis u; is represented by the
following non-vanishing components [5]

Spurf! (u)) for uj=uy,
g f (ur) = f(uy)]
2= for u; # uy,

where .;{[J[_] = ﬁ/_/_/, = ./TJ”J. Substituting Eqgs. (10) and (11) into Eq. (7) we obtain

—%(5%>;2:(RTdR)+a:d=o, (13)

where p = p det F.
By inspection of Eq. (13) we see that, since the energy balance must hold for any value of the
symmetric part of the strain velocity d, the following expression for the Cauchy stress tensor arises

oc=R (,1; ﬁ%) RT detF~! (14)

which, by defining & as the stress measure conjugate to the Lagrangian strain tensor €,

5 -0
a_pa/é’

can be rewritten in the form of a transformation rule between o and &

c=R(A:5)R"det F~. (16)
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A more detailed discussion of the constitutive model (15) is given by Diuzewski in [3]. For example,
if we assume the specific strain energy function for a hyperelastic material in the form

3, g as
¢=%\E:D:€, (17)

where D is a fourth-order tensor of elastic stiffness, then we can calculate % and substitute into
Eq. (14) to get

oc=R(A:D:8)RTdetF !, (18)
which can be finally written in terms of tensorial measures referred to the current configuration as

T=A:D:e¢, (19)
where 7 denotes the Kirchhoff stress, and

L o detF, D¥imn — Rk Rl R™ )\ R™y DKLMN, (20)

e LReR7, Aktmn — pk o gl R™ )y Ry AKLMN (21)

Eqgs. (18) and (19) give the constitutive stress-strain equations for an anisotropic hyperelastic mate-
rial with the specific strain energy function given by Eq. (17). In correspondence to different choices
of the strain measure, different expressions for the fourth-order tensors A and A will be obtained.
For the logarithmic strain measure they read, after decomposition in the eigenvector bases

o1 for & =¢y

A= sy @)
T < PETES . 3ITT fOI' / # EJ
eIty = g% J¢]
djj for ;i =¢;

AUU e i 55 Ej (23)
——————— for € #¢j

eE,’—Ej e eEj—E"

while the remaining components vanish. This completes the model for the anisotropic hyperelastic
material described with the logarithmic strain measure. We may notice that whenever the compo-
nents of the tensors rewritten in eigenvector bases satisfy £ = ¢;, we find Ay, = Ajjii , what does

not mean that A = A nor € = £, cf. Eq. (21Db).

6)

Fig. 1. Cauchy stress versus various strain measures applied in Eq. (18) for uniaxial stress
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The above considerations are valid for any kind of hyperelastic materials, i.e. either isotropic
and anisotropic. Specifically, concerning the use of the logarithmic strain measure, up to now the
proposed models have been restricted mainly to the isotropic case [6, 9, 11] because anisotropy
causes the stress conjugate to logarithmic strains to be not coaxial with the stretch tensor, resulting
in a complex relation between the conjugate and the Cauchy stress. The larger the strains, the
elastic behaviour of constitutive models based on the generalized strain tensor differs more from
each other. Figure 1 shows the comparison of the behaviour of isotropic hyperelastic models based
upon Egs. (18) and (5) for various strain parameter n.

3. FINITE ELEMENT METHOD

The physical model presented in the previous section has been implemented within the finite ele-
ment method. As a result, a computational tool for analyzing non-standard problems, namely those
involving large-strain deformation processes of anisotropic hyperelastic materials has been devel-
oped. The general discretization patterns used in the finite element method have been followed, but
accounting for the specific features of the present problem.

We start considering the weighted equilibrium equation in its weak form, where, following the
Galerkin method, the weighting functions are equal to the shape functions N in terms of which the
displacement field is discretized (u = NTa)

/Nioi,;j,j dv = /Nifj d’U, (24)
v v

where v is the discretized domain in the current configuration, dv its boundary, and f volume
distributed forces. By integrating by parts the left-hand side of Eq. (24) we can write

/Ni,jaij dv = —/Nifj dv +/ NiO'i]"nJ‘ d(a’u), (25)
v v v

where n; is the outward normal vector to the boundary dv. In the above system of equations it is
the discretized displacement a; that it is solved for. The actual configuration and the stress tensor
(through the strain tensor and the proper transformation) are functions of them. Since Eq. (25) is
non-linear in the discretized variables, it is solved by iterations. To this aim we write it in residual
form as

a) = /Ni,jdij dv + /Nifj dv —/ N,-o,-jnj d(av). (26)
v v v
To arrive at the solution of Eq. (26) we require
IP(a)]l <4, (27)

where 4 is a convergence tolerance. To meet this condition we calculate the correction to the solution
vector a so as to zero a one term series expansion of the residual at a. Denoting with a right upper
index the iteration number, we require that

P(a**!) = P(a¥) + %(a‘”“ —a%) =0 (28)

w+1

from which we solve for (a¥*' — a*) using the so-called tangent matrix as the system matrix

k. 0P _0J,VNo(@dv _9f, VNo(a)gHdV _ / d[VNo(a) &1dV
Oa oa da o o
:/ AVN) —dV+/ . do(a) gl .,
74 Oa
9(VN) _ dlo(a )d—v] av
i h A +/ VNT & & (29)
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Due to the complex dependencies on a; this derivative has been calculated numerically. An approx-
imate tangent matrix has been also used by dropping the first term in Eq. (29), i.e.

K;; ~ / VNi%ﬂ det F~! dv, (30)
v 7

which does not affect the results since we are solving the same problem, defined by the residual
P(a). Eventually, the rate of convergence may be affected but, according to our experience, it did
not, at least in the examples we solved. The constitutive model has been implemented into the
FEAP program [16] as a new user element. The problem was discretized with nine-node biquadratic
elements.

4. NUMERICAL EXAMPLES

The model for anisotropic hyperelasticity with logarithmic strain measure has been used to solve a
number of simple problems, some of which are presented in this Section. They have been designed so
as to highlight the behaviour of the model under different deformation processes. The results have
been compared with the St.Venant-Kirchhoff model and the linear model for small deformations.
Since anisotropic models are not available, only qualitative behaviour is evaluated in this respect.

The examples presented below simulate the deformation in 2D of CdTe crystal specimens in
elastic range. CdTe is a crystal with cubic symmetry and only three elastic constants describe its
elastic properties (cf. [14]),

Dij11 = D11 =53.5-10° [Pa],  Dijg12 = Dyp = 36.8 - 10° [Pa),

31
Daysas = Dag =19.9 - 10° [Pa]. (31)

Ezample 1

We first consider a rectangular specimen subject to a uniaxial stress state imposed by means a set
of z-forces on one edge, while z-displacements on the other are constrained. Both induce a uniform
loading throughout the element, as that of a constant distributed load. On the y-direction the
constraints are only applied on the symmetry axis in order to avoid rigid body displacement modes,
thus zero oy and 7,y stresses are obtained. The scheme of the model is shown in Fig. 2, where also
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Fig. 2. Layout and response diagram for uniaxial stress
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the stress-strain results have been plotted for the three models considered: logarithmic (n = 0),
St.Venant-Kirchhoff (n = 2) and linear. The different behaviour of the two large strain models can
be clearly noticed. The one based on the logarithmic strain measure is qualitatively closer to the
linear model, while the St. Venant-Kirchhoff diverges very quickly with growing strains. Further
insight is gained by considered the logarithmic strain. In our example the linear strain is calculated

o 00 (32)

while the logarithmic strain reads

Toy+ U
To

Ein = In (33)

The plot of the stress—logarithmic-strain curve, shown in Fig. 3, highlights the fact that the model
based on the logarithmic strain measure remains along a linear stress-strain behaviour, while, for
geometric reasons, the linear model softens. Both for traction and compression the St.Venant-
Kirchhoff model hardens unrealistically.

154
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Fig. 3. Kirchhoff stress — logarithmic strain diagram for uniaxial stress

Ezample 2

In the second example the same element already considered is subject to the same loading but
now under different displacement restrictions, namely all the y-displacements are constrained. Thus
the obtained z-displacements will uniquely define the volume variation. The reaction forces on the
y-direction will induce o, and o, stresses resulting in a hydrostatic stress added to the uniaxial
stress. The same material as in the first example, with its elasticity constants is used.

The plot shown in Fig. 4 shows that the stress state strongly depends on the imposed boundary
conditions. All the models exhibit a nonlinear behaviour. However, by plotting the Kirchhoff stress,
cf. Eq. (19) vs the logarithmic strain, we obtain a linear stress-strain behaviour for the logarithmic
model, while both the linear and St. Venant-Kirchhoff models are more stiff, see Fig. 5.
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Fig. 4. Layout and response diagram for uniaxial strain
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Fig. 5. Kirchhoff stress — logarithmic strain diagram for uniaxial strain
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Ezample 3

The next example considers again our specimen of the same material properties as before, but now
subject to pure shear. Boundary and load conditions have been accordingly modified. Displacements
have been imposed as shown in Fig. 6. In the same figure the stresses calculated with the three
models are plotted in terms of the logarithmic strain. Again we obtain the linear behaviour for
the logarithmic model and a growing instantaneous stiffness for the other two models. Its easy to
notice that the St. Venant-Kirchhoff model is significantly stiffer and under large strain inducing
an adequately higher stress in comparison with other models examined in this example.
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Fig. 6. Layout and response diagram for pure shear

Ezxample 4

The anisotropic-logarithmic model is compared with the isotropic (St. Venant-Kirchhoff) one as-
suming first an isotropic material and later allowing for an important anisotropy in one of the
material directions. The problem layout is schematized in Fig. 7. A uniform horizontal displace-
ment field is applied to the right end of a ‘z’-shaped specimen while the other end is fixed. Because
of the geometry the displacement field involves both in-plane components.

First, an isotropic material is solved for using the logarithmic-strain based, and the St. Venant-
Kirchhoff models. Afterwards, anisotropy is obtained by assuming different elastic constants, which
in this problem will be equivalent to a horizontal and vertical reinforcement respectively. Both cases
are solved within the anisotropic-logarithmic model. The resulting final configurations are shown in
Fig. 8.

The final shapes and the respective load-displacement curves (cf. Fig. 7) show that similar re-
sults are obtained with logarithmic and St. Venant-Kirchhoff models for the isotropic case. For
the anisotropic material we obtain a stiffer behaviour especially for the case of reinforcement in
the direction of imposed displacements. For the isotropic case, we can see that the most notice-
able differences between logarithmic and St. Venant-Kirchhoff models appear in the regions where
displacements are relatively large. In this problem, the dominant strain mode is that of bending,
where the stress distribution will be that of o, . Thus, if the corresponding elastic constant has been
enlarged, we can expect a more stiff behaviour of this element, as it happens.
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