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The main objective of the paper is the investigation of the interaction and reflection of elastic-viscoplastic
waves which can lead to localization phenomena in solids. The rate type constitutive structure for an
elastic-viscoplastic material with thermomechanical coupling is used. An adiabatic inelastic flow process
is considered. Discussion of some features of rate dependent plastic medium is presented. This medium
has dissipative and dispersive properties. In the evolution problem considered in such dissipative and
dispersive medium the stress and deformation due to wave reflections and interactions are not uniformly
distributed, and this kind of heterogeneity can lead to strain localization in the absence of geometrical or
material imperfections.

Numerical examples are presented for a 2D specimens subjected to tension, with the controlled displace-
ments imposed at one side with different velocities. The initial-boundary conditions which are considered
reflect the asymmetric (single side) tension of the specimen with the opposite side fixed, which leads
to non-symmetric deformation. The influence of the constitutive parameter (relaxation time of mechan-
ical perturbances) is also studied in the examples. The attention is focused on the investigation of the
interactions and reflections of waves and on the location of localization of plastic deformations.

1. INTRODUCTION

The description of the structural damage process bases on dynamic experiments with controlled
load amplitudes and time duration. Failure of solids is as a highly rate, temperature and history
dependent, nonlinear process. The process of deformation is formulated by the set of evolution
equations for velocity, mass, Kirchhoff stresses, the microdamage initiation and growth, and tem-
perature within the theory of viscoplasticity. The finite element method is applied for solution
of the problem. It is known and discussed in many papers that, classical rate independent plas-
tic strain formulation with negative stress—strain constitutive relation (softening) leads to ill-posed
problems and in consequence to not unique results in numerical applications (for example see Lody-
gowski and Perzyna [11]). From theoretical point of view we observe the change of the type of partial
differential equations (elliptic into hyperbolic in statics and conversely in dynamics) and in conse-
quence from numerical point of view we observe parasitic mesh sensitivity (e.g. Lodygowski [9]).
The regularization is the way to avoid these phenomena. The rate dependent plasticity and dynamic
formulation are used in the presentation to describe the localization phenomenon including the in-
fluence of temperature and microdamage effects. In the evolution problem (dynamic formulation)
introducing the Perzyna’s type viscoplasticity, naturally regularizes initial boundary value problems.
Then, the governing equations do not change the type during the strain localization damage up to
failure and the process can be studied as a well posed problem. As a crucial effect the solution
becomes unique, the results are stable and spurious mesh dependency is not observed any more.
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The regularization introduced by viscoplasticity (relaxation time plays also the role of regularization
parameter) is the way to avoid ill-posedness of the formulation.

The fracture phenomenon can occur as a result of an adiabatic shear band localization attributed
to a plastic instability implied by microdamage and thermal softening during dynamic plastic flow
processes.

The correspondence between stationary body waves and bulk localization has long been appre-
ciated (cf. Hadamard [7], Thomas [33], Hill [8], Truesdell [34], Mandel [13] and Rice [27]). In many
recently published papers the investigation of adiabatic shear band localization phenomena has
been based on an analysis of acceleration waves and has taken advantage of a notion of the instan-
taneous adiabatic acoustic tensor (cf. Rice [27], Ottosen and Runesson [19], Duszek-Perzyna and
Perzyna [2, 3] and Perzyna [22]). Connection between stationary waves, stability and well-posedness
of initial-boundary value problems has received considerable attention (cf. Simpson and Spector 28],
Dowaikh and Ogden [1] and Ogden [18]). The analysis of the influence of the effect of boundaries
and interfaces on shear band localization in time- and rate-independent plastic materials has been
based on the investigation of stationary body, Rayleigh and Stoneley waves (cf. Needleman and
Ortiz [16] and Suo, Ortiz and Needleman [31]). They defined stability, in the sense of limits to the
uniqueness of solutions to quasi-static boundary value problems and addressed stability in terms of
the existence of certain stationary waves.

Very recently, it has been widely recognized to consider an elastic-viscoplastic model of a material
as a regularization method for solving mesh dependent strain softening problems of plasticity. In
these regularized initial-boundary value problems wave propagation phenomena play a fundamental
role. Since an elastic-viscoplastic model introduces dissipative as well as dispersive nature for the
propagated waves hence the analysis of dispersive, dissipative waves and particularly their interac-
tions and reflections have to be considered as the most important problem (cf. Needleman [14, 15],
Prevost and Loret [26], Sluys [29], Sluys et al. [30], Nemes and Eftis [17], Lodygowski et al. [10], Lody-
gowski [9], Lodygowski and Perzyna [11, 12|, Perzyna [23, 24], Perzyna and Duszek-Perzyna [25],
Wang [35], Wang et al. [36] and Glema et al. [5, 6].

The main objective of the present paper is the investigation of the interaction and reflection of
elastic-viscoplastic waves which can lead to localization of plastic deformations in solids.

2. ASSUMPTIONS

Let us introduce the rate type constitutive structure for an elastic-viscoplastic material in which
the effects of thermomechanical couplings are taken into consideration.
The axioms are as follows:

1. Axiom of the existence of the free energy function in the form [4]

¥ = 9(e,F,9; p), (1)

where e is the Eulerian strain tensor, F the deformation gradient, ¥ a temperature field and p
denotes the internal state variable vector.

2. Axiom of objectivity (spatial covariance). The constitutive structure should be invariant with
respect to any diffeomorphism £ : § —+ &, where S denotes the actual (spatial) configuration of
a body B.

3. The axiom of entropy production. For any regular process ¢;, 9, p; of a body B the constitutive
functions are assumed to satisfy the reduced dissipation inequality

{630} 1
7:d— (nd+9Y) - —q-gradd >0, (2)
PRef pv
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where p and pgrer denote the mass density in the actual and reference configuration, respectively,
7 is the Kirchhoff stress tensor, d = d® 4 dP the rate of total deformation,  denotes the specific
(per unit mass) entropy and q is the heat vector field.

Let us also postulate p = €P, where € = fo ( £dP : d”)2 dt is the scalar measure of equivalent
plastic deformation. It is introduced as the internal state variable to describe the dissipation effects
generated by viscoplastic low phenomena.

Let us assume the plastic potential function for a material in the form

1% .

§.om Jo. where Jo = 57’ ab,'cd Gacbd 5 (3)
and g denotes the metric tensor in S.

The evolution equation is postulated as

d? = AP, (4)

where for the elastic-viscoplastic model of a material we assume (cf. Perzyna [20, 21, 23, 24])

()

where T}, denotes the relaxation time for mechanical disturbances and s is the isotropic work-
hardening parameter, ® is the empirical overstress function and the bracket (-) defines the ramp
function, P = ; \/—51-4 Thus, we have

Pop = W—l];'rlc‘igcagdb . (6)
The isotropic hardening-softening material function x is assumed in the form as follows
fﬁ—ﬂo{q+(1—q exp [—h(9)€”]}* (1 - b9), (7)

where ¢ = = ko and x1 denote the yield and saturation stress of the matrix material, respectively,
h = h(?9) is the temperature dependent strain hardening function for the matrix material and b is
a material coefficient. The overstress viscoplastic function ® is postulated in the known form (cf.
Perzyna [20, 21])

@(—‘i—l)z(i—l)m, where m =1,3,5,... (8)

K K

The axioms 1, 2, 3, and the evolution equations (4) lead to the rate equations as follows

L,,-r=£e:d—[,”‘19—[(£e+g‘r+‘rg):P]—Tl-<<1>(£—1> >,

. (9)
9 =——1—divq+ g d+ﬁ—'r d?,

PCp CpPRef 99 PCp

where L, defines the Lie derivative with respect to the velocity field, dot denotes the material
derivative and p is actual density,

821[; 321& 62,&
£ 2 — T - — cp = -9 —, 10
PRef e’ PRef 5ed? ' D 992 ( )
X is the irreversibility coefficient.
To make possible numerical investigation of the three-dimensional dynamic adiabatic deforma-
tions of a body for different ranges of strain rate we introduce some simplifications of the constitutive

model. The infinitesimal linear theory of elasticity is postulated with G and K as the shear and
bulk modulus, respectively.
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3. FORMULATION OF AN ADIABATIC INELASTIC FLOW PROCESS

To formulate the system of governing equations one has to complete formulae (9) with those that
describe equilibrium and evolution of mass density.
Then, defining an adiabatic inelastic flow process [23, 24], one can simplify the system to the

form:

Find ¢, v, p, 7 and 9 as function of ¢ and x such that

1. the field equations

¢ =Alt,x, @) +£(t,x,9), (11)
where
— - ¥ v @
¢ 0
v
87 p y L= th-9: e : 1 i ;
r -[(er v e rerte) Pl 4 (2 (-1))
9 | _ X7k (o(L-1)) |
[0 0 0 0 0]
v g .
0 0 PR:fP grad St div 0
A= 110 —pdiv 0 S (12)
0 £¢:symZ +2sym (7: ) 0 0 0
0 0 0 0 0]

2. the boundary conditions
(a) displacement ¢ is prescribed on a part 94 of d¢(B) and tractions (7 - n)® are prescribed
on part Or of 0¢(B), where 0y N0 = 0 and dy U 0, = d¢(B);

(b) heat flux q-n = 0 is prescribed on 9¢(B); |

3. the initial conditions

¢, v, p, T and ¥ are given at each particle X € B at t = 0;

will be satisfied.

In Eq. (12)3 %;1 defines the spatial velocity gradient and pres denotes density in the reference
configuration.

4. WAVE PROPAGATION AND DISPERSION

The imposed loading or boundary conditions controlled by displacements and velocities transfer
the signal from one part of the structure to the other and distribute the energy. The signal prop-
agates with velocity recognized by a quantity determined at any time and space location during
dynamic process that is under consideration. To observe a propagation of a wave in the structure
we focussed on the analysis of material points velocities and their accelerations. For classical plas-
ticity the system of governing equations is hyperbolic. The change of the type of partial differential
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equations that could be the effect of softening becomes the limit of wave propagation. The further
description of the process after initiation of localization is problematic and no unique solution can
be obtained any more. The situation changes when viscosity is introduced. Dispersive waves are
propagated during the dynamic process. Wave propagation is restricted by strain localization but
the solution of the system of governing equations do not present substantial difficulties. Unique
numerical solutions are obtained and the computations can be continued up to advanced stages
of structure deformations.

The aim of the study is to demonstrate the existence of wave propagation effects within the prob-
lems of structure failure. Research is provided to check the relation between wave propagation and
strain localization and the influence of parameters specifying the physical model and initial and
boundary conditions. Different placement of localization is evaluated for various boundary veloci-
ties. Wave interaction influences the energy distribution, increase of stresses and finally the form
of deformation. The plastic strain localization and in consequence the later place of failure is strictly
related to wave evolution. The wave history makes possible to answer the question where the local-
ization will take place. Waves development with their interference are studied as a reason of specific
placement of localization zones.

In point of fact the dispersion of a waveform is caused by certain physical and/or geometrical
characteristics of the medium in which the wave is generated. Consequently, instead of dispersive
waves, it is perhaps more precise to speak of a dispersive medium or, where geometrical features
alone cause the dispersion, a dispersive geometry, cf. Thau [32].

The relaxation time T, (or viscosity) can be viewed either as a regularization parameter or as
icrostructural parameter to be determined from experimental observations.

t has been proven that the localization of plastic deformation phenomenon in an elastic-viscoplas-
~ tic solid body can arise only as the result of the reflection and interaction of waves. It has different
character than that which occurs in a rate independent elasto-plastic solid body [22, 24]. Rate
dependency (viscosity) allows the spatial difference operator in the governing equations to retain
its ellipticity and the initial value problem is well-posed. Viscosity introduces implicitly a length-
scale parameter into the dynamical initial-boundary value problem and hence it implies that the
localization region is diffused when compared with an inviscid plastic material. In the dynamical
initial-boundary value problem the stress and deformation due to wave reflections and interactions
- are not uniformly distributed, and this kind of heterogeneity can lead to strain localization in the
absence of geometrical or material irregularities. This kind of phenomenon has been noticed by
- Nemes and Eftis [17] (cf. also the results by Sluys et al. [30]).

The theory of viscoplasticity gives the possibility to obtain mesh-insensitive results in localization
problems with respect to the width of the shear band and the wave reflection and interaction patterns

 (cf. Sluys et al. [30]).

From the point of view of our present study the most important feature is that the propagation

of deformation waves in an elastic-viscoplastic medium has dispersive nature. In this study we shall

e the numerical finite element procedure to show the solution of the particular evolution prob-

ems with nonlinear dissipative and dispersive wave effects. For this purpose the set of numerical

studies with varying relaxation times is presented. The total dissipated energy for rate indepen-

dent material is only that which is consumed by plastic deformations; however, for rate dependent

coplastic) material the part of dissipative energy which comes from the dispersive character of
waves additionally appears.

- The application of the variational method and the perturbation theory in the investigation of
e nonlinear evolution problems will be presented by the authors in the forthcoming papers.

" The numerical salutions of the initial-haundars value nrahlem (asalution nraklom) wraes diessennd.
in [6]. Mathematical formulation of the evolution problem was presented. Discretisations in space
and time were there proposed and convergence, consistency and stability were examined. The Lax—
Richtmayer equivalence theorem was also formulated and conditions under which this theorem is
valid were investigated as well.
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5. NUMERICAL EXAMPLES AND RESULTS

The thin rectangular plate is the subject of our interest. The numerical study of localized adiabatic
shear band in inelastic solids is presented for variable loading conditions. The examples are presented
for a thin steel plate specimens subjected to tension, with the controlled displacements imposed
at one side with different velocities. Basically, asymmetric constraints of the specimen are considered
(velocities act at one side, while the opposite is fixed). It leads to non-symmetric final deformations.
The examples were computed for different initial velocities as well as different relaxation times.
In the numerical examples we studied the sensitivity of plastic zones location to the variable loads
and constitutive parameters. The distributions of plastic equivalent strains PEEQ and temperature,
vector plots of particle velocities represent the results. The computations were performed using the
environment of finite element program ABAQUS /Explicit. Numerical data were compared with the
experimental results.

There was tested a rectangular strip plate of the length I = 25.4 mm, the width w = 12.7 mm.
The adiabatic case of this thin plate (¢ = 0.33 mm) was modeled using 4-node shell elements. The
following data were accepted as: Young modulus E = 200, 000 MPa, yield limit op = 1634 MPa,
mass density p = 7850 kg/m?. The relaxation time of the material Tm = 2.5-1076 s, specific heat
460 J/kgK and heat fraction 0.9. The computed set of examples includes one-sided symmetrically
loaded specimens.

In Fig. 1 the deformed meshes and the qualitative distribution of plastic equivalent strains for
different velocities are presented. The velocities applied to the top edge varies between 2 m/s up
to 50 m/s (2, 5, 10, 20, 50 m/s) and the plotted results are monitored for the same elongation
of the specimens. The small geometric imperfection (statical horizontal movement of top side) has
been assumed. One can observe that for relatively slow processes the mode of deformation is not
symmetric (usually observed in quasi-static experiments) while for higher velocities despite of initial
imperfections always become symmetric. This kind of behaviour is well known and observable in
dynamic laboratory tests.

Figure 2 presents the results of sensitivity of the localization zone width to the accepted constitu-
tive parameter Tp, for fixed initial velocity 20 m/s. The relaxation time changes between 2.5-1072 s
up to 2.5-1076 s.

As it is expected the values of the forces which accompany these states differ reaching the higher
limit values for faster processes. The softening character of the specimens’ behaviour is clearly visible
when looking at the generalized results (e.g. in the spaces of acting forces and displacements).

The important observation confirm that the place of localization is chosen only as an effect of
waves interaction and significantly depends on the initial conditions.

It is clearly visible that for different velocities (not quasi-static) the places of strain localization
appear symmetrically but with different intensity.

The level of diffusion of the zone of localization significantly depends on the constitutive param-
eter, namely the relaxation time T}, . For shorter T}, the width of localized zone is smaller.

Figure 3 presents the vector plots of velocities of particles in the specimen for different stages
of the process. The assumed initial velocity v = 20 m/s and the relaxation time T =28 ey
At the beginning of the process the longitudinal waves propagate with the elastic speed. Also from
the very beginning the refraction of waves at the edges is clearly visible. The vector plot (arrows)
shows the directions of the particle movements and the length of arrows reflect their values. In Fig. 3
the crucial role of reflection of waves and its interaction is observed. For 1 /10 of the process the
place of plastic strain localization is fixed. In the vicinity of the place of localization the speed of
waves are almost equal to zero. In the areas where the localization appears the velocities and also
the accelerations are close to zero. For the initial velocity of 20 m/s a set of results with different
relaxation times T, = 2.5-1075; 2.5-107%; 2.5.1077 is presented, for the fine meshes (80x40).
In Fig. 4 the values of the total energy divided into elastic and dissipated parts are plotted. For
this viscoplastic media, if 7}, tends to 0 at the limit case the material becomes rate independent,
so the dissipated energy is only the part that is consumed for plastic deformations. The differences
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Fig. 1. Deformed meshes (top) and places of strain localization (bottom) for different loading velocities
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Fig. 2. Deformed meshes (top) and places of strain localization (bottom) for different relaxation times
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ENERGY IN SPECIMEN
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Fig. 5. The comparison of the whole specimen dissipation energy for different relaxation time T},

between dissipated energy for rate independent and the rate dependent (viscoplastic softening)
models (Fig. 5) show the effects of dispersivity combined with the dissipation due to overstress
states. There is a certain amount of energy which has to be used for regularization of the initial
boundary value problem. For very short relaxation times the stability of the solution can not be
assured.

6. FINAL REMARKS

The main important physical aspects of an elastic-viscoplastic medium proposed are as follows:
(i) the adiabatic thermal softening associated with high strain rate inelastic deformations;

(ii) strain hardening-softening effect;

(iii) dispersive and dissipative wave motion and the partition of the energy during the process;

(iv) a length-scale parameter is implicitly introduced into the dynamical initial-boundary value
problem;

(v) strain-rate sensitivity.

The numerical simulations of the evolution problems have shown that for dynamically imposed
loading the inhomogeneous fields of stress and deformation are caused by the propagation of waves
and the reflection of waves. This interaction of waves induced necking at different locations along
the specimen depending upon the strain rate imposed. The phenomenon of localization of plastic
deformation occurs without imposition of any geometrical, thermal or material imperfections. In
each of the numerical examples considered due to different initial conditions the evolution of the
necking looks differently. Propagative waves have dispersive and dissipative nature and this fact
has fundamental influence on the development of localization of plastic deformation in a mode of
necking.
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The numerical simulations are able to provide graphic illustrations which proved that the in-
teractions and reflections of dispersive, dissipative waves generate the spatial localization and the
intensification of stresses and equivalent plastic deformations in the developing neck.

The temperature rise computed in the diffused neck confirmed the assumption that the evolution
process have to be treated as adiabatic one.
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